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Abstract: Joint structures, such as riveting, hinges, and flanges, are widely used in complex
mechanical systems. A small unexpected change of a joint can lead to complicated wave-scattering in
its connected waveguides. The conversion between wave modes can be used to quantify the variation
of the connection status of joints. This gives rise to the challenge of exciting and sensing only one
specific wave mode in practice. In this paper, transmitted wave amplitudes of a flange joint are
first calculated by the wave finite element method (WFEM) to study the quantitative relationship
between the local stiffness changes of the damaged site and the wave-mode conversion. Wave-mode
piezoelectric transducers are subsequently designed for torsional, longitudinal, and flexural waves in
cylindrical waveguides. The idea is to use the distribution and interconnection of the piezoelectric
materials to cancel the charge contributed from the non-targeting waves. We conducted numerical
simulations to demonstrate the selective coupling features of the designed wave transducers and
found difference of several orders of magnitude in voltages between targeting wave mode and other
wave modes. Four selected wave transducers were then extended to monitor the connection status
of the flange. The wave-scattering features in the simulation and WFEM were verified to be in
good agreement.

Keywords: piezoelectric transducer; structural health monitoring; joint structures; wave-mode
conversion; wave and finite element method

1. Introduction

Large-scale mechanical systems such as spacecraft contain thousands of simple components
connected by joint structures. Due to complex operating conditions, these joint structures may
undergo contact surface oxidation, thermal deformation, preload reduction, and other minor local
changes, which can affect the dynamic properties of the entire mechanical system [1]. Structural health
monitoring (SHM) is therefore crucial to ensure structural safety.

Three types of SHM techniques were successively developed in the last two decades for general
structural systems: (1) vibration-based SHM; (2) SHM based on electromechanical impedance; and (3)
guided-wave-based SHM. Vibration-based SHM techniques [2,3] detect changes of structures in natural
frequencies, modal shapes, or dynamic responses to identify local damage. By attaching piezoelectric
transducers to the monitored portion, the impedance of the piezo-materials is verified to be reasonably
sensitive to the dynamic status of the monitored site [4,5]. Although these two methods were extended
to identify the connected status of a single bolt [6], they have some inherent limitations when applied
to joint structures. First, the local damage of joint structures commonly causes minor changes in the
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dynamic characteristics of entire structures, such as modal frequencies, thus the diagnostic changes
of the damages can be masked by other changes of the structural system. Second, to verify that
the changes of the overall dynamic characteristics are indeed caused by the joint structure requires
additional measurements, such as the modal shapes or their curvature [7]. This increases the complexity
of sensing the local damage to the joint structure, hence the sensitivity of the above methods may
be unsatisfied.

Most promising for joint structures is probably guided-wave-based SHM, which has attracted
considerable attention. It has several inherent advantages: (1) a small wavelength ensures sufficient
interaction of the guided waves and local minor damage; (2) the excitation frequency of guided waves
can be very high, hence signals of the operating and ambient frequencies barely perturb transmitted
signals of guided waves; (3) the characteristics of piezoelectric materials confer on guided waves the
capability of a wide sweep range. For these reasons, we develop wave-based approaches for SHM of
joint structures in this work.

In wave-based SHM approaches, transducers are generally arranged at two ends of the structure.
One is to actuate guided waves, and the other to receive the excited guided waves. Features of guided
waves, such as velocity, attenuation, scattering, and mode conversion, are used to indicate changes
in structural dynamics. Du et al. [8,9] employed a modified time reversal method for a single bolt
joint and demonstrated that the proposed tightness index can indicate the joint status of the bolt.
Rhee et al. [10] preliminarily explored the application of Lamb waves to characterize the joint status of
a bolt array in a plate, and concluded the experience of bolt modeling and piezoelectric transducer
bias. The information carried by a single wave can barely characterize multiple bolts due to the
complexity of the connection state. The wave-mode conversion between various waves subsequently
drew researchers’ attention.

The wave-mode conversion indicates that part of the energy from a propagating wave converts to
a previously nonexistent wave-mode. Lee et al. [11] simulated the interaction between Lamb waves
and damage in a metallic plate. They found that the damage can cause transmission, reflection,
and mode conversion (from A0 to S0) of Lamb waves. Fromme et al. [12] analyzed the wave-mode
conversion when a Lamb wave transmitted through a circular damage hole. The results showed that
the amplitude of the S0 mode converted from A0 mode has a strong correlation with the depth of the
hole. Willberg et al. [13] investigated the laminated composited plates that were widely used in the
aerospace industry and demonstrated that continuous mode transitions occur due to the asymmetry
of layered materials. Li et al. [14] demonstrated that a slight asymmetry can lead to wave-mode
conversion in a cylindrical shell. This literature shows that wave-mode conversion characteristics can
be a promising indicator to monitor slight local damage.

Researchers have also developed analytical and numerical methods to study the interaction
between damage and wave-mode conversion. Zhang et al. [15] decomposed the frequency-domain
response of a cable into an analytical four-wave basis and used the evanescent wave amplitudes
induced by discontinuities as indicators of damage. Ichchou et al. [16] developed WFEM with
the diffusion matrix method (DMM) and analyzed the wave-mode conversion of a block coupling
structure with a notch. They concluded that high-order modes were more sensitive to small notch
junctions. Huang et al. [17] investigated the wave-scattering features of a thin-wall structure with
attached piezoelectric patches by DMM. The results demonstrated that the shunted piezoelectric
patches can be used to control wave propagation in a thin-wall structure. Gallezot et al. [18]
presented a perfectly matched layer (PML)-based hybrid method for the numerical modeling of
wave-scattering by inhomogeneities in open waveguides. They concluded the experience for choosing
model representation from three modes: trapped, leaky, and PML modes.

