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Abstract: In the conventional neural network, deep depth is required to achieve high accuracy of
recognition. Additionally, the problem of saturation may be caused, wherein the recognition accuracy
is down-regulated with the increase in the number of network layers. To tackle the mentioned
problem, a neural network model is proposed incorporating a micro convolutional module and
residual structure. Such a model exhibits few hyper-parameters, and can extended flexibly. In the
meantime, to further enhance the separability of features, a novel loss function is proposed, integrating
boundary constraints and center clustering. According to the experimental results with a simulated
dataset of HRRP signals obtained from thirteen 3D CAD object models, the presented model is capable
of achieving higher recognition accuracy and robustness than other common network structures.
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1. Introduction

The high-resolution range profile (HRRP) of a target refers to the projection of the target scattering
center following the radar line of sight, covering numerous target characteristics (e.g., size and
structure). HRRP can be acquired, processed and stored easily; it has a simplified computation
and robust real-time performance. For this reason, it has constantly been a critical data source for
target recognition. Researchers are able to harvest separable features from HRRP to classify and
identify a range of targets. Previous HRRP-based radar target classification and recognition placed
primary emphasis on feature extraction on the basis of researchers’ prior knowledge and experience,
as well as optimization and fusion of classification algorithms. Common features consist of time
domain characteristics [1,2] (as manifested by original image, central moment, structure contour,
strong scattering points, etc.), while power spectrum, polarization ratio, polarization matrix and other
frequency domain [3,4] and polarization domain [5,6] characteristics are also covered.

Fueled by advances in computer technology, and in accordance with deep learning theory, deep
learning has become a hotspot in research in various fields [7–10]. It has been extensively employed in
radar target detection, recognition, and classification. At the same time, HRRP and CNN also have
significant applications in the field of unmanned aerial vehicles and unmanned surface vehicles [11,12].
Deep learning-based object recognition refers to feature extraction using a neural network. HRRP-based
radar recognition can also be achieved using a deep learning algorithm. This field has aroused a great
deal of attention from researchers, and considerable new achievements have been made, which will be
presented below. There are many methods for enhancing the recognition accuracy of neural networks,
such as improving the structure of the neural network, optimizing the loss function, and increasing the
training data. To be specific, the neural network structure for HRRP target recognition consists of an
autoencoder (AE) and a convolutional neural network (CNN).
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CNN refers to a critical deep learning structure, capable of automatically extracting the effective
separable characteristics of HRRP and addressing the susceptibility to amplitude, translation and
orientation that results from the structural similarity between different ships. Compared with the
conventional classification algorithm, it exhibits a better recognition effect. In [13], CNN was employed
to identify aircraft based on HRRP, and an analysis was conducted on the effects of activation function,
convolution kernel size, learning rate and weight decay coefficient on recognition accuracy. It exhibited
higher recognition accuracy than those of back propagation (BP) neural network, support vector
machine (SVM), and K-nearest neighbor (KNN). Their dataset originated from actual measurements of
four aircraft scale models. In [14], CNN was also adopted to achieve target recognition, with the dataset
being derived from the simulation calculation of 10 ship targets. In [15], when CNN was employed for
target recognition, white noise was added to expand the dataset. Moreover, the recognition results of
different radars were fused, and the threshold was set to determine whether the target was known or
unknown. Furthermore, the effect of radar numbers and SNR on recognition accuracy was analyzed.
In [16], an algorithm that integrates HRRP with polarization information was proposed. With the use
of the polarization matrix, Pauli decomposition and Freeman decomposition, 12 eigenvectors were
achieved to form the dataset. According to the simulation result, the recognition accuracy based on
fully polarized datasets was 5 percentage higher than that of single polarized datasets. Similar work
was also conducted in [17], wherein the dataset originated from full-polarization measurements of
the model using 77 GHz electromagnetic waves in a microwave anechoic chamber. In [18], two CNN
models with various structures were built, and the difference in recognition effect was studied.

AE refers to a type of data compression algorithm, capable of reproducing the input signal to the
greatest extent by harvesting the crucial features of the input data. The vital features extracted can be
exploited to identify the target. In [19], a deep network, termed a sparse convolution autoencoder
(S1C1AE), was presented to deal with HRRP target recognition. The model was employed to identify 3
vehicle models. While data were being preprocessed, amplitude normalization and centroid alignment
were performed. As compared with other models, the recognition accuracy was enhanced noticeably.
Comparison models covered linear discriminate analysis (LDA), principal component analysis (PCA),
linear support vector machine (LSVM), denoise sparse autoencoder (D1S1AE), and deep belief network
(DBN). In [20], a stacked corrective autoencoder (S2C2AE) was built, and the data preprocessing
was the same as the process in [19]. The correction was achieved by averaging HRRP for respective
frame. The model exhibits better generalization performance. To form a loss function based on the
Mahalanobis distance, the covariance matrix of each HRRP was employed. Experimental results
suggested that the deeper layers of the model, the better the recognition effect could be. In [21], a HRRP
recognition model was proposed, combining S1C1AE and multiple classifiers. First, the S1C1AE was
employed to extract features, and subsequently the random forest (RF), naive Bayes (NB) and minimum
classifier were fused for features classification. According to experimental results, the model exhibited
good noise robustness. In [22–24], the recognition method of fusion neural networks and classifiers
was also studied.

There are no publicly available datasets for deep learning-based HRRP target recognition.
Most of the datasets adopted by the various researchers of HRRP target recognition are derived
from measurements in a microwave anechoic chamber, as well as from their simulation calculation.
Nevertheless, different studies have suggested that deep learning-based HRRP target recognition
exhibits higher accuracy than conventional classification methods. At present, the enhancement of
HRRP target recognition accuracy based on neural networks is primarily focused on the enhancement
and fusion of the mentioned structures. In contrast, only rare studies have sought to enhance the
accuracy of HRRP target recognition by optimizing the loss function. Most studies that optimize the
loss function to enhance the recognition effect are aiming towards face recognition, and many of them
can be applied to HRRP target recognition.

