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Abstract: Oil palm ripeness’ main evaluation procedure is traditionally accomplished by human
vision. However, the dependency on human evaluators to grade the ripeness of oil palm fresh fruit
bunches (FFBs) by traditional means could lead to inaccuracy that can cause a reduction in oil palm
fruit oil extraction rate (OER). This paper emphasizes the fruit battery method to distinguish oil
palm fruit FFB ripeness stages by determining the value of load resistance voltage and its moisture
content resolution. In addition, computer vision using a color feature is tested on the same samples
to compare the accuracy score using support vector machine (SVM). The accuracy score results of the
fruit battery, computer vision, and a combination of both methods’ accuracy scores are evaluated and
compared. When the ripe and unripe samples were tested for load resistance voltage ranging from
10 Ω to 10 kΩ, three resistance values were shortlisted and tested for moisture content resolution
evaluation. A 1 kΩ load resistance showed the best moisture content resolution, and the results were
used for accuracy score evaluation comparison with computer vision. From the results obtained,
the accuracy scores for the combination method are the highest, followed by the fruit battery and
computer vision methods.

Keywords: oil palm; moisture content; fruit battery method; load resistance voltage; color
feature; SVM

1. Introduction

Palm oil is the most productive vegetable oil in the world. It accounts for about 30% of the total
production of vegetable oils and fats in the world. Palm oil has proven to be useful and is used in
various products such as soap, margarine, cosmetics, and surfactants [1].

Currently, traditional human graders play an important role in distinguishing oil palm ripeness
in plantations. During the pre-harvesting stage, human graders evaluate the oil palm fresh fruit
bunches (FFBs) based on the number of detached fruits that fell to the ground and the surface color of
oil palm FFBs to determine their ripeness stage [2]. For the post-harvesting stage, a human expert
inspects the color of the oil palm FFBs’ surface to reject unripe and over-ripe FFBs so that they do not
proceed to the oil extraction process [3]. According to Siregar [4], oil extraction rate (OER) decreases by
0.13% if unripe fruits are present, up to 1% during oil extraction. Furthermore, the National Economic
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Advisory Council (NEAC) in Malaysia reported that if OER rises by 3%, it brings economic profit of
RM 8 billion [5]. In other words, if there is a 0.13% drop in OER due to misjudgment, it will cause the
equivalent of RM 340 million in economic loss. Therefore, it is essential to use an automated detection
classification method to prevent losses and increase productivity.

Several detection methods have been introduced, and computer vision is one of the main methods
that are widely used for this application. Other than red-green-blue (RGB), color evaluation methods
are also used such as hue, saturation and intensity (HSI) [6]. Research conducted by Cherie et al. [7]
under three spectrum regions tested ultraviolet, visible, and near infrared to evaluate the oil palm FFB
harvesting decision. Besides that, Hazir et al. [8] introduced a multi-parameter fluorescence sensor
to investigate the potential of flavonoids and anthocyanins parameters as a predictor to classify the
degree of oil palm FFB ripeness.

Conventionally, the computer vision evaluation is paired with the automated artificial intelligence
system by computer to accurately grade the oil palm fruit ripeness stages. The methods mentioned are
based on image processing, which requires complicated procedures and strictly controlled conditions
for measurement, such as no environmental light and constant settings of measurement devices.
Therefore, they require image color correction calibration, which uses an image processing software
and manually picks up pixel values on a color chart that is placed next to a target object in an image.

There are also various microwave sensors that have been tested for the same purpose, as
Ahmad et al. [9] suggested, such as coplanar and microstrip sensors. The measurement system was
tested with a microstrip ring resonator that operated between 2.2 and 3 GHz on oil palm FFB seeds and
fruits with various maturity stages. However, the fruit sample preparation is very time-consuming,
since the oil palm FFB mesocarp need to be separated from its seeds, and the mesocarp is mushed into
semi-solid sample.

Furthermore, the new inductive method was also proposed with a different structure: circular,
single, dual, and triple coil structure [10]. This sensor was developed based on the fact that the resonant
frequency of the sensor increases as the fruit ripens and inversely, the capacitance value decreases
as the fruit ripens [11]. However, these inductive methods are time-consuming and require specific
equipment for measurement and analysis.