Numerical tools for wave-scattering have been fully developed. However, in practice, it is
challenging to measure the conversion among waves. Droz et al. [19] generated near-cut-on guided
resonances (GRs) in a composite plate using an array of piezoelectric transducers. Numerical
and experimental results showed that a GR 8 wave pulse was excited by the transducers’ array.
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Furusawa et al. [20] designed a circumferentially distributed electromagnetic transducer for
longitudinal and torsional waves in cylinders. Kharrat et al. [21] presented circumferentially distributed
piezoelectric actuators for the first-order torsional wave in cylindrical shells. While transducers
designed according to the above literature can actuate certain low-order cylindrical waves, a general
design approach for all types and orders of waves in cylinders is lacking. Moreover, verification has
not been conducted to guarantee the excited guided wave is single-mode, which limits the accuracy of
detecting wave-mode conversion.

In this work, we use the proposed wave-mode transducers to detect the wave-mode conversion
induced by the local stiffness changes of a damaged site. First, the wave-mode conversion features
induced by these changes are studied by WFEM. To detect this conversion, a design approach of
piezoelectric wave-mode transducers in cylinders is proposed. Second, numerical studies of the finite
element method (FEM) are subsequently conducted to verify such features of transducers. Finally,
four selected transducers are applied to monitor the wave-scattering characteristics of a drum-flange
structure. The simulated results verify the features of transmitted waves demonstrated in WFEM.

2. Problem Formulation

Figure 1a illustrates a diagrammatic cross-section of a drum-flange structure mounted on an
aero-engine casing. As shown in Figure 1b, the equivalent thin-layer element method [22] is employed
to model the flange joint. This method accelerates the modeling process and retains the dynamic
characteristics and cyclic symmetry of the flange, which satisfies the research needs in this work.
The geometric features are assumed to be d = 1 m, hc = 0.003 m

(
hc
/

d� 1/40
)
, h f = 0.02 m,

w f = 0.01 m, and we = 0.005 m. The coupling element consists of the thin layer and cylindrical shell of
0.01-m thickness placed on each side, which ensures the continuity of the waveguide and the coupling
element. Waveguides 1 and 2 are cylindrical shells of 0.6 m.

(a) (b)

Figure 1. Drum-flange structure of an aero-engine. (a) section drawing; (b) simplified model with
equivalent thin layer.

Suppose small damage appears in the flange, such as wear, corrosion, oxidation, or a loosened bolt,
and these damages always lead to stiffness loss of the damaged position. The reduction of the elastic
modulus of the equivalent thin-layer elements in 0◦ to 15◦ is to simulate this local dynamic change
induced by the small damage. Two extents, 10% and 50%, of elastic modulus reduction are considered.
The former is to verify the effectiveness of the wave-mode conversion to identify slight damage,
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and the latter is to study the wave-scattering features of the local damage. These simulated damages
inevitably lead to different wave-mode conversions in waveguide 2, in contrast to an undamaged
flange. Hence, we first investigate the dispersive curves and mode shapes of the guided waves in
a cylindrical waveguide, and for versatility, employ the WFEM numerical method, which can be
extended to calculate other cross sections of waveguides (e.g., rectangular). Then, we induce DMM to
distinguish the conversion among these waves caused by the local damage.

To detect wave-mode conversion in practice, our core innovation is the piezoelectric wave-mode
transducer, whose design is applicable to both low- and high-order torsional, longitudinal, and flexural
waves. The transducer is only coupled with the targeting wave, and has very low interaction with other
waves. This strong selective coupling behavior is achieved by setting different polarization directions,
connection patterns, and distributions of piezoelectric materials according to the orthogonality
of waves.

Numerical simulation in FEM aims to verify the selective features of transducers. By implementing
transducers on both ends of a cylinder as actuators/sensors and applying exciting voltages on actuators,
the voltage responses of the sensors indicate coupling/decoupling levels with targeted/undesired
wave modes.

Four selected transducers are extended to monitor the connection status of a flange in Figure 1b.
The simulation results verify the wave-scattering features obtained in WFEM.

3. Numerical Tools to Analyze Wave-Scattering in 1D Waveguides

3.1. Wave and Finite Element Method

WFEM relies on the periodicity of the waveguide geometry, and only needs to model a periodic
cell of the waveguide in commercial FEM software [23]. It yields the relationship between the wave
number k and the circular frequency ω, i.e., the dispersive curves, as well as the wave shapes [24]. For a
partly periodic structure, such as with both periodic and non-periodic parts, this method can also be
applied through inducing DMM [16]. Time consumption and matrix ill-conditioning increase rapidly
due to many cross-sectional degree of freedoms (DOFs). Efforts to overcome this include: (1) fixed- and
free-interface component modal synthesis (CMS) methods [25]; (2) an enhanced eigenvalue scheme [26];
and (3) multi-scale adaption strategies [27]. Moreover, this method can be employed for both 1D and
2D waveguides [28,29]. In this work, we employ 1D-WFEM so that this procedure is applicable to
an arbitrary cross-section (e.g., ring/rectangular). For clarity, we introduce the details of WFEM for
1D waveguides.

