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Abstract: Understanding relationships among multimodal data extracted from a smartphone-based
electrochemiluminescence (ECL) sensor is crucial for the development of low-cost point-of-care
diagnostic devices. In this work, artificial intelligence (AI) algorithms such as random forest (RF)
and feedforward neural network (FNN) are used to quantitatively investigate the relationships
between the concentration of Ru(bpy)2+

3 luminophore and its experimentally measured ECL and
electrochemical data. A smartphone-based ECL sensor with Ru(bpy)2+

3 /TPrA was developed using
disposable screen-printed carbon electrodes. ECL images and amperograms were simultaneously
obtained following 1.2-V voltage application. These multimodal data were analyzed by RF and FNN
algorithms, which allowed the prediction of Ru(bpy)2+

3 concentration using multiple key features.
High correlation (0.99 and 0.96 for RF and FNN, respectively) between actual and predicted values
was achieved in the detection range between 0.02 µM and 2.5 µM. The AI approaches using RF
and FNN were capable of directly inferring the concentration of Ru(bpy)2+

3 using easily observable
key features. The results demonstrate that data-driven AI algorithms are effective in analyzing the
multimodal ECL sensor data. Therefore, these AI algorithms can be an essential part of the modeling
arsenal with successful application in ECL sensor data modeling.

Keywords: electrochemiluminescence; artificial intelligence; sensor; mobile phone; modeling

1. Introduction

Electrochemiluminescence (ECL) is being explored in research ranging from fundamental studies to
its application as a platform of light-emitting sensors and an analytical detection method. Because ECL
does not requires any external excitation light source, it has the advantage of having ultra-sensitivity
and very low background signal. In addition, it allows minimal instrumentation due to the simplicity
of voltage application, rapid measurements (only a few seconds), localized light emission (geometric
location of light on a working electrode), and cost-effective set-up [1]. These are the inherent
advantages of ECL over other light emission-based techniques such as photoluminescence and
chemiluminescence [2]. In this context, the smartphone can be an alternative to the expensive
traditional instrumentation for ECL sensors such as the photomultiplier tube (PMT). Smartphones are
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typically equipped with powerful data transmission capabilities and have powerful processors for
storage and analysis of imaging data. Recent literature shows that the use of smartphones toward
optical biosensing is particularly important in the study of health [3], security [4], and environment [5].

Recent research is focused on the development of instrumentation with adequate electrochemical
and chemiluminescent functionality to achieve reproducibility [6]. Meanwhile, the optimization of the
ECL performance, which is closely related to the increase in signal intensity, is being addressed through
the design of novel luminophores and coreactants, as well as the development of assay-driven strategies
using existing luminophores and coreactants [7–9]. Tris (2, 2′-bipyridine) ruthenium(II) (Ru(bpy)2+

3 )
with tripropylamine (TPrA) as a coreactant is one of the most widely studied ECL systems; however,
its reactions are not understood clearly so far due to its multiparametric nonlinear nature [9,10].

Quantitative studies to explore the complex mechanism of ECL typically use applied mathematical
methods, particularly partial differential equations (PDEs) that constitute mechanistic or first-principle
models. This modeling approach is suitable for a certain class of problems that are susceptible to a
mathematical description such as the Ru(bpy)2+

3 /TPrA system charge, momentum, and mass transfer,
as well as the reaction rates involved. Most of these studies use the commercial software COMSOL
Multiphysics® that, through the finite element method, solves the constituent PDEs [11]. Among them,
the studies of Danis et al. [6,7], which used mechanistic models combined with spectroelectrochemistry,
effectively predict the concentration of luminophore and ECL emission. In other work [12], model
simulations coupled to microscopy imaging provided light emission mechanism insight to obtain
high sensitivity in bead-based ECL assays. These studies required strong expertise in electrochemical
theory for the mechanistic model set-up. In this respect, the emergence of easy-to-use software such
as KISSA [13] could significantly bring down the barriers to modeling electrochemical phenomena.
As an example, this software was used to study the effect of the diffusion rates of reactants on ECL
emission for the Ru(bpy)2+

3 /TPrA system with reduced computational cost as compared to commercial
software [14].