For this study, a fruit battery is proposed as new detection method together with computer vision.
The fruit battery method measures the load resistance voltage when copper and zinc electrodes are
embedded in the oil palm fruit. The value of load resistance voltage is different between unripe and
ripe fruit principally due to the presence of ions in the form of fruit moisture content, which serves as
the electrolyte. The advantage of the fruit battery method is that it is possible to construct a simple
and inexpensive detection device, since ripeness can be determined by simply measuring the load
resistance voltage. In a previous study, suitable electrode conditions for the fruit battery method for
depth and distance were discovered. It was concluded that 3 mm depth and 2 mm distance between
electrodes are the best parameters when evaluating load resistance voltage results and shape of oil
palm fruit [12].

The objective of this study was to determine the best load resistance value that produces the
highest sensitivity for the fruit battery method when tested with fruit sample at different maturity
stages. Besides that, this study also aimed to evaluate the accuracy score for fruit battery and compare
it with the computer vision method’s accuracy score applied to the same fruit sample.

2. Materials

2.1. Sample Preparation

The sample collection and experiment were conducted for three months from 15 September 2017
to 15 December 2017. The location where samples were obtained is at the Universiti Putra Malaysia oil
palm plantation. Oil palm ripeness is determined by moisture contents, as shown in Table 1. From
Table 1, when moisture content is 30% or less, it is labeled as “Ripe”. Meanwhile, when moisture
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content is between 30% and 53%, it is labeled as “Under-ripe”, and moisture content of more than 53%
is labeled as “Unripe”. Table 1 is derived from the fact that FFBs that have 30% moisture content have
the maximum oil content [4], and FFBs start to mature when moisture content is estimated at 53%,
as shown in Figure 1 [11]. From Figure 1, oil palm fruit mainly consists of moisture and lipids. The
percentages of moisture and lipids in unripe fruit are 80.1% and 5.9%, respectively, while in ripe fruit
they are 24.3% and 58.3%, respectively. It can be seen that the lipid content increases, and moisture
content decreases, as the fruit matures.

Table 1. Oil palm fruit ripeness based on moisture content.

Ripeness Category Moisture Content

Ripe <30%
Under-ripe 30–53%

Unripe >53%
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Figure 1. The composition of unripe and ripe fruit [11].

2.2. Moisture Content Determination

The oil palm fruit sample tested underwent moisture content determination measurement. The
determination evaluation was performed on the day of sample collection after measurements were
taken. An infrared moisture meter FD-610, Kett (Kett Electric Laboratory, Tokyo, Japan) was used to
measure moisture content. The measurement heating temperature condition was 105 ◦C with 60 min
drying time.

3. Methodology

A total of 52 fruit samples were collected and used for this experiment. Among 52 fruit samples
collected, 21 ripe, 15 under ripe, and 16 unripe fruits were identified according to their moisture content
from Table 1. Photographs were taken of all samples using an augmented reality (AR) marker, and
they were then tested with the fruit battery method. Lastly, moisture content was determined using
the infrared moisture analyzer.

Firstly, load resistance determination was tested using only ripe and unripe fruits. Twenty-one
ripe and 16 unripe fruits were tested with load resistance ranging from 10 Ω to 1 MΩ to obtain the
differences between ripe and unripe samples and observe the best load resistance to be chosen for
moisture content resolution analysis. Moisture content resolution analysis used all 52 fruits collected to
identify the best load resistance that produced the highest sensitivity. The best load resistance results
were used for accuracy score evaluation together with the computer vision.
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For the computer vision method used in this study, we used an automatic and low-cost color
correction method using augmented reality (AR) technology [13] and classified samples with the
machine learning algorithm. The proposed method requires no strict calibration and adjustment at
the measurement stage and automatically picks up pixel values of a color chart with an AR marker
based on the relative position from the marker. For the present study, the accuracy scores obtained
were saturated between 80% and 90%. This is due to the FFB surface color that exhibits similar color
distinctiveness even though their ripeness stages are not distinct. Therefore, in order to improve its
accuracy, an add-on feature of color feature identification was used simultaneously to increase the
accuracy of classifying oil palm ripeness stages.

The following subsections explain further the computer vision and fruit battery methods applied
in this study.

3.1. Basic Concept of Fruit Battery Method

This paper proposes the fruit battery method to distinguish oil palm fruit ripeness by utilizing the
principle of the fruit battery. Figure 2a shows a schematic diagram illustrating the principle of a fruit
battery using an oil palm fruit. Equations (1) and (2) express the chemical equation of the fruit battery.
A fruit battery basically generates electromotive force when two electrodes with different standard
electrode potential are pierced through the fruit surface. Figure 2a shows that when a copper and
a zinc electrode pierce through the fruit, the zinc atom undergoes oxidation reaction where it loses
an electron, since zinc is located higher in electrochemical series than copper. The copper electrode
accepts the electron from the zinc electrode, and the electron is combined with a positive hydrogen ion
from the fruit, producing a hydrogen molecule as shown in Equations (1) and (2). The movement of an
electron generates current flow, thus producing electricity and behaving like a battery, hence the name
fruit battery.