As shown in Figure 2, a one-dimensional periodic structure can be arbitrarily discretized into case
1 or case 2. The dynamic stiffness matrix D of cell k is

(
−ω2M + jωC + K

)
q =

 DLL DLR DLI

DRL DRR DRI

DIL DIR DII

 q = f, (1)

where q is the displacement vector and f is the force vector, and the subscripts L, R, and I represent left
DOFs, right DOFs, and internal DOFs, respectively. For brevity, the harmonic time dependence ejωt is
suppressed in this work. Assuming no load is applied on internal DOFs, Equation (1) is condensed to[

D̃LL D̃LR

D̃RL D̃RR

] [
qL

qR

]
=

[
fL

fR

]
, (2)

where [
D̃LL D̃LR
D̃RL D̃RR

]
=

[
DLL DLR
DRL DRR

]
−
[

DLI

DRI

]
D−1

II

[
DIL DIR

]
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Figure 2. One-dimensional periodic structure. Cases 1 and 2 represent two arbitrary periodic substructures.

The standard Craig-Bampton modal synthesis method is introduced to accelerate the calculation
of D−1

II . By introducing the Bloch theorem [30], one can obtain that

(T− λI)

[
qL

fL

]
= 0, (3)

where

T =

[
−D̃−1

LRD̃LL D̃−1
LR

−D̃RL + D̃RRD̃−1
LRD̃LL −D̃RRD̃−1

LR

]
is the transfer matrix of a unit cell [31], and λ = e−jk∆ indicates the phase and amplitude changes when
guided waves transmit through this cell. ∆ is the length of the one-dimensional periodic substructure
and k is the wavenumber. Directly conducting eigenvalue decomposition on T can induce a numerical
problem. The format [26]([

0 σI
−D̃RL −D̃RR

]
− λ

[
σI 0

D̃LL D̃LR

])(
qL

qR

)
= 0 (4)

has the same eigenvalue as Equation (3) and performs a better condition number, where

σ =

∥∥D̃RR
∥∥

2
N2

is introduced to balance the magnitudes of the dynamic matrix and the identity matrix I, and N
is the number of left DOFs. The eigenvalues occur in pairs as λ+

i and λ−i = 1
/

λ+
i , corresponding

respectively to positive and negative waves. However, the eigenvector obtained in Equation (4) is[
φq λφq

]T
. It must be post-processed by Equation (2) into

[
ϕq ϕ f

]T
, where

ϕ f = D̃LL ϕq + λD̃LR ϕq. (5)

This is also the eigenvector of the transfer matrix T. Conducting the same procedure, one can
obtain the left and right eigenvector matrices,

Θ =

[
Θ+

q Θ+
f

Θ−q Θ−f

]
Φ =

[
Φ+

q Φ+
q

Φ−f Φ−f

]
, (6)

where Φq
+ and Φq

− are displacement vectors of positive and negative waves, respectively, and Φf
+

and Φf
− are the respective force vectors of positive and negative waves. These are the same for Θ.

Normalized formats for Θ and Φ can be obtained by
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ΘΦ=I. (7)

3.2. Diffusion Matrix Method

The diffusion matrix method [16,17] is a powerful numerical tool in modeling and wave-scattering
calculation, especially for the local damage in this paper. It extracts the dynamic stiffness matrix of a
coupling element from the FEM model and decomposes the displacements and forces of boundary
DOFs into the wave domain. As shown in Figure 3, a coupling element is introduced into an infinite
periodic structure of the cylinder. The physical motions q and f of a cross-section of waveguide 1 or 2
can be decomposed into the wave domain, with the following expression:[

q
f

]
= Φ ·Q =

[
Φq

+ Φq
−

Φf
+ Φf

−

] [
Q+

Q−

]
, (8)

where Q is the vector (N × 1) of wave amplitudes. The dynamical equilibrium of the coupling element
can be expressed as Equation (2):

D̃(c)

[
q(c)

L

q(c)
R

]
=

[
f(c)L

f(c)R

]
. (9)

Figure 3. Wave-scattering of the flange connected to the cylindrical shell. Incident waves a+ and b−

enter couple element and reflect respective waves a− and b+.

Considering the displacement continuity and force equilibrium condition of the left and right
cross-profiles of the coupling element, it can be obtained that[

q(c)
L

q(c)
R

]
=

[
q(1)

q(2)

] [
f(c)L

f(c)R

]
=

[
f(1)

−f(2)

]
. (10)

Suppose that a+ and b− are incident waves, and the reflected waves are a− and b+.
By introducing Equation (10) into Equation (9) and expressing Equation (9) in the wave domain,
we obtain

D̃(c)
[

Ψref
q Ψinc

q

] 
a−

b+

a+

b−

 =
[

Ψref
f Ψinc

f

] 
a−

b+

a+

b−

 , (11)

where

Ψref
q =

[
Φ(1−)

q 0

0 Φ(2+)
q

]
Ψinc

q =

[
Φ(1+)

q 0

0 Φ(2−)
q

]

Ψinc
f =

[
Φ(1+)

f 0

0 −Φ(2−)
f

]
Ψinc

f =

[
Φ(1+)

f 0

0 −Φ(2−)
f

]
.
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The relationship between the incident and reflected waves can be obtained by rewriting
Equation (11) as [

a−

b+

]
= C

[
a+

b−

]
, (12)

where

C =
(

D̃(c)Ψref
q −Ψref

f

)−1 (
−D̃(c)Ψinc

q + Ψinc
f

)
C is also called a diffusion matrix [16,17]. When a reduced wave basis is retained, i.e., Φ is

n×m (n > m), we can pre-multiply a matrix constructed from the left eigenvectors, such as