As previously discussed, the laws of conservation of charge, momentum, and mass are currently
carried out without requiring expert knowledge of numerical analysis. The real challenge is defining
appropriate mathematical representation of reaction rates and estimating their kinetic parameters.
As ECL analysis is strongly dependent on the sensing conditions, any changes in these conditions
also have a significant impact on the values of the kinetic parameters. Even if the reaction rates are
applicable, a re-estimation of the kinetic parameters is required under different conditions. For this, it
is necessary to obtain the experimental measurements of the main state variables (e.g., concentration
of luminophore and co-reactant) over the course of ECL reaction at regular time intervals, which is
not a straightforward task [6]. The proper choice of the reaction rates and their corresponding kinetic
parameters to propose a reliable mechanistic model is the subject of considerable discussion in recent
literature [6,7,15,16]. In other approaches, the so-called calibration curve, i.e., a regression equation,
can be useful to infer the concentration of Ru(bpy)2+

3 if it is correlated with a key feature of the system
such as the maximum value of the ECL intensity. Nevertheless, this approach is oversimplified because
it requires the predetermination of a single key feature that may not have sufficient information of the
system, and it also requires a recalibration for different sensing conditions.

As an alternative to the mechanistic approach and regression equations, the use of data-driven
models supported by artificial intelligence (AI) is becoming an essential part of the modeling arsenal
with successful applications in many fields [17]. However, to the best of the authors’ knowledge,
there is no literature on ECL system modeling using AI algorithms. These algorithms, such as neural
networks and random forest, greatly improved the predictive accuracy of data regression [18]. AI
algorithms can combine several sources of multimodal data into a single, predictive AI-based model,
providing maximum approximation of the phenomenon without the complexity and uncertainty. AI
enables the use of variables that could not be included in the mechanistic model due to a lack of
understanding [19,20].
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This study investigated the quantitative cause-and-effect relationships between the concentration
of Ru(bpy)2+

3 luminophore and its experimentally measured ECL and electrochemical features. A
data-driven model supported by AI algorithms was able to predict the luminophore concentration
from easily measurable features obtained from sequences of ECL imaging and amperograms. The
performance of the AI algorithms, namely, random forest (RF) and feedforward neural network
(FNN), was compared in terms of performance measurements to assess the predictive capability of
each algorithm. Figure 1 summarizes the comparison of the traditional modeling and the proposed
modeling in the estimation of the analyte concentration.
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Figure 1. Schematic diagram of the comparison of the traditional and artificial intelligence (AI)
modeling in the estimation of the analyte concentration.

2. Materials and Methods

2.1. Chemical and Reagents

All experiments were conducted using tris (2,2′-bipyridyl) dichlororuthenium (II) hexahydrate
(Ru(bpy)3Cl2·6H2O) and a coreactant of tri-n-propylamine (TPrA) purchased from Sigma Aldrich (now
Millipore Sigma, St. Louis, MO, USA). The supporting electrolyte phosphate buffer solutions (PBS)
were prepared by dissolving PBS tablets (Sigma Aldrich, St. Louis, MO, USA) in water (pH 7.4). All
aqueous solutions were prepared with Milli-Q water purchased from APS Water Services Corp., Van
Nuys, CA, USA (resistivity ≥ 18.2 MΩ·cm).