Zn (s)→ Zn2+ (aq) + 2e− (1)

H+ (aq) + 2e−→ H2 (g) (2)
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Figure 2. (a) Schematic diagram of the fruit battery and (b) simple equivalent circuit of the fruit battery.

Figure 2b shows an equivalent circuit of a fruit battery. The equivalent circuit of the fruit battery
can be expressed by an electromotive force Vi (V) and an internal resistance Ri (Ω). Thus, the ripe
and unripe oil palm fruit internal resistance is high or low depending on the fruit’s moisture content.
The differences in internal resistance causes the load resistance voltage VL (V) differences, as shown
in Equation (3). The fruit battery method aims to detect the difference in electrolyte load resistance
voltage between unripe and ripe fruit.
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VL =
RL

Ri + RL
Vi (3)

3.2. Selecting Load Resistance Value

To determine a suitable load resistance for distinguishing oil palm ripeness stages for the fruit
battery method, two experiments were conducted. The first experiment aimed to calculate the
differences of the load resistance voltage. The load resistance voltage differences show the behavior
of load resistance with oil palm fruit from different maturity stages with different moisture content.
The second experiment aimed to derive the resolution of the estimated moisture content for the field
test. The resolution of (A/D) converter and the value of slope of regression formula between the load
resistance voltage and moisture content were derived to determine the moisture content resolution.

3.3. The Changing Rate of the Load Resistance Voltage

Figure 3 and Table 2 show the experimental setup schematic and experimental condition,
respectively. The load resistance voltage was measured using a digital multimeter Pro’s Kit, 3PK-600T
(Prokit’s Industries, New Taipei City, Taiwan) when electrodes were embedded into oil palm fruit, as
shown in Figure 3. Zinc and copper were used as the electrode, and the dimensions of the electrodes
were 16 mm long, 6 mm wide, and 0.5 mm thick. As determined from a previous study, the best
distance between the electrodes is 2 mm with 3 mm depth [12]. The total sample used was 37 fruits,
where 21 and 16 fruits were identified as ripe and unripe fruit, respectively. In those conditions, the
load resistance RL (Ω) tested varied from 10 Ω to 1 MΩ.
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Figure 3. Fruit battery experimental setup.

Table 2. Experimental setup.

Item Type/Value

Electrode material Zinc, copper
Electrode dimension 16 mm × 6 mm × 0.5 mm

Distance between electrodes 2 mm
Depth of electrodes 3 mm

Load resistance, RL (Ω) 10, 100, 1 k, 10 k, 100 k, 1 M

In order to determine the value of load resistance that can effectively differentiate the value
between unripe fruit and ripe fruit, the average load resistance voltage of both unripe and ripe fruit
was calculated. The average load resistance voltage was calculated in order to determine the value
of load resistance voltage that differentiates the value between unripe and ripe sample. Then, load
resistance voltage differences percentage of the load resistance voltage between unripe and ripe fruit
was calculated using Equation (4):
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|dVL| = |
VLRipe −VLUnripe

VLUnripe
| × 100% (4)

where dVL is the load resistance voltage difference between unripe and ripe, VLRipe is the ripe fruit’s
load resistance voltage, and VLUnripe is the unripe fruit’s load resistance voltage. Large |dVL| means
larger resolution, and this improves the load resistance sensitivity to distinguish the differences between
ripe and unripe fruits.

3.4. Resolution of Estimated Moisture Content

To derive the resolution of the estimated moisture content, the slope value of regression formula
was determined using least squares method. A total of 52 oil palm fruit samples were used in this
experiment. The best value of load resistance that was determined from a previous experiment was
selected for this experiment.

Then, a scatter plot between moisture content and the load resistance voltage was plotted, and the
regression formula between them was derived. Next, the values obtained were compared to each other
and evaluated. The load resistance voltage was measured three times and the results were averaged.

3.5. Computer Vision

For computer vision, a color chart and an oil palm fruit sample were taken together using a
camera with a pixel resolution of 3264 × 2448 on a smartphone iPhone 5S (Apple Inc., Cupertino, CA,
USA), as shown in Figure 4a. At this time, the picture was taken under a fluorescent light, and the
color correction was conducted to decrease the influence of variation of photographing condition by
using the color chart [14]. The color chart with AR marker was used to automatically correct the color
condition of images.
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Figure 4. (a) Experimental setup of computer vision and (b) augmented reality (AR) marker-based
color chart for automatic color correction.