Π =

[
Θ(1+)

q 0

0 Θ(2+)
q ,

]
to avoid searching for pseudo-inverses of the non-square matrix in Equation (12). The diffusion matrix
can be written as

C =
(

ΠD̃(c)Ψref
q −ΠΨref

f

)−1 (
−ΠD̃(c)Ψinc

q + ΠΨinc
f

)
. (13)

3.3. Verification

We conduct a numerical simulation to apply the DMM method on the flange joint. As shown in
Figures 4 and 5, fixed and force boundaries are respectively applied to the left and right cross sections
of 10 unit cells (cylinder) away from the coupling element. Force response analysis is subsequently
implemented in FEM and WFEM. Assuming waves a and b propagate through 10-unit cells in the
positive and negative direction, wave c and wave d are written as

c =
(

Λ(1)
)−10

a d =
(

Λ(2)
)10

b . (14)

The fixed boundary and force boundary are respectively

Φ(1)
q c = 0 Φ(2)

f d = F . (15)

Considering Equations (14) and (15) and Equation (12), a, b, c, and d can be solved. As an
example, the excitation frequency is 132kHz, as given in Section 5.2, and the axial force of 100N is
applied at the right end. The geometric features and material parameters of the unit cell and coupling
element are given in Sections 2 and 4.1, respectively. Considering the influence of evanescent waves,
the axial displacements of cross-profiles 1 and 2 are extracted, and Figure 6 illustrates the results
in WFEM and FEM. Reasonable agreement can be observed, and the average relative error is 0.4%
and 0.91%, respectively, when adjusting the retaining wave basis in 0.09 < |λ| < 11.11. Under this
condition, all the propagating waves and 380 evanescent waves are retained in the wave basis. Please
note that the number of waves in the reduced wave basis depends on the frequency band and should
be examined by this procedure at every applied frequency.
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Figure 4. Forced response analysis model in WFEM and FEM. The left boundary is clamped, and a
force of 100N and 132kHz is applied at the right boundary. The axial displacements of cross-profiles 1
and 2 are extracted and illustrated in Figure 6.

Figure 5. Forced response analysis model of Figure 4 shown in ANSYS.

(a) (b)

Figure 6. Axial displacement of cross-profiles 1 and 2 calculated in WFEM and FEM.

4. Wave-Scattering Characteristic in Cylinder and Joint

4.1. Dispersive Curves of Cylinder

The cylindrical waveguide in Section 2 is divided into unit cells with axial lengths of 0.01 m and
0.005 m. Material parameters of the cylinder are assumed to be E = 2.1 · 1011 N/m, ρ = 7.8 · 103 Kg

/
m3,

and ν = 0.3. SHELL181 is used to model the unit cell in FEM, and the number of circumferential grids
is 120. The dispersive curves calculated by WFEM are shown in Figure 7 by red dashed lines. The black
solid lines are the analytical solution calculated by the high-order wave equation of a thin-walled
cylindrical shell [32,33]. The abscissa is the normalized frequency [34],

Ω = ω/ωr

where ωr is the ring frequency (The ring frequency is the cutoff frequency when the circumferential
wavenumber n is 0, and it has a ring wave-shape.) of the cylinder. With the frequency increasing,



Sensors 2020, 20, 601 9 of 25

various evanescent waves transform to propagating waves through their cutoff frequencies. (The cutoff
frequency is the demarcation point of a wave between propagating mode and evanescent mode.)
For clarity, several representative waves are shown in Figure 7. These selected waves can be
distinguished by projecting their wave-shapes to the normalized wave-shapes of the analytical solution,
which can be expressed as

Φn = AnΦLn + BnΦTn + CnΦFn , (16)

where

ΦLn =

 ζ

ξ

η

 =

 0
cos (nϕ)

0

 ΦTn =

 0
0

cos (nϕ)

 ΦFn =

 sin (nϕ)

0
0

,

where L, T, and F indicate longitudinal, torsional, and flexural waves; An, Bn, and Cn are wave
amplitudes of these three waves and are normalized by A2

n + B2
n + C2

n = 1; ζ, ξ, and η are respectively
radial, circumferential, and axial displacements, as shown in the cylindrical coordinate system in
Figure 8; and n is the wavenumber along the circumferential direction. For brevity, a longitudinal wave
with circumferential wavenumber 0 is abbreviated as L0, and similarly for other waves. The biggest
numbers in the projecting results, i.e., An, Bn, and Cn, represent the modes of the numerical waves.
By introducing wave-shape vectors in Gmesh, Figure 9a–d illustrate the wave-shapes of L0, T0, F7,
and F8 at 1000 Hz.

(a)

(b)

Figure 7. Dispersive curves of a cylinder in axial lengths of (a) 0.01 m, and (b) 0.005 m, obtained by
WFEM and high-order analytical wave equation. The bottom shows longitudinal and torsion waves,
and the top shows flexural waves.
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Figure 8. Cylindrical coordinate system: ω, ξ, and η are radial, circumferential, and axial displacements,
respectively.

(a) (b)

(c) (d)

Figure 9. Wave-shapes calculated by WFEM at 1000 Hz shown in Gmesh: (a) L0; (b) T0; (c) F7; (d) F8.