2.2. Sensor Apparatus and Electrodes

Simultaneous measurements of sequences of ECL imaging and amperograms (current vs. time)
were carried out using a mobile phone-based ECL sensor apparatus. The sensor design interfaces with
a custom compact potentiostat and a mobile phone (Samsung Galaxy S7) with a custom-made app
controlling the potentiostat parameters and the phone camera for time synchronization (Figure 2a). The
compact potentiostat used was customized from an open-source potentiostat shield named Rodeostat
(designed from the Teensy 3.2 board; IO Rodeo, Pasadena, CA, USA) in a three-electrode set-up.
Disposable screen-printed carbon electrodes (DropSens, DRP-110) were used consisting of a carbon
working electrode (4 mm diameter), a carbon ink counter electrode, and a silver reference electrode
printed on a flat ceramic card. Figure 2b illustrates the basic operation of the portable potentiostat
circuit. The signal and the voltage (in blue letters) are generated through the microcontroller unit
(MCU) attached on the board. The MCU is modulated according to a square waveform signal (however,
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it could also be a sine or triangular waveform) and an input voltage. The signal and the voltage feed
the control amplifier, which is a servo amplifier, to adjust the amplitude to the desired current applied
on the counter electrode. During tests, the electrometer measures the voltage differences between
the reference and working electrodes and retro-feeds the control amplifier to keep the voltage at the
desired value. The current flowing through the working electrode is measured at the I/E converter,
which is a current-to-voltage converter, and it is recorded and displayed as a current vs. time graph.
The phone camera was set to pro mode with autofocus mode at ISO 3200, and burst mode was used
to collect two-dimensional (2D) ECL image sequences with 8–20 frames per second (FPS). During
experiments, the cell phone camera was aligned with the hole of the container to fit the mobile phone
camera and placed just above the working electrode. The custom potentiostat was connected with the
cell phone on one side and the screen-printed electrodes (SPEs) on the other side.
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Figure 2. Schematic diagram of (a) the mobile phone-based electrochemiluminescence (ECL) sensor
apparatus that mainly comprises (1) a magnifying lens, (2) screen-printed electrodes, (3) a smartphone,
(4) a potentiostat circuit, (5) a light-tight container, (6) a Universal Serial Bus (USB) cable, and (7) a cable
to the battery or USB port; (b) the basic operation of the portable potentiostat circuit.

2.3. Assays

A 1 mM stock solution of Ru(bpy)2+
3 in Milli-Q water was diluted to provide sample solutions

from 0.02 to 2.5 µM of Ru(bpy)2+
3 . Each sample solution was mixed with 20 mM TPrA in 0.1 M

PBS, constituting a Ru(bpy)2+
3 /TPrA system. The reproducibility and repeatability assessment of this

system was demonstrated elsewhere [1]. Measurements were performed at room temperature by
dropping 50 µL of Ru(bpy)2+

3 /TPrA solution onto the carbon working electrode surface. A waiting
time of 10 min was established to create less electrode contact resistance. Then, the ECL reaction was
triggered by applying 1.2 V, while simultaneously measuring the ECL emission and the current at the
carbon working electrode.

2.4. Electrochemical and ECL Experimental Data Generation

Experimental data generation is a critical step in the construction of AI algorithms. The performance
of the AI algorithms depends largely on the quality of the data used in the training step. This study
used electrochemical and ECL data from measurements performed with the mobile phone-based ECL
sensor for training the AI algorithms.

The procedure for experimental data generation used a forward approach as illustrated in Figure 3a,
where the electrochemical and ECL data were determined given a concentration of Ru(bpy)2+

3 . In this
procedure, the ECL sensor explored the chronoamperometry technique (an example of real data is



Sensors 2020, 20, 625 5 of 14

shown in Figure 4), where a square waveform potential was applied to the carbon working electrode
with 50 µL of Ru(bpy)2+

3 /TPrA sample solution. To simultaneously measure the electrochemical and
ECL data for each concentration of Ru(bpy)2+

3 , the portable potentiostat was set to apply a potential of
0 V vs. Ag/Ag+ for 1 s, followed by −1.2 V vs. Ag/Ag+ for 1 s, and finally followed by 1.2 V vs. Ag/Ag+

for 1 s (Figure 4a). The potentials 0 V vs. Ag/Ag+ and −1.2 V vs. Ag/Ag+ were used to stabilize the
system while avoiding oxidation of Ru(bpy)2+