Figure 4b shows the AR marker based on color chart that has 16 color chips for color correction.
The color chips are located around the marker, and each position of a color chip was automatically
identified when the marker was detected. The proposed method requires a reference color chart image
that is taken in the ideal lighting condition. Target images for color correction are images that include a
target object, such as oil palm fruit and the AR color chart.

In the correction process, a transformation matrix (regression coefficient matrix) in Equation (5)
was calculated by linear multiple regression analysis as the pixel values of the color chips were closest
when using 16 RGB values from the color chips on the reference image and the target image. The color
of the target image was changed by multiplying the transformation matrix a by the all pixel matrix C
as shown in Equation (5). The advantages of the proposed color correction method are a reduction in
the influence of the environmental lighting and a less complicated data acquisition procedure.
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
C′R
C′G
C′B

 =


a1 a4 a7 a10

a2 a5 a8 a11

a3 a6 a9 a12




CR

CG
CB

1

 (5)

C′: A corrected pixel value; C: An original pixel value; a: A transformation matrix.
After taking the picture, the average RGB value of oil palm fruit was extracted, as shown in

Figure 5. To extract the average RGB value, the picture taken was imported, and the background
was changed to black. In the background removal, a pixel value was set to 0 when the condition
(R-value > 90, G-value > 90 and B-value > 90) is satisfied. Then, the average RGB value of the oil palm
was calculated using Equation (6). The color feature Rave/Gave extraction was done by using Numpy, a
numerical calculation library in Python.

Average pixel value =
Total pixel value

Total number of pixel
(6)
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We used the ratio R/G because we set the reference wavelength to increase the stability. In the
field of remote sensing and plant physiology, the ratio of light intensity of wavelengths is often used
to make vegetation indices such as normalized difference vegetation index (NDVI) [15] and green
normalized difference vegetation index (GNDVI) [16].

3.6. Accuracy Scores

The accuracy score for three stages of ripeness was derived by support vector machine (SVM).
Accuracy score was used as a metric to evaluate classification model in this study. Table 3 shows the
experimental condition setup for SVM. From Table 3, the classification by SVM was performed with
three features, that is: Color, Rave/Gave; fruit battery, VL; and combined computer vision with fruit
battery method, VL-Rave/Gave.
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Table 3. Classification condition setting for support vector machine (SVM).

Item Type/Value

Feature
Fruit battery: VL

Computer vision: Rave/Gave
Combination: VL-Rave/Gave

Score Accuracy
Cost parameter 1, 10, 100

Gamma 1, 0.1, 0.01
Kernel Linear, rbf

Number of partitions of k-fold cross validation 8

The hyperparameters for the grid search are C = 1, 10, 100; Gamma = 1, 0.1, 0.01; Kernel = Linear,
rbf; and the number of divisions of k-fold cross validation are 8. Hence, the combination produces 18
sets of accuracy scores where each feature is compared for the best score.

4. Results and Discussion

4.1. The Load Resistance Voltage Differences

Figure 6a shows the average value of the load resistance voltage when it changes. As shown in
Figure 6a, in the range of 10 Ω to 10 kΩ, there is a tendency that the value of the unripe load resistance
voltage is larger than ripe fruit. However, the difference between unripe and ripe does not occur at
100 kΩ and 1 MΩ. Figure 6a also shows the load resistance voltage differences between unripe and
ripe fruit.
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From Figure 6b, 10 Ω is 76%, 100 Ω is 77%, 1 kΩ is 74%, and about 76% change of rate is obtained
in the range of 10 Ω to 1 kΩ. For values larger than 1 kΩ, 10 kΩ is 57%, 100 kΩ is 27%, and 1 MΩ is
12%. When the load resistance increased, the change rate decreased. This is because the load resistance
voltage is the ratio of load resistance and the internal resistance, as mentioned in Equation (4). The oil
palm ripeness evaluation was performed by measuring the difference between internal resistance of
unripe and ripe fruits. However, if the load resistance was too high compared to the internal resistance,
the difference between unripe and ripe fruit’s internal resistance was too small to be detected.