Please note that the waves are coupling in three directions, especially near the cutoff frequencies.
Figure 10a–d illustrate the amplitudes of three vibration directions of analytical wave-shapes. As the
frequency increases, the coupling wave modes rapidly evolve into a single wave mode, and then
the veer of dispersive curves appears, which is highly significant on F0 and T0 waves. In this paper,
the selected wave modes work far from their cutoff frequencies to avoid the coupling modes.
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(a)

(b)

(c)

Figure 10. Amplitudes in Equation (16): (a) An, (b) Bn, and (c) Cn of an n-order wave mode.
These amplitudes represent the weights of wave-shapes of Ln, Tn, Fn, and are normalized by
A2

n + B2
n + C2

n = 1.
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The dispersive curves at the bottom of Figure 7 are longitudinal (n ≤ 5) and torsion waves (n ≤ 3),
and at the top are flexural waves (n ≤ 8). Good agreement can be observed between numerical
and analytical results when n is small, such as for L0, T0, and F0. However, as n of flexural waves
increases from 0 to 8, the numerical error gradually increases in the low-frequency band (0–1) due
to discretization error in the circumferential direction of the cross-section. Comparing Figures 7a,b,
the axial grids of 0.005 m perform better than those of 0.01 m. This indicates that the discretization
error in the axial direction induces the numerical error at high frequencies (2–3). A minimum 10 nodes
per wavelength are recommended [35,36] with 120 circumferential grids, which can depict 0–12 wave
modes. Conversions between these wave modes are considered in the next section.

4.2. Wave-Mode Conversion Induced by Local Damage of the Joint

Figure 11 illustrates the FEM model of a coupling element, including the equivalent thin layer
of the flange and its connected cylindrical waveguide. The red elements are used to simulate local
stiffness reduction of the damaged position. Material parameters of the layer are assumed to be
E = 1.8 · 1011 N/m, ρ = 7.8 · 103 Kg

/
m3, v = 0.3. SOLID185 is used to model the layer, and the number

of circumferential grids is 120. Assuming no wave b− exists in Figure 3, wave modes L0−12, T0−12,
and F0−12 in wave a+ are selected from the reduced wave basis by projecting all the wave-shapes to
the analytical wave-shapes of 0–12 orders in Section 4.1, and then successively actuated to the coupling
element at their working frequencies, as given in Section 5.2. Please note that the reduced wave basis
contains more than the wave modes of 0–12 orders; the retained rule is demonstrated in Section 3.3.
A result matrix of 39× 39, in which the rows and columns are incident wave a+ and transmitted
wave b+, respectively, is obtained, and is shown in Figure 12. The cool color-bar indicates the wave
amplitudes in the logarithmic coordinate system.

Figure 11. FEM model of a coupling element. The damage is induced by reducing 10/50% Young’s
modulus of the thin-layer element at 0–15 degree. The blue part is the cylindrical shell; the purple part
is the equivalent thin layer.

Several waves can be observed in b+, and most wave amplitudes are less than 10−3. For visibility,
Figures 12–14 illustrate the details of wave amplitudes that are higher than 10−3. Due to the radial
asymmetry of the flange with respect to the shell, longitudinal waves yield torsional and flexural
waves of the same circumferential wavenumber n. This indicates the feature of SHM for joints that the
intact joint can inherently cause original wave-mode conversion. Moreover, the diagonal elements of
longitudinal and torsional waves in Figure 12 are close to 1, which suggests that these waves have a
strong transmission ability. However, flexural waves are almost reflected, since their diagonal elements
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are much smaller. This is because flexural waves possess the feature of out-of-plane wave motion and
are reflected by the relatively higher joint structure.

Figure 12. Transmitted waves of the coupling element without damage. The cool color-bar indicates
the wave amplitude in the logarithmic coordinate system. The wave amplitudes of conversions higher
than 10−3 are shown and marked.

Two types of damage/asymmetry are successively induced by 10% and 50% elastic modulus
losses of elements from 0◦ to 15◦ in the layer, as shown in Figure 11. In Figure 12, the conversions
caused by the flange are marked, and in Figures 13 and 14, these marked conversions are induced
by both the flange and the damage. Hence, Figures 13 and 14 paint these conversions by a gray
color-bar to distinguish them from wave-mode conversions induced by the damage. When the change
of connection status occurs, slight/complex wave-mode conversions of the two types of damage
appear compared to the undamaged joint. This indicates that slight damage can induce wave-mode
conversion, and this feature can be used to identify the damage. Additionally, in Figure 14, longitudinal
waves are found to be more sensitive to the damage and yield almost all wave modes, especially the
torsional waves, while torsional and flexural waves yield other wave modes to a small extent.

This section calculates the wave-mode conversion of the flange joint with damages, and we will
next discuss the transducers to identify these wave modes.



Sensors 2020, 20, 601 14 of 25

Figure 13. Transmitted waves of coupling element with damage (10% Young’s modulus loss in 15◦).
The marked conversions in Figure 12 are caused by both the flange and damage in this case. Hence, they
are painted by a gray color-bar to distinguish them from wave-mode conversion induced by damage.