3 . The potential of 1.2 V vs. Ag/Ag+ produced ECL upon
concomitant oxidation of Ru(bpy)2+

3 and TPrA. Typical transient current and ECL responses recorded
over the course of the stabilization and oxidation periods are shown in Figure 4b,c, respectively.
Figure 4d,e show the zoom-in view of the shaded area in Figure 4b,c, respectively. Figure 4e also shows
the current derivative signal (brown line) corresponding to the current response (blue line). From this
data, three key features were identified: the maximum value of the current peak (Cmaxp), the minimum
derivative value of the current (Cmind), and the decay slope of the ECL intensity (ECLsl), shown in
red letters (Figure 4d,e). It is worth mentioning that the estimated slopes explained the decay of ECL
intensities accurately with a coefficient of determination, R2, above 0.85 for all measurements. The
three key features chosen were the input variables of the data-driven models. The output variable was
the concentration of Ru(bpy)2+

3 .
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Figure 3. Schematic diagrams of (a) the procedure for experimental data generation (forward approach)
using the mobile phone-based ECL sensor and (b) data-driven modeling (inverse approach) using a
feedforward neural network and a random forest.

Following the procedure described above, multiple experiments were performed for different
concentrations of Ru(bpy)2+

3 distributed in a range of 0.02 to 2.5 µM. This range was established
based on prior knowledge of the ECL emission for the Ru(bpy)2+

3 /TPrA system [1]. Experimental
profiles for Cmaxp, Cmind, and ECLsl were thereby obtained as a function of concentration of Ru(bpy)2+

3 .
The goal was to include the data containing the most relevant information about the system in the
training data. A routine implemented in the R programming environment was used to interpolate
these measurements that showed consistent trends in order to increase the dataset. Therefore, the
dataset used for training provided 105 interpolated data points for each input variable and the same
amount of data for the corresponding output variable.

The modeling supported by AI algorithms used an inverse approach unlike the forward approach
used for data generation (and also used in the mechanistic modeling), as shown in Figure 3b. In
the inverse approach, the data-driven model is considered as a black-box model that learns to relate
the inputs, Cmaxp, Cmind, and ECLsl to the output, i.e., the concentration of Ru(bpy)2+

3 , from a large
number of sample points. Due to the models supported by AI having very limited extrapolation
properties, their predictions are only valid when using values within the range defined by the limits
for the input variables.
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zoom-in view of the shaded red box in Figure 4b, (e) zoom-in view of the shaded red box in Figure 4c.
Figure 4e also shows the current derivative signal (brown line) corresponding to the current response;
the green box magnifies these responses. Cmaxp: maximum value of the current peak, Cmind: minimum
derivative value of the current, ECLsl: decay slope of the ECL intensity.

2.5. AI algorithms

2.5.1. Random Forest (RF)

A random forest algorithm is a widely used nonparametric technique for data classification and
regression analysis. A detailed description of the fundamentals of RF is given by Breiman [21]. In this
study, the focus is on the application of RF to obtain a regression between the input variables (Cmaxp,
Cmind, and ECLsl) and an output variable (concentration of Ru(bpy)2+

3 ). The idea of RF is to construct
a set of trees from samples randomly selected from the training set by a bootstrapping technique and to
generate an average prediction of the individual trees. Overfitting is avoided by the division of nodes
into decision trees where the RF algorithm randomly selects a subset of variables for each node. The
average of the values in the terminal nodes of the decision trees was used to estimate the concentration
of Ru(bpy)2+

3 (Figure 3b). Therefore, the predicted value by the entire random forest, hj, is denoted by
Equation (1).

h j =
T∑

t=1

h jt, (t = 1, . . . , T) and ( j = 1, . . . , nsample), (1)
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where hjt represents the predicted value concentration of Ru(bpy)2+
3 by tree t, T represents the total

number of trees, and nsample represents the total number of samples from training set.
The leave-one-out cross-validation (LOOCV) technique was employed to train the RF algorithm.