From the results obtained, shown in Figure 6b, the changing rate of the load resistance voltage
between unripe and ripe in the range of 10 Ω to 1 kΩ is the highest at about 76%, compared to the
resistance values of 10 kΩ, 100 kΩ, and 1 MΩ tested. Hence, for the following section, the suitable
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load resistance was chosen from 10 Ω, 100 Ω, and 1 kΩ by calculating the resolution of estimated
moisture content.

4.2. Resolution of Estimated Moisture Content

Based on results from Figure 6b, load resistance value from 10 Ω, 100 Ω, to 1 kΩ were tested, as
shown in Figure 7. The moisture content varies directly with load resistance voltage. As the oil palm
fruit ripens, the load resistance voltage decreases. Figure 7 shows the prediction scatter plot together
with its regression equation for each resistance value tested.
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Figure 7. The prediction scatter plot between load resistance voltage and moisture content, (a) 10 Ω,
(b) 100 Ω, and (c) 1 kΩ.

Higher resolution means that the device is sensitive to detecting small change of the measurand
in input. Thus, higher moisture content resolution with less than 1% can produce more accurate
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results with higher sensitivity. From Figure 7, it is observed that the 1 kΩ resistance gradient value is
0.517 %/mV, whereas 10 Ω and 100 Ω have resolution of moisture content exceeding 1% with 31.8%/mV
and 3.83%/mV, respectively. Thus, 1 kΩ is the best load resistance value among them as it has the
highest moisture content resolution.

4.3. Comparison Evaluation of Fruit Battery Method and Computer Vision

The results in the previous section emphasize fruit battery evaluation and moisture content
determination and getting the best resolution out of the load resistance tested. The best load resistance
of 1 kΩ was selected to be used for comparison and combining features with the computer vision. The
fruit battery load resistance voltage was measured with the electrode distance and depth of 2 mm and
3 mm, respectively, with the value of load resistance of 1 kΩ. The average load resistance voltage of
three measurements is used for data evaluation.

Table 4 shows the accuracy scores and standard deviation with its corresponding cost parameter,
gamma, and kernel for the fruit battery method. The maximum accuracy scores are 0.9038 (90.4%).
However, there are three results with 0.9038 accuracy score. The first result has cost parameter = 1,
gamma = 1, standard deviation = 0.0712. The second results have the same standard deviation as the
previously mentioned parameter, but with cost parameter = 10 and gamma = 0.1. The third has cost
parameter = 100 and gamma = 1, but the standard deviation is 0.766. The best value among these three
same accuracy scores is the standard deviation with the lowest value, since low standard deviation
means that the data are spread out closer to the mean [17].

Table 4. Accuracy score and standard deviation of each feature for fruit battery method.

Cost Parameter Gamma Kernel Accuracy Score Standard Deviation

1 1 linear 0.7308 0.1028
1 1 rbf 0.9038 0.0712
1 0.1 linear 0.7308 0.1028
1 0.1 rbf 0.6923 0.079
1 0.01 linear 0.7308 0.1028
1 0.01 rbf 0.6923 0.079
10 1 linear 0.8269 0.1471
10 1 rbf 0.8846 0.0648
10 0.1 linear 0.8269 0.1471
10 0.1 rbf 0.9038 0.0712
10 0.01 linear 0.8269 0.1471
10 0.01 rbf 0.6923 0.079

100 1 linear 0.8462 0.109
100 1 rbf 0.9038 0.0766
100 0.1 linear 0.8462 0.109
100 0.1 rbf 0.8846 0.0648
100 0.01 linear 0.8462 0.109
100 0.01 rbf 0.8077 0.1334

Table 5 shows the SVM analysis results for the computer vision method, where the highest
accuracy score is 0.8654 (86.5%). This score has cost parameter = 1, gamma = 1, kernel = rbf with
standard deviation = 0.0925.
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Table 5. Accuracy score and standard deviation of each feature for computer vision method.

Cost Parameter Gamma Kernel Mean Standard Deviation

1 1 linear 0.6538 0.1042
1 1 rbf 0.8654 0.0925
1 0.1 linear 0.6538 0.1042
1 0.1 rbf 0.6538 0.1042
1 0.01 linear 0.6538 0.1042
1 0.01 rbf 0.6346 0.0959
10 1 linear 0.6538 0.1042
10 1 rbf 0.8269 0.1263
10 0.1 linear 0.6538 0.1042
10 0.1 rbf 0.6731 0.1413
10 0.01 linear 0.6538 0.1042
10 0.01 rbf 0.6538 0.1042

100 1 linear 0.6538 0.1042
100 1 rbf 0.8269 0.1263
100 0.1 linear 0.6538 0.1042
100 0.1 rbf 0.8269 0.1429
100 0.01 linear 0.6538 0.1042
100 0.01 rbf 0.6538 0.1042

Table 6 presents the results for the fruit battery and computer vision combination accuracy
score. The maximum accuracy score obtained for the combination scores is 0.9423 (94.2%) with cost
parameter = 10, gamma = 0.1 and standard deviation = 0.0804.