Figure 14. Transmitted waves of coupling element with damage (50% Young’s modulus loss in 15◦).
The marked conversions in Figure 12 are caused by both the flange and damage in this case. Hence, they
are painted by a gray color-bar to distinguish them from wave-mode conversion induced by damage.
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5. Piezoelectric Transducers for Waves in Cylinders

5.1. Determining the Distribution of Electrodes

The desired piezoelectric transducers are those that can only couple with one wave. As shown
in Figure 15, the piezoelectric material is placed along the circumferential direction of the cylinder,
and the electrode width ∆ (ϕ) acts like a filter function. Consequently, we can use them to extract the
weight of such a wave mode from the overall displacement field of a cylinder, which is the weighted
superposition of all the waves,

u =

 ζ

ξ

η

 = aL,nΦL,n+aT,nΦT,n + aF,nΦF,n, (17)

where u is the displacement field. The voltage response of the piezoelectric transducer is

V (u) = aL,nv (ΦL,n) +aT,nv (ΦT,n) + aF,nv (ΦF,n) , (18)

where v is the voltage induced by Ln, Tn, and Fn. Through appropriate distribution and interconnection
of the piezoelectric materials, the function v() can yield significant value only for one wave yet return
minor values for the other waves.

Figure 15. Transducer implemented on host structure. Piezoelectric material is extended along the
circumferential direction. Hatched area is polarized.

Let us first discuss the design of transducers for the first-order longitudinal wave. In this case,
the polarization direction of piezoelectric materials is parallel to the radial direction, as shown in
Figures 16a and 17a. The voltage induced by a longitudinal wave can be written as

Vr =
Qr

C
=

1
C

∫∫
s

Drds, (19)

where Qr is the quantity of electricity, C is the intrinsic capacitance, Dr is the electric displacement in
the radial direction, and s is the area of the piezoelectric material at one radius. The final expression of
Vr is

Vr =
∞

∑
n=0

κn

2π∫
0

∆ (ϕ)d31εn (ϕ) dϕ, (20)

where κn is a constant associated with each wave mode, ∆ (ϕ) is the electro width function in the axial
direction, and εn is the strain field induced by the propagation of a wave with circumferential wave
number n.
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(a) (b) (c)

Figure 16. Transducer designs for (a) L0, (b) T0, and (c) F4. (a) double layer, radial polarization.
(b) single layer, circumferential polarization. (c) double layer, radial polarization; different colors
indicate reverse polarization.

(a) (b) (c)

Figure 17. Circuit connection of transducer with radius increasing. (a) +−−+; (b) −+; (c) −+−+.

For a given longitudinal wave, i.e., fixed n, if the electro width function also follows the form
of the cosine function, i.e., ∆ (ϕ) = ∆0 cos (mϕ), then it can be proved that Vr is nonzero only when
n = m by the orthogonal relations of the cosine functions. This implies that the electro width function
acts as a filter function that endows the transducer with a selective coupling capacity for the desired
longitudinal wave (with circumferential wave number n = m). Figure 16a shows the transducer for the
first-order longitudinal wave, where only a constant length is required. Please note that the torsional
wave modes induce zero voltage for the longitudinal transducers, due to the radial polarization
direction. The voltage induced by the flexural waves is canceled by the collocated piezoelectric
materials. As shown in Figure 17a, the circuit connection of piezo is +−−+ with increasing radius.
For these reasons, we can prove that the transducer with the configuration shown in Figure 16a is only
coupled with the first-order longitudinal wave.

This procedure is also applied when designing transducers for Ln and Fn. The transducer for the
first-order torsional wave is shown in Figures 16b and 17b, where the poling is along the circumferential
direction. As for flexural waves, the poling is also along the radial direction, and the electrode
connection of the inner race is contrary to the longitudinal case. This is to filter out the contribution of
the longitudinal waves in the transducer output. When F4 is considered, its associated length function
is as shown in Figure 18a. Nevertheless, the sinusoidal distribution is hard to implement in both
simulation and experiment. Therefore, we use a piecewise distribution as an approximation:

∆ (ϕ) =

{
AF

2iπ
n ≤ ϕ < (2i+1)π

n , i = 0, 1, 2, ..., n− 1
−AF

(2i−1)π
n ≤ ϕ < 2iπ

n , i = 1, 2, 3, ..., n
. (21)

As shown in Figure 18b, the positive and negative signs represent radial outward and inward directions,
respectively. This scheme is more feasible, and it ensures orthogonality with the guided wave mode.
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(a) (b)

Figure 18. Distributed function ∆(ϕ): (a) sinusoidal function; (b) piecewise function.

5.2. Determining the Axial Length and Working Frequency

In wave-based SHM, the wavelength should be of the same magnitude as the targeting
singularities to ensure sufficient wave-scattering. To actuate one wave, the external force should
be applied in a suitable area, which in this paper corresponds to the length of the transducer. In this
work, the wavelength of the actuated wave is twice the length of the joint, and the length of the
piezoelectric transducer equals a half-wavelength. Then the working frequency of transducers is

2A f = cg, (22)

where A is the axial length of the joint structure, which in Figure 1b is 0.02 m; cg is the group velocity
of a guided wave. The working frequencies in the paper are listed in Tables 1 and 2.

Table 1. Working frequency for axial length at 0.02 m.

Wave Mode L0−12 T0−12 F0−12

working frequency 132.000 kHz 89.750 kHz 119.700 kHz

Table 2. Working frequency for second and third verification in Section 5.3.

Axial Length
Wave Mode L0 T0 F6 F4

0.1 m 26.54 kHz 17.90 kHz 1.47 kHz 1.43 kHz

0.2 m 12.5 kHz 7.95 kHz 1.13 kHz 1.36 kHz

5.3. Verification

The transducers for L0, T0, F6, and F4 (abbreviated example: L0 transducer) are modeled and
analyzed by ANSYS, where the piezoelectric materials and the host cylinder are modeled by SOLID5
elements and SHELL181 elements, respectively, as shown in Figure 19. The material of the piezoelectric
element is piezoelectric ceramic PZT5H, with material parameters as given in Appendix A.