Designing a good neural network structure is one of the most efficient and challenging approaches
to enhancing classification performance. Under the premise of sufficient datasets, the learning ability of
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the model can be enhanced by up-regulating the depth and width of the neural network. AlexNet [25]
and VGG [26] have both demonstrated that model recognition accuracy displays a positive correlation
with the network depth in a certain range. Nevertheless, with the increase in network depth, gradient
explosion, disappearance, and saturation of network recognition accuracy may take place in the back
propagation of CNN in the training process. By introducing a residual learning framework, Kaiming
He and Xiangyu Zhang [27] addressed the degradation problem. Accordingly, the problem whereby
the accuracy reaches saturation and subsequently degrades rapidly with the rise in the network depth
was avoided. However, to enhance the recognition effect, the residual learning framework requires
further increases in the network depth.

In this study, an efficient and extensible convolutional module is presented by optimizing the
residual learning framework. The convolutional module contains left and right branches. Among
them, based on the left branch structure of convolutional module, the effect of network deepening and
widening can be simulated. The skip structure of the right branch is capable of transferring features
and gradients more effectively. The convolutional module is capable of achieving the recognition effect
of a deep network with fewer network parameters. Additionally, a novel loss function is proposed
to enhance the recognition accuracy by combining central clustering and additive margin strategy.
The features extracted by the novel loss function are characterized by larger inter-class variations,
smaller intra-class variations, and stronger separability. In the meantime, by combining convolutional
module that exhibits the same topology, the presented model can be extended to adapt to various
difficulty classification tasks. According to the experimental results with a simulated dataset of
HRRP, the presented model is capable of achieving higher recognition accuracy than the conventional
algorithm. The rest of this paper is organized as follows. Section 2 presents the composition and
structure of one-dimensional convolutional network. The design of convolutional module and loss
function are elucidated in Section 3. The experimental effect of the model is demonstrated in Section 4
from different aspects. Lastly, the concluded remarks are drawn in Section 5.

2. One-Dimensional Convolutional Neural Network

CNN refers to a type of feedforward neural network that covers convolution calculation. For its
translation invariance in the calculation process, it is capable of avoiding complex preprocessing
(e.g., HRRP data alignment) and exhibits higher robustness. The model employed in this study
complies with the convolutional neural network. First, the basic structure of CNN is introduced,
which covers five parts, namely, input layer, convolutional layer, pooling layer, fully connected layer,
and output layer. The CNN structure for HRRP is illustrated in Figure 1.
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Figure 1. Schematic diagram of the CNN structure for HRRP. It shows CNN’s classification process of
10 types of targets for 128-length HRRP data.
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The input layer acts as the start of the neural network, generally requiring simple preprocessing
of data to make the data have the identical dimension and satisfy the same distribution characteristics.
Preprocessing is capable of down-regulating the effect of amplitude perturbation on the extraction
characteristics of different HRRP data and enhancing the robustness of the model. It is also convenient
to find the minimum value more directly in the iterative process of the gradient descent method, so the
model can converge faster. It can be performed in the two steps below:

1. Normalize the amplitude of HRRP. The data after amplitude normalization of the nth HRRP is
expressed as x′n = xn/max(|xn|), where max(|xn|) denotes the maximum absolute value of all
elements in HRRP.

2. Subtract the mean value of the normalized HRRP data from the respective element.

The major function of the convolutional layer is to extract the features of the input data. In Figure 1,
the first convolutional layer covers 16 convolution kernels, and the second convolutional layer consists
of 32 convolution kernels. Each convolution kernel element is composed of weight coefficient and bias.
In deep learning, the weight coefficient initialization method of the neural network plays an important
role in the convergence speed and performance of the model. Common weight coefficient initialization
methods include random initialization, Xavier initialization [28], and He initialization [29]. Random
initialization may cause gradient disappearance when the neural network layers are deep. To solve
this problem, the Xavier initialization method was proposed. When used in conjunction with the Tanh
activation function, the Xavier initialization method makes the output value of the activation function of
the network layer obey the Gaussian distribution. The generation of gradient disappearance is avoided.
However, when used with the Relu activation function, the problem of gradient disappearance still
exists. The He initialization method proposed in [29] solves the problem of gradient disappearance
when the Relu activation function is used in combination with it. The convolution kernel calculates the
input data by convolution, adds the bias, and then activates it by means of the activation function.
The output of the convolutional layer is the extracted feature. The calculation process can be written as:

xl
j = f

∑
i∈M j

xl−1
i ∗ kl

i j + bl
j

, (1)

where xl
j denotes the output of the jth channel, belonging to the lth convolutional layer. f (·) refers

to the activation function, employing the Relu function. kl
i j is the convolution kernel vector of the

jth channel of the convolutional layer l that corresponds to the ith input vector. bl
j is the bias of

the jth channel of the convolutional layer l, * represents the convolution operation. The parameters
of the convolutional layer consist of convolution kernel size, step size, filling category, as well as
activation function. The common activation functions cover the Sigmoid function, the Relu function,
etc. For various parameters, the convolutional layer exhibits different characteristics.

The function of the pooling layer aims to select the features extracted by the convolutional layer
and down-regulate the dimension by down-sampling. Max-pooling, mean-pooling and mix-pooling
are the common pooling layers.

On the whole, the fully connected layer is placed on the back side of the neural network. The major
function is to arrange the features extracted from the previous layer to yield the one-dimensional vector.
The whole CNN outputs target-related outcomes through the output layer classifier. The common
classifiers are softmax and SVM. In the task of target recognition, the output of CNN can cover the
category, size and central coordinates of the target. The learning process of CNN usually updates
parameters iteratively by back propagation, and stable identification results are obtained by minimizing
the error calculated by the loss function.
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3. Model Analysis and Design

3.1. Design of Convolutional Module

The depth of neural networks is critical. The deep convolutional neural network is capable of
extracting and fusing features of different levels for end-to-end target recognition. Nevertheless,
the deepening of network layers will cause saturated recognition accuracy. To address this problem,
residual structure is introduced, as illustrated in Figure 2.
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Figure 2. Schematic diagram of residual block.

The residual block in the residual structure consists of convolutional layers, and the number of
convolutional layers in Figure 2 is 2. The residual structure outputs the sum of the input feature,
and the output of the last convolutional layer is expressed by

xl+1 = F(xl) + xl, (2)

where xl and xl+1 represent the input and output feature vector of the residual block, respectively.
F(xl) denotes the mapping of residual blocks.