In LOOCV, n − 1 samples from the training set are used to train the RF, and the remaining sample is
used to evaluate the accuracy; this was repeated 90 times. The RF tuning parameters for the LOOCV
were the number of trees to be grown (ntree), the number of predictor variables used to split the nodes
at each partitioning (mtry), and the minimum size of the terminal node or leaf (node size). RF accuracy
was assessed on the validation and testing set using performance measures such as mean square error
(MSE) and the coefficient of determination (R2). The RF was implemented in the R programming
environment using the randomForest package Version 4.6-14 [22], based on Breiman and Cutler’s
Fortran code [21].

2.5.2. Feedforward Neural Network (FNN)

This work uses an FNN-type artificial neural network (ANN) [23] due to its simple mathematical
form and logical architecture for data-driven modeling. These characteristics make it suitable for
implementation in a prediction framework, where reduced mathematical complexity is an important
factor for real-time prediction. The FNN with an input layer, one hidden layer of sigmoidal neurons,
and a layer of linear output neurons was used in this study, where the numbers of neurons were
I, J, and M, respectively. The neurons are highly interconnected by weights and bias parameters.
Mathematically, the FNN can be represented as Equation (2).

gm = F

 J∑
j=1

Wmj f

 I∑
i=1

w jixi + θ j

+ bm

, ( j = 1, . . . , J), (i = 1, . . . , I) and (m = 1, . . . , M), (2)

where gm and xi represent the vector of input and output variables, f (·) and F(·) represent the activation
functions of the j-th neuron in the hidden layer and of the m-th neuron in the output layer, respectively,
wji denotes the weight connecting the i-th neuron in the input layer and the j-th neuron in the hidden
layer, θj denotes the bias of the j-th neuron in the hidden layer, Wmj denotes the weight connecting the
j-th neuron in the hidden layer and the m-th neuron in the output layer, and bm denotes the bias in the
m-th neuron in the output layer.

Figure 3b details the input variables (Cmaxp, Cmind, and ECLsl) and the output variable
(concentration of Ru(bpy)2+

3 ) used to perform the FNN training. A representative dataset comprising
105 input/output samples was presented to the FNN for estimating the weight and bias (FNN
parameters). The data were randomly divided into a training set and a validation set. The predictive
performance of FNN was assessed using different measurements (testing set) performed with the
mobile phone-based ECL sensor. The appropriate number of neurons in the hidden layer that
prevents overfitting of the model and achieves a good generalization of training was determined by
cross-validation (CV). CV means that FNNs with different numbers of hidden neurons, that is, different
architectures, are trained with the training set, and the performances are assessed on the ability to
make accurate predictions of the validation set in terms of R2 and MSE. The FNN was implemented in
the R programming environment using the neuralnet package Version 1.44.2 [24].

3. Results and Discussion

3.1. Chronoamperometric Data for Data-Driven Modeling

A series of chronoamperometric measurements were performed using the mobile phone-based
ECL sensor. The ECL and electrochemical key features were measured at different concentrations of
Ru(bpy)2+

3 (from 0.02 to 2.5 µM) following the approach proposed in Section 2.4. The key features
identified were the maximum value of current peak, Cmaxp, the minimum derivative value of the
current, Cmind, and the decay slope of the ECL intensity, ECLsl. The concentrations of Ru(bpy)2+

3
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were consistent with the practical use of this luminophore as a label. Figure 5 shows the behavior
of each key feature considered in this study as a function of the concentration of Ru(bpy)2+

3 . These
data clearly demonstrate the influence of the concentration of the luminophore on Cmaxp, Cmind,
and ECLsl. As concentration of Ru(bpy)2+