The voltage DOFs of the piezoelectric transducer array are coupled to be identical by different
connection patterns in Figure 17. A three-cycle sinusoidal voltage signal with a sinusoidal window,
written as

V = 100 sin(3 · 2π f t) sin(2π f t), (23)

is applied to the positive pole and employed as a stimulant signal. The voltage of the negative pole
is set to zero to simulate ground. Please note that we conduct transient analysis in the following
calculations. The transient analysis can be calculated by both the WEFM method with Inverse Fourier
Transform and the FEM method. However, the following FEM models have at least 5/11 segments of
waveguides. This brings difficulties to re-derive the equations of the WFEM method for each FEM
model. Conversely, the FEM method only needs a few steps, and can make this work easier understood
and repeated. Therefore, we employ the FEM method to calculate transient responses and capture the
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transient signal before the waves are reflected from the boundary. This is to prevent the interference of
waves from the border and simulate a realistic design in experiments.

Due to assumptions made regarding the displacement field in the thickness direction, an ‘ f ∗ h’
problem arises when f becomes sufficiently large. Since guided wave propagation in the thickness
direction cannot be modeled accurately, stiffening effects may be encountered, resulting in locking
and overestimation of the wave velocity [37]. Therefore, wave velocity examination is employed after
every wave propagation simulation to prevent the effect of these restrictions. This examination is
conducted by setting the distance between the actuating point and sensing point to five wavelengths.

First, we verify the actuation capacity of the transducers by imposing a voltage on the transducer
and observing the resulting displacement field. Results show that the transducers merely actuate the
targeting guided wave mode. An example is shown in Figure 20, where the displacement field is
actuated by a transducer designed for F6.

Figure 19. First and second verification model. SOLID5 and SHELL181 are employed for piezo and
cylinder, respectively. The transducer is used as an actuator when voltage is applied, and a sensor
when force is applied.

Figure 20. Displacement field of cylinder excited by F6 actuator.

Second, we verify the sensing capacity of the transducers by applying the external force to the
host cylinder and observing the transducer output. To test the L0 and T0 transducers, the forces are
applied at the left end by evenly distributed sinusoidal axial force and circumferential force along the
circumference. To test the F6 and F4 transducers, the forces applied to the left end are

F = sin (nθ) sin (2π f · t) , (24)
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where θ is the angle of the node in the cylindrical coordinate system. The axial length of the transducers
is 0.1 m, and the working frequencies for L0, T0, F6, and F4 are listed in Table 2. The result of the
L0 transducer is shown in Figure 21. The silence time is approximately equal to five periods, and it
accords with the wave velocity examination. The voltage induced by L0 is 101V, while those by
T0, F6, and F4 are 10−11V, 10−8V, and 10−8V, respectively. When the T0, F6, and F4 transducers are
successively implemented, differences of several orders of magnitude in voltages induced by these
four wave modes can also be observed. This indicates that the piezoelectric transducer can only sense
the targeting wave mode. When transducers are applied as actuators/sensors, they can be abbreviated
as, for example, an L0 actuator/sensor.

(a) (b)

Figure 21. Voltage responses of L0 sensor excited by (a) L0 and (b) F6 waves. The silence time area is
nearly five cycles.

The third verification is conducted by replacing forces with piezoelectric actuators to test the
actuator-damage-sensor interaction, as shown in Figure 22. The left and right ends extend five
wavelengths to prevent interference from reflected waves. The axial length of the transducers is
changed to 0.2 m, and Table 2 lists the working frequencies for the L0, T0, F6, and F4 sensors. Table 3
lists the voltage magnitudes of all 16 cases for the undamaged situation. The diagonal numbers are
several magnitudes higher than the non-diagonal elements. This coincides with the above analysis.

Figure 22. Third verification model. The left and right ends extend five wavelengths to prevent
interference from reflected waves. The L0, T0, F6, and F4 transducers are successively used as actuators
and sensors.

Table 3. Magnitudes of voltage responses without damage. The diagonal elements in grey color have
several magnitudes higher than the non-diagonal elements.

L0 Sensor T0 Sensor F6 Sensor F4 Sensor
L0 actuator 101 10−9 10−10 10−9

T0 actuator 10−9 10−2 10−9 10−9

F6 actuator 10−9 10−8 100 10−9

F4 actuator 10−9 10−8 10−9 100
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Damage is later induced by reducing the elastic modulus of the selected elements by 50%. When
L0 is actuated by the actuator, voltage responses of L0 and F6 sensors are as presented in Figure 23.
Compared to the undamaged cases, the voltage response of the L0 sensor is reduced to a small extent,
while that of the F6 sensor increases from 10−10 to 10−3, i.e., a part of the lost energy in L0 is transferred
to F6 due to interaction with damage. Results of all 16 cases are listed in Table 4. Wave-mode
conversions between L0-F6 and T0-F4 are clearly observed.

(a) (b)

Figure 23. Voltage responses of (a) L0, and (b) F6 sensors excited by L0 actuator.

Table 4. Magnitudes of voltage responses with damage. Grey color in Non-diagonal elements indicates
wave conversions happen.

L0 Sensor T0 Sensor F6 Sensor F4 Sensor
L0 actuator 101 10−7 10−3 10−9

T0 actuator 10−8 10−2 10−9 10−4

F6 actuator 10−1 10−8 100 10−8

F4 actuator 10−8 10−3 10−8 100

These numerical simulations demonstrate that the designed wave transducers can interact with
only one wave with high sensitivity. This selective electromechanical coupling feature can be used to
detect small amounts of wave-mode conversion due to local damage.