Research results reveal that the saturated recognition accuracy of deep network can be effectively
addressed by replacing the required fitting mapping F(xl) + xl with the fitting mapping F(xl) [27].
In particular, if the network has extracted the optimal features required for classification, the residual
structure should only carry out identity mapping of skip connections to ensure the maximal recognition
accuracy. For neural networks, zero residual block is more efficient than the use of multilayer neural
networks to fit identity mapping. Figure 3 presents the structure of the convolutional module promoted
in this study based on the residual structure, where conv denotes the convolutional layer.

The convolutional module proposed in this article is set up as a highly modular network structure
that exhibits high expansibility. The features extracted by the upper layer network act as the input
of this layer, and the input will pass through two branches, as shown in Figure 3. In the left branch,
the convolution kernel of 1 × 1 is adopted to fuse the features between layers first. Subsequently,
the fused features are split into x branches according to the number of layers. Each branch contains 3
layers of features, and all branches adopt a convolution kernel of 3 × 1 to extract features; the step
size is 2. Since the step size of the convolution kernel is 2, the number of layers of the output feature
remains unchanged, and the dimension is halved. Next, the features of all branches are concatenated.
Moreover, the size of x can be ascertained according to the complexity of the classification tasks.
The larger x is, the easier it is to extract stronger separable features, and the better the recognition
effect is in a more complex classification task. Such structure is similar to Inception [30]. Nevertheless,
the size and number of the convolution kernel for each branch in Inception are customized step by
step. In the convolutional module proposed in this article, a small-scale convolution kernel of 3 × 1 is
uniformly chosen to simplify the structure design and ensure the recognition effect in the meantime.
After concatenation, the features are fused again with the convolution kernel of 1 × 1, and the number
of feature layers is then up-regulated. In the left branch in Figure 3, the number of feature layers
increases from N to 4N/3. Then, according to the number of layers, the features are split into two parts



Sensors 2020, 20, 586 6 of 25

to prepare for the subsequent fusion of the features of the two branches, where the number of layers of
features for add is N, and the number of layers of features for concatenate is N/3, as shown in Figure 3.
The right branch directly uses the convolution kernel of 1 × 1 to fuse the input features and rises the
number of feature layers. In the meantime, the features are also separated into two parts according
to the number of layers. The number of layers of features for add is N, and the number of layers of
features for concatenate is 2N/3. Lastly, the corresponding features in the left and right branches are
added or concatenated, as illustrated in Figure 3.
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Figure 3. Structure of the convolutional module. M × 1 × N represents one-dimensional data with
input characteristics of M × 1, N feature layers, s is the moving step size of the convolution kernel, and
the unmarked step size is 1 by default.

Compared with the input of the convolutional module, the dimension of the output features is
halved, and the number of layers is doubled. The right branch exerts similar effects as the residual
network, making the transfer of features and gradients more efficient. Because of the right branch,
each layer of convolutional module is capable of acquiring information from the loss function and
the original input, and the exploitation of shallow features is facilitated. Then, the problem that the
recognition accuracy decreases with the rise in the number of network layers is avoided.

3.2. Design of Loss Function

The loss function is adopted to identify the difference between the predicted value and the
real value. Softmax loss commonly acts as the loss function for multi-classification convolutional
neural network. However, from the clustering perspective, the feature extracted from softmax loss
will display larger intra-class variations than inter-class variations. In the meantime, the features
extracted by softmax loss are not discriminative enough, since they still display significant intra-class
variations. Under too many target types, the features will overlap, which is not conducive to object
classification. To solve this problem, numerous solutions have been proposed in face recognition [31–35].
They primarily focus on promoting inter-class variations and lowering intra-class variations.
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For softmax loss, features can be brought closer by enhancing the boundary constraints between
various targets. It also promotes the inter-class variations of targets. The formulation of the original
softmax loss is defined as:

LS = − 1
m

m∑
i=1

log e
WT

yi
xi∑n

j=1 e
WT

j xj

= − 1
m

m∑
i=1

log e‖Wyi ‖‖xi‖ cos(θyi )∑n
j=1 e‖Wj‖‖xi‖ cos(θ j)

(3)

where x represents the input of the last fully connected layer. xi ∈ Rd denotes the ith deep feature,
belonging to the yith class. d indicates the feature dimension. W j ∈ Rd refers to the jth column of the
weights W ∈ Rd×n in the last fully connected layer. WT

yi
xi denotes the target logit of the ith sample.

m and n represent the size of mini-batch and the number of class, respectively.
The design of the loss function proposed refers to the additive margin softmax loss (AM-softmax),

which is used in face recognition [35]. In the meantime, considering the constraint of intra-class
variations of features, a loss function named margin center (Referred to MC), integrating additive
margin and center constraint, is proposed. The loss function uses the additive margin to increase
the inter-class variations of features; the center constraint is also employed to reduce the intra-class
variations of features. As a result, the inter-class variations of features are larger, the intra-class
variations are smaller, and the separability of features is enhanced. The formulation of the loss function
proposed in this study is given by

LAMSC = LAMS + λLC

= − 1
m

m∑
i=1

log e
s·(WT

yi
xi−µ)

e
s·(WT

yi
xi−µ)+

∑n
j=1, j,yi

e
sWT

j xi
+ λ

2

m∑
i=1
‖xi − cyi‖

2
2

= − 1
m

m∑
i=1

log es·(cosθyi−µ)

es·(cosθyi−µ)+
∑n

j=1, j,yi
es·cosθ j

+ λ
2

m∑
i=1
‖xi − cyi‖

2
2

(4)

where the hyper-parameter s is adopted to scale the cosine values, and cosine values represent the
similarity between the features. µ is applied for the control of the distance between the edges of
the feature. cyi ∈ Rd denotes the yith class center of features, and cyi can constantly update with the
variation of the features of each batch. LAMS proposes a specific ψ(θ) = cosθ − µ to introduce the
additive margin property and enhances the recognition effect by promoting the inter-class variations of
features. LC constructs a class center for the features of each class of target and punishes the features far
away from the class center. Accordingly, the intra-class variations of features becomes more compact,
the intra-class variations are lowered, and the inter-class variations are promoted. The gradients of LC
with respect to xi and update equation of cyi are computed as:

∂LC
∂xi

= xi − cyi , (5)

∆c j =

m∑
i=1

δ(yi = j) · (c j − xi)

1 +
m∑

i=1
δ(yi = j)

, (6)

where δ(·) = 1 if the identification is correct; otherwise, δ(·) = 0. Under the constraint of joint loss
function LAMSC, the learning details in network can be summarized in the following (Algorithm 1):
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Algorithm 1. The neural network algorithm with convolution module and residual structure

Input: Training samples {xi}. Initialized parameters θc in convolution kernel. Weight matrix W. The jth class
center c j of features. Hyper-parameter s, µ in LAMS. Learning rate α for feature center in LC. Weight λ and
learning rate lr in network. The number of iteration t← 0 .
Output: The parameters θc.