3 increased from 0.02 to 2.5 µM, the key electrochemical
features, Cmaxp and Cmind, decreased as shown in Figure 5a,b, respectively. Meanwhile, ECLsl exhibited
lower values at higher concentration of Ru(bpy)2+

3 (Figure 5c). Previous studies [7,25] discussed the
importance of having systems capable of performing ECL and electrochemical measurements in sync
to develop models that investigate the mechanism of the Ru(bpy)2+

3 /TPrA system. The consistent
downward trend of experimental measurements of Cmaxp, Cmind, and ECLsl with the concentration
of the luminophore made it possible for these measurements to be interpolated to generate a large
dataset. This strategy allowed for well-distributed data of the key features for the calibration of the AI
algorithms. This is a very critical issue that should be addressed, as AI algorithms have very limited
extrapolation properties [26]. For example, Figure 5a–c show the measurements (solid symbols) and
the interpolated data (continuous lines) used to calibrate the random forest (RF) algorithm. These data
and those for calibration of the feedforward neural network (FNN) were randomly divided into a
training set (85%) and a validation set (15%). Prior to interpolation, three experimental measurements
(i.e., three amperograms and three sets of ECL images) were randomly extracted from the original set
of experimental measurements, which determined the testing set.
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Figure 5. Measurements (black, red, and blue solid symbols are for repetitions 1, 2, and 3, respectively)
and interpolated data (continuous lines) used to train the random forest (RF) algorithm: (a) maximum
value of the current peak, Cmaxp, (b) minimum derivative value of the current, Cmind, and (c) decay
slope of the ECL intensity, ECLsl.
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3.2. Data-Driven Model Calibration and Prediction of Ru(bpy)2+
3

3.2.1. Random Forest (RF) Prediction Results

Several structures of the random forest (RF) with different ntree (number of trees to be grown) were
compared to build the model based on RF. The model estimates the concentration of Ru(bpy)2+

3 using the
maximum value of the current peak, Cmaxp, the minimum derivative value of the current, Cmind, and the
decay slope of the ECL intensity, ECLsl, as input variables. Figure 6a shows that, at values greater than
ntree of 500, the MSE and R2 did not show significant improvement. Therefore, the RF tuning parameter,
ntree, for the leave-one-out cross-validation (LOOCV) technique was determined to be 500. The remaining
tuning parameters were fixed as follows [22]: number of predictor variables used to split the nodes at
each partitioning (mtry) = 1.732 (square root of the number of inputs), and minimum size of the terminal
node or leaf (node size) = 5. The accuracy of the generated model by the LOOCV technique was assessed
by predicting the concentration of Ru(bpy)2+

3 for the validation set. Figure 7a shows the actual versus
predicted values for this set. The corresponding assessment using the performance measures, R2 and
MSE, demonstrated that the model predictions were particularly accurate. As for the testing set, the
RF prediction results were similar to those observed for the validation set. The actual versus predicted
values and the performance measures are presented in Table 1. The results showed that the model based
on RF can effectively directly infer the concentration of the Ru(bpy)2+

3 from certain key features from
multimodal data of the mobile phone-based ECL sensor. To the best of the authors’ knowledge, the RF
was not previously used for the regression analysis of data from electrochemical/ECL sensors because it is
relatively easier to understand the mathematical form of parametric models such as the FNN. RF can
achieve high precision when a large number of input variables with a large amount of data are used [27].
Nevertheless, this study shows that the use of a reduced number of significant input variables (called key
features) achieves accurate prediction results. These results were slightly higher than those found using
FNN, as shown in the next section.
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Figure 6. Performance measures (R2 and mean square error (MSE)) to evaluate the accuracy of (a) the
random forest (RF) at different random of trees to be grown (ntree) and (b) the feedforward neural
network (FNN) at different architectures (inputs-hidden neurons-output). Blue bars represent R2 (left
axis), and orange bars represent MSE (right axis).
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Figure 7. Actual versus predicted values of the concentration of Ru(bpy)2+
3 obtained for validation set

using (a) random forest and (b) feedforward neural network.