6. Structural Health Monitoring of the Joint

To verify the conclusions in Section 4.2, we apply these transducers to monitor the connection
status of the flange joint in Section 2, whose FEM model is shown in Figure 24. The first verification is
for wave-scattering excited by longitudinal waves, because they perform better in transmission and
conversion. The L0 transducer is the simplest to implement, so it is employed as the actuator. To study
transmitted waves between different families of waves and compare waves in the same family, L0,
T0, F6, and F4 sensors are chosen. We redraw the L0 columns of Figures 12–14 to obtain Figure 25.
Wave-mode conversion between L0-F0 is induced by the intact flange, and the complex conversion
emerges after introducing the two types of damage.

Transient analysis is subsequently conducted, and Figure 26a–d illustrate the voltage response
of sensors excited by the L0 actuator. When the joint is undamaged, L0 shows a strong transmission
ability and no wave conversion occurs, which is consistent with Figure 25, as the wave amplitude
of L0 is about 0.78 and the wave amplitudes of T0, F6, and F4 are close to 0. After the two forms
of damage are induced, the voltage of the L0 sensor remains almost unchanged, while the voltage
responses of the T0, F6, and F4 sensors rise, which indicates the occurrence of wave-mode conversion
between L0andT0/F6/F4. The voltages induced by 10% damage demonstrate the effectiveness of
transducers for slight damage, and this is much smaller than that for 50% damage. These two points
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can be predicted by the WFEM results in Figure 25. Due to the differences in polarization direction
and the single/double layer between torsional and flexural wave transducers, the voltages induced
by the same wave are lopsided, leading to the higher voltage of the F6 sensor in contrast to the T0

sensor. Conversely, in flexural waves, the voltage of the F6 sensor is higher than that of the F4 sensor,
which agrees with Figure 25.

Figure 24. FEM model of drum-flange structure in Section 2. Actuators and sensors are implemented
to detected wave-scattering features of joint structure for first and second verification.

Figure 25. WFEM results: transmitted wave amplitudes of couple element excited by L0.

The second verification is of the transmission ability of flexural waves, and the F4 transducer is
used as the actuator, as shown in Figure 24. To prevent the F4 wave from being reflected by the L0, T0,
and F6 sensors, the T0 and F4 sensors swap their positions. Figure 27 shows that the voltage amplitude
of the F4 sensor excited by the F4 actuator is 0.6v, which is much lower than the 8v of the L0 sensor
excited by the L0 actuator. By comparing the wave amplitudes of L0 and F4 in the diagonal elements of
Figure 12, one can conclude that both the transient result of FEM and stationary response of WEFM
demonstrate that the F4 wave is almost reflected by the flange joint.
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(a) (b)

(c) (d)

Figure 26. First verification: voltage responses of (a) L0, (b) T0, (c) F6, and (d) F4 sensors excited by
L0 actuator.

Figure 27. Second verification: voltage response of F4 sensor excited by F4 actuator.

7. Conclusions

In this paper, based on the wave-scattering characteristics of the joint structure calculated by
WFEM, we proposed a design scheme of the distributed piezoelectric transducers in a cylindrical shell
to monitor the transmitted waves. The main conclusions are as follows.

• Wave-scattering of the coupling element is first calculated by WFEM. Results of forced response
analysis of DMM are consistent with FEM in that the numerical error is less than one percent.
A 39 × 39 matrix was formed from the results of 39 incident and 39 transmitted waves,
and it was found that the damaged joint (10/50% loss of elastic modulus in 15◦) can induce
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slight/complicated wave-mode conversions. Longitudinal waves have a strong transmission
ability and can convert almost all wave modes; flexural waves are reflected by the joint.

• Piezoelectric wave-mode transducers are then designed to detect wave modes in cylindrical
waveguides. The distributed function, polarization direction, and circuit connection of transducers
are designed to cancel the charge contributed from the non-targeting waves in the cylinder. This is
based on orthogonality between wave-shapes. Simulation results show ten orders of magnitude
difference in voltages between the targeting wave and other waves. It is demonstrated that the
transducer only couples with the targeting wave.

• By implementing the actuator-joint-sensor structure, the L0, T0, F6, and F4 sensors are employed
to monitor the transmitted waves of the flange induced by the L0/F4 actuator. L0 is verified to
have a strong transmission ability, and F4 is almost reflected by the joint. After these two types
of damage are introduced, wave-mode conversion between L0 − T0/F6/F4 is detected, and the
voltage comparison between the F6 and F4 sensors matches the result in Figure 25.

• All these numerical simulations demonstrate the promise of the designed wave-mode transducers
for the SHM of joint structures. Future work includes experiments to verify the performance
of transducers.
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Appendix A. Material properties of PZT-5H

Mass density: ρ = 7500 kg/m3

Material stiffness matrix evaluated at constant electric field:

cE = 1010 ×



12.6 7.95 8.41
7.95 12.6 8.41
8.41 8.41 11.7

2.3
2.3

2.35


Pa

Permittivity matrix evaluated at constant strain:

εS = ε0 ×

 1700
1700

1470


where ε0 = 8.854× 10−12 C/(V·m)

Piezoelectric stress coupling matrix:

e =



−6.5
−6.5
23.3

0
17

17


N/(V ·m)
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