Step 1: while not converge do
Step 2: t← t + 1 .
Step 3: compute the joint loss by Lt

AMSC = Lt
AMS + λLt

C.

Step 4: compute the backpropagation error
∂Lt

AMSC
∂xt

i
for each i by

∂Lt
AMSC
∂xt

i
=

∂Lt
AMS
∂xt

i
+ λ ·

∂Lt
C

∂xt
i
.

Step 5: update the parameters W by Wt+1 = Wt
− lr ·

∂Lt
AMSC
∂Wt = Wt

− lr ·
∂Lt

AMS
∂Wt .

Step 6: update the parameters c j by ct+1
j = ct

j − α · ∆ct
j.

Step 7: update the parameters θc by θt+1
c = θt

c − lr
m∑
i

∂Lt
AMSC
∂xt

i
·
∂xt

i
∂θt

c
.

Step 8: end while

3.3. Design of Model Structure

The block diagram of the presented model in this study is shown in Figure 4, which primarily
includes an initial convolutional layer, several convolutional modules with the same topology connected
sequentially, and the last two fully connected layers. The dimension of the latter fully connected layer
is 2, which is conducive to visualizing the features extracted by the model and analyze the clustering
effect of the features.
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4. Experimental Simulation and Analysis 

Figure 4. The structure of the presented model.

In Figure 4, the numbers in brackets represent the data dimension after the data passes through
this layer, consistent with Figure 3. The output data dimensions of each convolutional module and the
first fully connected layer are determined according to the number of convolutional modules. Lastly,
the result of the output layer is one-dimensional data that represents the target types. The number
of target types in this study is 13. In the presented model, a one-dimensional convolution kernel
with a scale of 7 × 1 is taken for the initial convolutional layer. The selection of convolution kernel
with relatively large scale in the first layer of the network is conducive to the extraction of the
features (e.g., contour and texture in the HRRP). After each convolution operation in this model,
batch normalization and Relu activation are performed on the extracted features. Since the Relu
activation function is used, the He initialization method is chosen for all weight initialization of the
model proposed.
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4. Experimental Simulation and Analysis

4.1. Data Set Construction

On the whole, there are two ways to obtain the target echo signal, namely the measured method
and the theoretical calculation method. Since most ship targets are non-cooperative targets, it is very
difficult to obtain the HRRP from field measurement. In this study, 13 ship models were built by
3D Max, and HRRP was calculated by FEKO. FEKO is 3D electromagnetic field simulation software,
and is an abbreviation of “FEldberechnung für Körper mit beliebiger Oberfläche”, in German. When
calculating the HRRP of a ship, the ship is stationary, and the HRRP of the ship in different directions
is obtained by changing the incident direction of the electromagnetic wave. Since the ship is stationary
when calculating HRRP, we do not apply three-dimensional rotation around the different Cartesian
axes. The set simulation parameters include the center frequency of the radar as 10 GHz, the bandwidth
as 80 MHz, the number of frequency sampling points as 256, the calculated azimuth range as 0–360◦,
and the interval as 1◦. The grazing angle is 10◦. The obtained HRRP has 256 range cells, with the
corresponding length of each range cell as 1.875 m. The model and amplitude normalized HRRP of
one of the ships are illustrated in Figure 5. Models of all of the ship targets are presented in Figure 6.
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In Figure 5b, the horizontal axis and the vertical axis represent HRRP length and azimuth angle,
respectively. Each ship acquires 360 HRRP data. To meet the requirement of the data amount of the
sample during neural network training and prevent over-fitting, the dataset should be expanded.
The process is as follows:

1. Translation interception of HRRP. As revealed by Figure 5, when HRRP is calculated,
the coordinate axis coincides with the center of the ship, so the effective HRRP information is
generally in the middle region. However, when the radar detects the target, the echo signal may
be incomplete or partially missing. Accordingly, the first step of data expansion is the translation
interception of HRRP. Since each HRRP is one-dimensional data, only a one-dimensional translation
interception is applied. The HRRP is shifted to the left and right by 32 and 64 range cells in turn.
The data removed is discarded, and the blank part is supplemented with 0, as presented in Figure 7.
The number of samples is increased to 5 times by taking those HRRP samples that overlap but are
not identical. It should be noted that the translation interception of HRRP is to simulate the partially
missing echo signal, and there is no spatial transformation performed on the object during the HRRP
acquisition and expansion process.
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2. Random noise is added to the translated HRRP data. Gaussian white noise was added to the
data 10 times, and the data after adding noise meets a certain SNR.

2/3 of the target data of each class of ship are randomly taken as the training dataset and 1/3 as the
testing dataset. In the database, the training dataset samples and the testing dataset samples were
156,000 and 78,000, respectively.

4.2. Model Identification Performance Analysis

In this section, the performance of the presented model is analyzed in three aspects. The first
part primarily shows the effect of different loss functions on the recognition effect. The second part
primarily analyzes the advantages of the presented model compared with the comparison model.
The third part primarily analyzes the enhancement of model complexity to recognition effect.

The experiment was conducted under the following circumstances. Operating system: Windows 10.
Memory: 64 GB. Video memory: 11 GB. GPU: NVIDIA GeForce RTX 2080 Ti. CPU: Intel(R) Xeon(R)
w-2125 CPU @4.00GHz.