Table 1. Actual versus predicted values of the concentration of Ru(bpy)2+
3 obtained for the testing set

using the random forest and the feedforward neural network.

Testing
Sample

Random Forest (RF)
R2 = 0.996, MSE = 0.0012

Feedforward Neural Network (FNN)
R2 = 0.961, MSE = 0.0356

Concentration of Ru(bpy)2+
3 Concentration of Ru(bpy)2+

3

Actual Prediction Actual Prediction

1 1.25 1.253 0.156 0.185
2 1.25 1.304 2.5 2.472
3 0.078 0.105 1.25 0.926

3.2.2. Feedforward Neural Network (FNN) Prediction Results

Different network architectures with a single hidden layer were compared to build the data-driven
model based on an FNN that predicts the concentration of Ru(bpy)2+

3 . The optimal architecture was
determined by varying the number of neurons in the hidden layer. In total, 16 architectures were
assessed as shown in Figure 6b. The appropriate number of neurons in the hidden layer was chosen
using cross-validation with the number of training epochs fixed at 1.0 × 105 for all the architectures
studied. The FNN with 16 hidden neurons was determined to give the lowest MSE and R2 closer
to that for the validation set (Figure 6b). Thus, the optimized model used a 3-16-1 (input-hidden
neurons-output) architecture containing 81 parameters (weights and bias). Table 2 shows the FNN
optimized parameters according to the notation of Equation (2). The comparison between the actual
values of the concentration of Ru(bpy)2+

3 and the corresponding predicted values by the optimized
model for the validation set is shown in Figure 7b. The results showed that the model accurately
predicted the concentration of Ru(bpy)2+

3 , as assessed by the R2 and MSE. For the testing set, it can be
seen from Table 1 that the model based on the FNN also described the experimental measurements
accurately (R2 = 0.961, MSE = 0.0356). Nevertheless, the accuracy of this prediction was slightly
lower than that observed using random forest (R2 = 0.996, MSE = 0.0012). Previous studies [28,29]
showed that the use of FNN as a data regression method in the development of sensors based on
electrochemical measurements provided prediction results with high precision. However, to the
best of the authors’ knowledge, this is the first study to predict the concentration of a compound
using key features from multimodal data (ECL imaging and amperograms) into a single FNN. While
FNNs achieved acceptable prediction accuracy for the testing set in this study, further investigations
could be performed using deep learning to improve the prediction accuracy of the neural networks.
Recent advances in training techniques and increased computational resources made it possible to
construct deep neural networks such as the convolutional neural network [30] and recurrent neural
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network [31]. These novel architectures could be applied to the development of the ECL sensors as
they are particularly useful for image processing and time series data.

Table 2. Optimized parameters (weights and bias) of the feedforward neural network.

Parameters Connecting the Inputs and Hidden Neurons Parameters Connecting the
Hidden and Output Neuron

wj1 wj2 wj3 θj W1j b1 = −0.46714

j = 1 −2.16914 0.54961 0.84096 0.96493 −0.11545
j = 2 0.96444 −0.39983 0.54570 1.38495 −0.55877
j = 3 −0.06212 0.76427 1.24634 −0.94330 −0.11051
j = 4 −0.04506 5.42573 −1.99257 −0.36926 −0.16298
j = 5 −1.42036 0.55738 −0.99856 −1.01188 1.50011
j = 6 −1.65943 1.06460 −0.98453 −0.65498 1.92081
j = 7 −2.57911 0.15109 −1.17164 2.19616 1.16145
j = 8 −4.96551 −4.79277 0.00347 −0.31065 −2.83089
j = 9 0.76280 −0.86469 −0.90831 0.40019 0.75119

j = 10 1.10727 −0.04662 −0.60547 −0.14305 −1.12459
j = 11 −2.98694 1.36294 −0.77255 0.09917 0.90778
j = 12 1.04993 1.17599 −0.46819 0.39381 1.46889
j = 13 −1.41821 −0.44610 1.58347 0.83625 −0.21712
j = 14 1.22302 −5.44580 4.17545 0.97755 −0.45628
j = 15 0.82019 −0.32754 0.59748 1.02389 −0.17525
j = 16 2.46345 −1.47657 −2.04265 1.07287 0.69586