Table 6. Accuracy score and standard deviation of each feature for the combination of fruit battery and
computer vision method.

Cost Parameter Gamma Kernel Mean Standard Deviation

1 1 linear 0.75 0.0959
1 1 rbf 0.9038 0.1204
1 0.1 linear 0.75 0.0959
1 0.1 rbf 0.75 0.0959
1 0.01 linear 0.75 0.0959
1 0.01 rbf 0.6923 0.0419
10 1 linear 0.8654 0.1266
10 1 rbf 0.8654 0.1289
10 0.1 linear 0.8654 0.1266
10 0.1 rbf 0.9423 0.0804
10 0.01 linear 0.8654 0.1266
10 0.01 rbf 0.6923 0.0419

100 1 linear 0.8846 0.0965
100 1 rbf 0.8462 0.1575
100 0.1 linear 0.8846 0.0965
100 0.1 rbf 0.9231 0.1101
100 0.01 linear 0.8846 0.0965
100 0.01 rbf 0.8654 0.1248

Table 7 shows the summary of maximum accuracy score and its standard deviation when each
feature quantity is used: fruit battery, computer vision, and combination. The accuracy score is 90.4%
for the fruit battery method VL, 86.5% for the color feature Rave/Gave, and 94.2% for the combined
feature VL-Rave/Gave. The standard deviation is 0.0712 for load resistance voltage, 0.0925 for color
features, and 0.0804 for combined features. The combination of the fruit battery method and computer
vision method to classify the oil palm fruit ripeness stage results shows accuracy score improvement.
The computer vision method tested on the same sample as the fruit battery method shows lower
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accuracy score compared to the fruit battery method. On the other hand, by combining both features,
the accuracy score increased to 94.2%.

Table 7. Maximum accuracy score and standard deviation of each feature.

Feature Accuracy (%) Standard Deviation

Fruit battery method using load resistance voltage, VL 90.4 0.0712
Computer vision using color feature, Rave/Gave 86.5 0.0925

Combined feature (fruit battery and computer vision),
VL-Rave/Gave

94.2 0.0804

The combination method proved to be helpful, since the fruit battery method detects the change
in the fruit’s chemistry, and the computer vision using color feature detects the changes in color due to
changing chlorophyll and anthocyanin content on the fruit’s surface [8]. From this study, it is shown
that the combined feature can classify the oil palm fruit maturity stages with higher accuracy compared
to one-dimensional features.

Based on the results obtained from the experiments, a fruit battery prototype to test the oil palm
fruit maturity was fabricated using open source hardware Raspberry Pi 3 Model B as shown in Figure 8.
The 12-bit A/D converter was connected to Raspberry Pi 3 Model B with 0.8 mV A/D converter voltage
resolution and 3.3 V drive voltage.
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From Figure 4, the computer vision method used in this study involved an AR color chart, and
the sample was taken together in one photo. However, this method is prone to inconsistency and error
due to lighting, type of camera, camera operating setting as well as the photo compression and so forth,
where the color may not be consistent and accurately captured by device in comparison to real life.
Hence, for further future improvement for computer vision, it is crucial to apply color calibration in
order to determine the accuracy of the image data collected. The color calibration RPS-3D colorimetric
shows the ability to reduce the environmental effect that is essential in analyzing data that involves
camera vision [18]. Besides that, in order to improve the data accuracy, the number of samples needs
to be bigger for better sample population representation.

5. Conclusions

This research studied the fruit battery load resistance determination that produces low resolution
for high-sensitivity results. According to the results, the best load resistance obtained is 1 kΩ with high
changing rate between unripe and ripe fruit at 74% and moisture content resolution at 0.517%/mV. The
accuracy scores for fruit battery and computer vision are 90.4% and 86.5%, respectively. By combining
the fruit battery and computer vision methods, the calculated accuracy score increased to 94.2%. Since



Sensors 2020, 20, 637 13 of 14

this method is simple and cheap, it can be an additional or alternative source of oil palm fruit maturity
checking in the oil palm mill during inspection as well as during harvesting. Regardless, this research
opens up a new study for oil palm fruit ripeness classification methods.
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