All the networks were trained from scratch. The iterations were set to 200. The learning rate
began with 0.01, and it was halved every 20 training iterations. The Adam optimizer was employed
to update the network weight. The batch gradient descent method was applied, and the number of
training samples per batch was 512.

4.2.1. Effect of Loss Function on Recognition Effect

The hyper-parameters of the presented model are limited to three types: the number of
convolutional modules, the number of left branches in the modules and the parameters of the
joint loss function.
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To verify the effectiveness of the structure and loss function proposed, model A, with low
complexity, is built first. The number of convolutional modules in model A is 4, and the number
of left branches inside the module is 3. The parameters of the joint loss function are fine-tuned in
accordance with the identification effect. Table 1 elucidates the structure and parameters of each
stage in model A. After each convolutional layer, there are batch normalization and Relu activation
operations. The number of parameters in the respective stages covers convolution kernel parameters
and batch normalization parameters. For instance, the number of parameters of the initial convolutional
layer is 63 + 36, suggesting 63 convolutional kernel parameters and 36 batch normalized parameters,
respectively. The total number of parameters of model A is 37,538.

Table 1. Details of structure and parameters of each stage in model A.

Stage Output Size Structure Number of
Parameters

Initial convolutional
layer 128 × 1 × 9 7 × 1, 9, s = 2 63 + 36

Left branch Right branch

Convolutional
module 1 64 × 1 × 18

1 × 1, 9
3 × 1, 3, s = 2, x = 3

1 × 1, 12
1 × 1, 15, s = 2 405 + 180

Convolutional
module 2 32 × 1 × 36

1 × 1, 18
3 × 1, 6, s = 2, x = 3

1 × 1, 24
1 × 1, 30, s = 2 1620 + 360

Convolutional
module 3 16 × 1 × 72

1 × 1, 36
3 × 1, 12, s = 2, x = 3

1 × 1, 48
1 × 1, 60, s = 2 6480 + 720

Convolutional
module 4 8 × 1 × 144

1 × 1, 72
3 × 1, 24, s = 2, x = 3

1 × 1, 96

1 × 1, 120, s =
2 25,920 + 1440

Fully connected layer
1 144 Global max pooling and global average

pooling 0

Fully connected layer
2 2 288

Output layer 13 Joint loss function 26

Total number of parameters 37,538

First, the effect of different loss functions on the recognition effect is compared under the structure
of model A. The loss functions participating in the comparison refer to LS, LAMS and LSC.

Classification Effect Comparison of Loss Function LAMS and Loss Function LS

The hyper-parameter µ in LAMS constrains the boundaries between features and s scales the cosine
values. In [35], it was reported that the s will not increase, and the network converges in a relatively
slow manner if the s is set to be learned. Thus, s is fixed at 30, which is a sufficiently large value. Thus,
experiments are performed to delve into the sensitivity of parameter µ.

In the dataset with SNR of 0, 5, 10 and 15 dB, respectively. s is fixed to 30 and µ varies from 0 to 1
to compare the recognition accuracy of model A using loss function LAMS and LS. The recognition
accuracy is obtained by calculating the percentage of correctly classified samples in the testing dataset
in the total number of samples, and the simulation results are presented in Figure 8. As suggested by
Figure 8, compared with the conventional loss function LS, the use of loss function LAMS improves the
model recognition accuracy under different SNR conditions to a certain extent. In addition, the lower
the SNR of the dataset is, the greater the enhancement in recognition accuracy. At different SNR,
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with the rise in the boundary constraint strength µ, the enhancement of recognition accuracy generally
presents a downward trend. It is also noted that the effective range of boundary constraint strength
is small when the SNR is low. In Figure 8a, the effective range of µ is only from 0 to 0.25 at SNR of
0 dB. Furthermore, the recognition accuracy after exceeding the range is lower than that with the use
of loss function LS only. When the loss function LAMS is adopted for ship target recognition in our
dataset, the value of boundary constraint strength should not be too large; 0.05 is generally appropriate,
applying to a larger SNR range.
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Figure 8. Recognition accuracy of model A with the dataset under different SNR conditions.
(a) SNR = 0 dB; (b) SNR = 5 dB; (c) SNR = 10 dB; (d) SNR = 15 dB. The blue line suggests the
recognition accuracy of model A using the loss function LS, and the discrete red points indicate the
recognition accuracy of model A using the loss function LAMS under different µ.

To show the effect of loss function LAMS on the separability of features extracted from model
A more intuitively, when the SNR is 15 dB, the testing dataset is visualized with the 2d features
of the second full-connection layer in model A, as shown in Figure 9. It can be seen that after the
loss function LAMS is used, the corner space occupied by the extracted features in sample of each
class becomes smaller, the inter-class variations of features become larger, and the features are more
separable. It is also noted that the scale of the feature increases with the use of the loss function LAMS.
That is, the features of the same class become more slender in terms of spatial distribution.
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Figure 9. Visualization of the feature extracted by model A with a variety of loss functions at the SNR
of 15 dB. (a) With the loss function LS; (b) With the loss function LAMS and µ = 0.5. Each data point
represents the two-dimensional feature extracted from HRRP data by the model A, and different colors
represent different target types. The total number of types is 13.

Classification Effect Comparison of Loss Function LSC and Loss Function LS

When the weight λ is introduced to fuse the loss function LS with the loss function LC, it yields LSC.
The hyper-parameter α in LSC is adopted to control the learning rate of center for the features, and λ is
applied for the balance of the two functions. Experimental results reveal that when the learning rate α
varies, the recognition accuracy fluctuates slightly. Here, to simplify model design and optimization,
the learning rate α is directly fixed at 0.6. Therefore, we conduct experiments to investigate the
sensitivity of parameter λ while the dataset under different SNR conditions. The simulation results are
listed in Table 2.

Table 2. Recognition accuracy of model A when the λ in loss function LSC is different while the dataset
is under different SNR conditions.