3.2.3. Visualizing Relationships between the Key Features and the Concentration of Ru(bpy)2+
3

Contour plots were generated from the validated models (Figure 8a,b for RF and FNN, respectively)
for the visualization of the relationships between the input variables (Cmaxp and ECLsl) and the
concentration of Ru(bpy)2+

3 (response variable). It can be seen that the contours for both the FNN and
the RF were nonlinear and revealed that the concentration of Ru(bpy)2+

3 decreased as the values of
Cmaxp and ECLsl decreased. The magnitude of the effects of the input variables on the response variable
can also be inferred from these plots. In this regard, it was observed that the concentration of Ru(bpy)2+

3
was more sensitive to the variation of ECLsl than Cmaxp. Contour plots were especially useful to display
the system behavior, given the complexity of the developed models that are nonparametric, such as the
RF, or that do not have simple prediction equations as the FNN. As in previous works [26,32], it can be
noted that Figure 8a,b show typical behaviors of contour plots generated from a nonparametric model
and a parametric model, respectively. In this study, the use of a reduced number of key features allowed
for fast calibration and operation of the AI algorithms to predict the concentration of Ru(bpy)2+

3 . A
greater number of key features could be considered in the construction of the data-driven models;
however, some features could have a little or no effect on the response. Therefore, before incorporating
more key features into the models, a sensitivity analysis should be performed to determine their
potential contribution.

The use of the approach presented in this study to other applications, such as the detection of
analytes of interest using the enhancing or quenching of their luminescent intensities, is straightforward.
In this case, the concentration of Ru(bpy)2+

3 must be fixed at an optimal value. For instance, phenolic
compounds demonstrated a highly efficient quenching effect in the Ru(bpy)2+

3 /TPrA system [33]. In
this sense, future work will take advantage of the results obtained in this study to develop an AI-driven
smartphone-supported ECL sensor to monitor phenolic compounds in wastewater from biofuel plants.
In this context, the present study is important because it provides a proof of concept demonstrating the
feasibility to develop a sensor for intelligent detection of analytes.
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4. Conclusions

The quantitative investigation of the relationships between the concentration of Ru(bpy)2+
3

and its experimentally measured electrochemical and ECL features naturally leads to the use of
complex models that are very difficult to calibrate. It is necessary to examine key features from
the system to effectively consider the generalization of the model. This study proposes a novel
modeling approach based on AI (in particular, random forest (RF) and feedforward neural network
(FNN)) to correlate the concentration of Ru(bpy)2+

3 with key features obtained from sequences of
ECL imaging and amperograms. All multimodal measurements were extracted from a low-cost
smartphone-based electrochemiluminescence (ECL) sensor. The input (key features) and output
(concentration of Ru(bpy)2+

3 ) variables were applied to generate sample points. These samples were
used to build data-driven models using RFs and FNNs. The predictions of the data-driven models
were shown to be in agreement with the measurements performed (validation and testing sets) with the
mobile phone-based ECL sensor. Contour plots allowed quantitative determination of the relevance of
the key features on the output and the relation between them. The AI approaches were capable of
directly inferring the concentration of Ru(bpy)2+

3 using easily observable key features, while traditional
mechanistic modeling uses a complex calibration procedure. Future work will extend the proposed
approach to develop a robust, practical, and affordable sensor for intelligent detection of analytes of
economic relevance such as phenolic compounds.
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