Loss Function and
Parameter

Recognition Accuracy(%)

SNR = 0 dB SNR = 5 dB SNR = 10 dB SNR = 15 dB

LS 60.32 89.03 98.06 99.72
LSC, λ = 0.001 60.45 89.10 98.07 99.73
LSC, λ = 0.005 60.38 89.08 98.06 99.75
LSC, λ = 0.01 60.42 89.08 98.07 99.75
LSC, λ = 0.05 60.46 89.06 98.08 99.74
LSC, λ = 0.1 60.40 89.11 98.09 99.73
LSC, λ = 0.2 60.35 89.10 98.09 99.73
LSC, λ = 0.4 60.37 89.08 98.07 99.74
LSC, λ = 0.6 60.40 89.08 98.08 99.72
LSC, λ = 0.8 60.38 89.09 98.07 99.74
LSC, λ = 1 60.35 89.09 98.07 99.75

Comparing the recognition accuracy in Table 2 with the results in Figure 8 using the loss function
LAMS, the loss function LSC is suggested to be more robust to noise, whereas it has a limited effect
on the enhancement of recognition accuracy, indicating that reducing the intra-class variations of
features alone cannot significantly enhance the recognition effect of the model. To show the process of
establishing the center of features extracted by the loss function LSC. When SNR of the dataset is 15 dB
and the weight λ is 0.6, the 2d features of the second fully connected layer of the dataset in model A
are visualized for every 50 iterations, as shown in Figure 10.
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training. (a–e) Feature visualization of testing dataset, and (f) feature visualization of training dataset.
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accuracy = 0.9968; (e) Iterations = 200 and recognition accuracy = 0.9972; (f) Iterations = 200 and
recognition accuracy = 0.9988.
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As suggested by Figure 10a, the initial features of each class are inseparable, and the initial
recognition accuracy is only about 0.3274. With the increase in iteration times and the constant
updating of parameters, the features of various samples are gradually separated and concentrated in
their category centers. With the enhancement of feature separability, the model recognition accuracy
rises. The comparison between (c) and (d) in Figure 10 suggests that though the recognition accuracy
of the model is not improved between 100 and 150 iterations, the features of various samples are
more clustered, and the intra-class variations of features are gradually decreased. As suggested by
the comparison of Figure 10e,f, although the training dataset exhibits stronger feature separability
and higher recognition accuracy, the testing dataset have similar feature distribution and recognition
accuracy. It is, therefore, revealed that the model has no obvious overfitting and the extracted features
have good generalization performance. Compared with the visualization of features extracted by model
A when loss function LAMS and LS are used in Figure 9, the feature scale extracted by loss function LSC
is smaller, and the distribution range is narrowed from [−400,400] to [−3,3]. The distribution of features
in space varies from divergence to aggregation by class, and the intra-class difference is smaller.

Classification Effect Comparison between Loss Function LSC and Others

By analyzing the described results, it can be concluded that the boundary constraint strength
µ of the loss function LAMS can significantly improve the recognition accuracy. However, when the
SNR is low, the value of µ should not be overly large. The weight λ of loss function LSC has better
adaptability and can improve the intra-class aggregation effect of features within a larger value range,
but the enhancement of recognition accuracy is limited.

In this section, we verify the enhancement of recognition accuracy with the joint loss function
LAMSC, where s, α and µ are fixed at 30, 0.6 and 0.05, respectively. When λ is taken to have different
values, the recognition accuracy of model A under different SNR conditions is listed in Table 3.

Table 3. Recognition accuracy of model A when the λ in loss function LAMSC is different while the
dataset is under different SNR conditions.

Loss Function and Parameter
Recognition Accuracy(%)

SNR = 0 dB SNR = 5 dB SNR = 10 dB SNR = 15 dB

LAMSC, λ = 0.001, µ = 0.05 71.26 93.39 98.91 99.89
LAMSC, λ = 0.01, µ = 0.05 70.58 93.16 99.03 99.89
LAMSC, λ = 0.1, µ = 0.05 72.28 92.90 99.08 99.91
LAMSC, λ = 0.2, µ = 0.05 69.70 92.46 98.89 99.91
LAMSC, λ = 0.3, µ = 0.05 70.61 93.09 99.00 99.90
LAMSC, λ = 0.4, µ = 0.05 71.14 92.36 98.99 99.90
LAMSC, λ = 0.6, µ = 0.05 69.78 92.49 99.00 99.88
LAMSC, λ = 0.8, µ = 0.05 70.92 92.85 99.08 99.91
LAMSC, λ = 1, µ = 0.05 71.41 93.26 99.06 99.91

LAMS 65.03 91.72 98.84 99.84
LSC 60.46 89.11 98.09 99.75
LS 60.32 89.03 98.06 99.72

In Table 3, the recognition accuracy of model A is given when the λ in the joint loss function LAMSC
is taken to have different values. In the meantime, it also shows the recognition accuracy when using
loss function LAMS, LSC and LS. Among them, the loss function LAMS and LSC show the best recognition
accuracy when assuming different values of parameters. As suggested by Table 3, when the joint loss
function LAMSC is used, the recognition accuracy is improved stably under different SNR conditions.
In addition, when the SNR of the dataset is relatively low, the enhancement is greater. When the value
of λ is 0.001, 0.01, 0.1 and 1, respectively. we visualize the features extracted by model A, as shown in
Figure 11.
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Figure 11. Visualization of the feature extracted by model A with different value of λ. (a) λ = 0.001; (b)
λ = 0.01; (c) λ = 0.1; (d) λ = 1.

As suggested by Figure 11, with increasing value of λ, the intra-class differences of features
gradually become smaller, and the features of different types gradually converge to the center of the
class. The spatial distribution range of features is narrowed from [−20, 15] to [−1.5, 1.5]. As suggested
by the recognition accuracy and the intra-class aggregation of features, the recognition effect is identified
the optimal at the value of λ as 0.1.

4.2.2. Analysis of the Recognition Effect of the Presented Model and the Comparison Model

In this section, the common target recognition algorithm based on HRRP is selected as the
comparison model to verify the effectiveness of the presented model and loss function. Conventional
comparison algorithms based on machine learning include: KNN [36], LSVM [37], RBF-SVM [38],
RF [39] and NB [40]. The comparison algorithms based on neural network includes: CNN [18], Stack
Sparse Auto Encoder and K-Nearest Neighbor (sDSAE&KNN) [24], Stack Convolutional Auto Encoder
(SCAE) [41]. For the highest recognition accuracy, the hyper-parameters in the comparison algorithm
are fine-tuned. Tables 4–6 elucidate the structure and parameters of each comparison model based
on the neural network. The pooling layer in each model is max-pooling, and batch normalization is
performed after the convolutional layer in CNN.
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Table 4. Details of structure and parameters of CNN.

Stage Output Size Structure Number of Parameters

Convolutional layer 1 256 × 1 × 8 3 × 1, 8, s = 1 32 + 32
Pooling layer 1 128 × 1 × 8 2 × 1, s = 2 0

Convolutional layer 2 128 × 1 × 16 3 × 1, 16, s = 1 400 + 64
Pooling layer 2 64 × 1 × 16 2 × 1, s = 2 0

Convolutional layer 3 64 × 1 × 32 3 × 1, 32, s = 1 1568 + 128
Pooling layer 3 32 × 1 × 32 2 × 1, s = 2 0

Convolutional layer 4 32 × 1 × 64 3 × 1, 64, s = 1 6208 + 256
Pooling layer 4 16 × 1 × 64 2 × 1, s = 2 0

Convolutional layer 5 16 × 1 × 64 1 × 1, 64, s = 1 4160 + 256
Pooling layer 5 8 × 1 × 64 2 × 1, s = 2 0

Fully connected layer 1 64 32,832
Fully connected layer 2 2 130

Output layer 13 Ls 39

Total number of parameters 46,105

Table 5. Details of structure and parameters of sDSAE&KNN.

Stage Output Size Number of Parameters

Hidden layer 1 150 × 1 38,550
Hidden layer 2 100 × 1 15,100
Hidden layer 3 50 × 1 5050
Hidden layer 4 10 × 1 510

Total number of parameters 59,210

Table 6. Details of structure and parameters of SCAE.

Stage Output Size Structure Number of Parameters

Convolutional layer 1 256 × 1 × 128 5 × 1, 128, s = 1 768
Pooling layer 1 128 × 1 × 128 2 × 1, s = 2 0

Convolutional layer 2 128 × 1 × 64 5 × 1, 64, s = 1 41,024
Pooling layer 2 64 × 1 × 64 2 × 1, s = 2 0

Convolutional layer 3 64 × 1 × 32 3 × 1, 32, s = 1 6176
Pooling layer 3 32 × 1 × 32 2 × 1, s = 2 0

Convolutional layer 4 32 × 1 × 16 3 × 1, 16, s = 1 1552
Pooling layer 4 16 × 1 × 16 2 × 1, s = 2 0

Convolutional layer 5 16 × 1 × 8 1 × 1, 8, s = 1 136
Pooling layer 5 8 × 1 × 8 2 × 1, s = 2 0
Output layer 13 Ls 845

Total number of parameters 50,501

Since the complexity of the model is associated with the recognition accuracy, the number of
parameters of each model is similar to model A when the comparison model based on neural network
is designed. The total parameters of the model are employed here to represent the complexity of the
model. As suggested by the table above, the complexity of each model based on neural network is
shown in descending sequence: sDSAE&KNN, SCAE, CNN, model A.

First, the recognition effect of all models was compared using the dataset under the condition
SNR = 5 dB. The recognition accuracy of each model is shown in Figure 12.
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Figure 12 shows the best recognition accuracy of the comparison model and the model A with
a variety of loss functions. As suggested in Figure 12, each model based on the proposed structure
(model A) achieves better recognition effect. Additionally, the recognition of model A combined with
the joint loss function LAMSC exhibits the highest accuracy among all models. The effectiveness of the
proposed structure and the joint loss function is verified, respectively.

In the meantime, the recognition effect based on neural network model appears to be generally
better than that based on conventional machine learning model. In the neural network models, the model
including the convolution kernel (model A, CNN, SCAE) can achieve a prominent recognition effect.
In the meantime, the model based on the convolutional neural network (model A, CNN) outperforms
the model based on the auto-encoder (SCAE, sDSAE&KNN). During the expansion of the dataset,
translation interception is performed to simulate target occlusion and information loss in the echo
signal to some extent. The convolutional neural network-based recognition exhibits higher accuracy,
revealing that the convolution kernel helps the model extract the effective separable features of different
target echo signals, achieve better recognition effect, and avoid being adversely affected by incomplete
echo signal information.

Under different SNR conditions, the optimal recognition results of each model based on neural
network are listed in Table 7.

Table 7. Recognition accuracy of model A and the comparison model under different SNR conditions.

Model
Name

Number of
Parameters

Computational Time
for Each HRRP (us)

Recognition Accuracy (%)

SNR = 0 dB SNR = 5 dB SNR = 10 dB SNR = 15 dB

Model
A&LAMSC

37538 258 72.28 93.39 99.08 99.91

CNN 46105 69 58.22 86.91 95.51 98.79
SCAE 50501 47 54.78 86.58 94.44 98.78

sDSAE&KNN 59210 68 46.50 83.94 93.44 98.65

As suggested by the recognition results in Table 7, the recognition accuracy of each model
noticeably impacts SNR. Additionally, the recognition accuracy of each model is enhanced with
the rise in SNR of the dataset. Compared with the comparison model, model A exhibits the least
number of parameters and the least complexity, whereas the highest recognition accuracy is achieved
under different SNR datasets. By enhancing the network structure and loss function, the presented
model achieves better recognition effect with less model complexity and exhibits higher generalization
performance and noise robustness. It should be noted that the calculation process of the model
proposed is more complicated, so it takes more time to identify the target.
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4.2.3. Effect of Model Complexity on Recognition Effect

The mentioned experimental results verify the effectiveness of the structure and loss function
proposed. Since the recognition accuracy of the model displays a positive correlation with the depth
and width of the model within a certain range. In the present section, different parameters will
be selected, three models with different complexity will be designed, and their recognition effects
will be compared. Model A refers to the model adopted in Section 4.2.1. Model B is developed by
up-regulating the number of convolutional modules in model A to 5, and Model C is obtained by
up-regulating the number of branches in the left branch of model A to 6. The details of the structure
and parameters of each stage in model B and C are listed in Tables 8 and 9.

Table 8. Details of structure and parameters of each stage in model B.

Stage Output Size Structure Number of
Parameters

Initial
convolutional layer 128 × 1 × 9 7 × 1, 9, s = 2 63 + 36

Left branch Right branch

Convolutional
module 1 64 × 1 × 18

1 × 1, 9
3 × 1, 3, s = 2, x = 3

1 × 1, 12
1 × 1, 15, s = 2 405 + 180

Convolutional
module 2 32 × 1 × 36

1 × 1, 18
3 × 1, 6, s = 2, x = 3

1 × 1, 24
1 × 1, 30, s = 2 1620 + 360

Convolutional
module 3 16 × 1 × 72

1 × 1, 36
3 × 1, 12, s = 2, x = 3

1 × 1, 48
1 × 1, 60, s = 2 6480 + 720

Convolutional
module 4 8 × 1 × 144

1 × 1, 72
3 × 1, 24, s = 2, x = 3

1 × 1, 96
1 × 1, 120, s = 2 25,920 + 1440

Convolutional
module 5 4 × 1 × 288

1 × 1, 144
3 × 1, 48, s = 2, x = 3

1 × 1, 192
1 × 1, 240, s = 2 103,680 + 2880

Fully connected
layer 1 144 Global max pooling and global average

pooling 0

Fully connected
layer 2 2 578

Output layer 13 Joint loss function 26

Total number of parameters 144,353
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Table 9. Details of structure and parameters of each stage in model C.

Stage Output Size Structure Number of
Parameters

Initial
convolutional layer 128 × 1 × 18 7 × 1, 18, s = 2 126 + 72

Left branch Right branch

Convolutional
module 1 64 × 1 × 36

1 × 1, 18
3 × 1, 3, s = 2, x = 6

1 × 1, 24
1 × 1, 30, s = 2 1458 + 360

Convolutional
module 2 32 × 1 × 72

1 × 1, 36
3 × 1, 6, s = 2, x = 6

1 × 1, 48
1 × 1, 60, s = 2 5832 + 720

Convolutional
module 3 16 × 1 × 144

1 × 1, 72
3 × 1, 12, s = 2, x = 6

1 × 1, 96
1 × 1, 120, s = 2 23,328 + 1440

Convolutional
module 4 8 × 1 × 288

1 × 1, 144
3 × 1, 24, s = 2, x = 6

1 × 1, 192
1 × 1, 240, s = 2 93,312 + 2880

Fully connected
layer 1 288 Global max pooling and global average

pooling 0

Fully connected
layer 2 2 578

Output layer 13 Joint loss function 26

Total number of parameters 13,0132

Under different SNR conditions, the optimal recognition results of each model are listed in Table 10.
The proposed joint loss function LAMSC is used in all models, and the values of each parameter of the
loss function are s = 30, α = 0.6, µ = 0.05, λ = 0.1.

Table 10. Recognition accuracy of different complexity models under different SNR conditions.

Model
Name

Number of
Parameters

Computational Time
for Each HRRP (us)

Recognition Accuracy (%)

SNR = 0 dB SNR = 5 dB SNR = 10 dB SNR = 15 dB

Model A 37538 258 72.28 92.90 99.08 99.91
Model B 144353 326 77.12 95.28 99.49 99.93
Model C 130132 323 76.31 95.50 99.43 99.93

As revealed by Table 10, the depth and width of the model directly impact the recognition
effect. Compared with model A, models B and C both enhance the recognition accuracy noticeably.
In particular, when the SNR is low, the enhancement becomes more obvious. Meanwhile, the time
required for model A, B and C to calculate each HRRP is also listed in Table 10. It can be seen that
compared with model A, the computational times for model B and model C increase due to the
increased complexity of the model. However, compared with the increased number of parameters,
the increase in calculation time is not large. To compare and delve into the convergence speed of
various complexity models, at the dataset SNR of 15 dB, the recognition accuracy and loss curves in
the training process are plotted in Figure 13.
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Figure 13. The recognition accuracy and loss curves in the training process at the dataset SNR of 15 dB,
where val-loss and val-acc refer to the loss and recognition accuracy of the testing dataset, respectively.
LAMS and LC refer to the combined parts of the joint loss function LAMSC, as shown in Equation (4). (a)
The loss curve of LAMS; (b) The loss curve of LC; (c) The loss curve of LAMSC; (d) The accuracy curve.

Figure 13 reveals that the recognition accuracy curve and the loss curve of model B and C fluctuate
more dramatically during the training process, whereas they converge faster, as compared with those
of model A. In the initial 60 iterations, the loss and the recognition accuracy curves of the testing
dataset decline and increase rapidly. After 60 iterations, the model comes to exhibit a relatively high
training effect. Subsequently, until the end of training, the loss and recognition accuracy gradually
converge to stable values. In the meantime, the loss curve of model A in Figure 13b is always higher
than that of models B and C, and a certain gap remains until the end of the training. The LC in the joint
loss function LAMSC indicates the intra-class difference of the features extracted by the model, which
suggests that the features extracted by model B and C undergo intra-class aggregation more effectively.
The visualization of features also verifies this conclusion. The feature visualization of each model is
illustrated in Figures 14 and 15, respectively.
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Though the model becomes more complex with the increases in depth and width, the presented
model is capable of extracting deeper and more stable separable features in HRRP data for identification,
thereby making the model more adaptable to SNR.

5. Conclusions

In this study, a neural network model integrating micro convolutional module and residual
structure is proposed to classify ship targets based on HRRP. The model is characterized by few
hyper-parameters, has easy to expand properties, and high recognition accuracy. The convolutional
module is set as a simple and highly modular network structure that exhibits strong scalability. Based
on the left branch structure of convolutional module, the effect of network deepening and widening
can be simulated. The skip structure of the right branch is capable of transferring features and
gradients more effectively. The presented model can up-regulate the utilization rate of shallow features
while lowering the risk of gradient disappearance and recognition rate saturation. In the meantime,
a novel loss function combining boundary constraint and center clustering is developed. The features
extracted by the novel loss function are characterized by larger inter-class variations, smaller intra-class
variations, as well as stronger separability. The effects of loss function and model complexity on
recognition accuracy are analyzed by simulation experiments. Compared with other commonly used
network structures, the presented model in this study exhibits higher recognition accuracy with fewer
model parameters, good generalization performance and robustness.
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