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Abstract: The significant advances in wireless networks in the past decade have made a variety
of Internet of Things (IoT) use cases possible, greatly facilitating many operations in our daily
lives. IoT is only expected to grow with 5G and beyond networks, which will primarily rely on
software-defined networking (SDN) and network functions virtualization for achieving the promised
quality of service. The prevalence of IoT and the large attack surface that it has created calls for
SDN-based intelligent security solutions that achieve real-time, automated intrusion detection and
mitigation. In this paper, we propose a real-time intrusion detection and mitigation solution for SDN,
which aims to provide autonomous security in the high-traffic IoT networks of the 5G and beyond
era, while achieving a high degree of interpretability by human experts. The proposed approach is
built upon automated flow feature extraction and classification of flows while using random forest
classifiers at the SDN application layer. We present an SDN-specific dataset that we generated for IoT
and provide results on the accuracy of intrusion detection in addition to performance results in the
presence and absence of our proposed security mechanism. The experimental results demonstrate
that the proposed security approach is promising for achieving real-time, highly accurate detection
and mitigation of attacks in SDN-managed IoT networks.

Keywords: SDN; security; machine learning; 5G; IoT; intrusion detection

1. Introduction

The number of connected devices and Internet of Things (IoT) use cases have been continuously
increasing, thanks to the developments in the fields of mobile networks, big data, and cloud computing.
IoT use cases that significantly facilitate our daily lives include smart homes, autonomous cars,
security systems, smart cities, and remote healthcare, among many others. When the large volumes of
data generated by IoT are considered, it is obvious that the quality of service (QoS) requirements of
these various use cases will not be satisfiable by legacy wireless networks. 5G and beyond networks
that rely on software-defined networking (SDN) and network function virtualization (NFV) for resource
management will be a key enabler for the future’s ubiquitous IoT.

IoT has already resulted in a large attack surface, due to limited processing power and battery
life, as well as the lack of security standards, which make a large number of IoT devices incapable of
implementing even basic security mechanisms, like encryption. New use cases, protocols, and technologies
add new attack surfaces to the existing ones. It is of utmost importance to develop intrusion detection and
prevention systems for IoT networks that address new and existing vulnerabilities in order to ensure the
healthy operation of these systems. It is also essential to ensure the compliance of the developed security
techniques with SDN-based network architectures and benefit from the network programmability that is
provided by SDN to ensure fast detection and mitigation of attacks, as well as a quick reconfiguration of
the networks in order to prevent QoS degradation and failures.
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Machine learning (ML) techniques have become popular tools for network intrusion detection
tasks in the past two decades, especially due to the increasing accuracy that is achieved by a variety of
models, and the superiority that they have over rule-based systems in detecting previously unseen
attacks. The developments in the field of deep learning have made them indispensable parts of
any classification task, including intrusion detection. Although deep learning models have been
shown to be quite successful in intrusion detection, they are usually used as blackboxes, and their
decision-making processes are not readily explainable to human experts [1]. The explainability problem
is especially important in the security domain [2] in order to correctly interpret the results produced
by these models.

Despite the importance of realistic network traffic data for effective model building, most of the
existing research in [oT intrusion detection has used datasets that were generated for legacy networks
without IoT traffic. This is mostly due to the lack of publicly available datasets that include IoT traffic,
except the recently released Bot-lIoT dataset [3]. To the best of our knowledge, there is no publicy
available dataset specifically for SDN-based IoT environments. The network traffic characteristics of
IoT and SDN are quite different from those of legacy networks; therefore, using models that were
trained with legacy network data might lead to inaccurate classification results. Furthermore, it is
crucial for intrusion detection systems to retrieve features in real time for effective attack detection
and mitigation. Existing public datasets have been created by processing pcap files and there is no
guarantee that all of the features that they include can be retrieved in real time.

In an effort to address the abovementioned shortcomings of existing security approaches for
SDN-based next generation mobile networks, this paper presents a real-time intrusion detection
and mitigation solution for SDN, which aims to provide autonomous security in the high-traffic IoT
networks of the 5G and beyond era, while achieving a high degree of interpretability by human
experts. The proposed approach is built upon automated flow feature extraction and classification
of flows using random forest classifiers at the SDN application layer. This allows for the detection of
various classes of attacks and it takes appropriate actions by installing new flow rules. We present a
SDN-specific dataset that we generated for an IoT environment and provide the results on the accuracy
of intrusion detection as well as performance results in the presence and absence of our proposed
security mechanism.

The rest of this paper is organized as follows: Section 2 reviews related work in intrusion detection
for SDN-based networks and existing ML datasets for network intrusion detection. Section 3 provides
a brief background on SDN and classification using random forest. Section 4 describes our proposed
end-to-end intrusion detection and mitigation approach for SDN-based networks. Section 5 describes
our public intrusion detection dataset for SDN-based IoT. Section 6 provides a detailed performance
evaluation of the proposed security approach with the generated SDN dataset. Section 7 concludes the
paper with future work directions.

2. Related Work

Intrusion detection and mitigation in networks has become an ever more important topic of
research with the increasing cyber security incidents, caused by the large attack surfaces that are
created by IoT. Rathore and Park [4] proposed a fog-based semi-supervised learning approach for
distributed attack detection in IoT networks. The authors used the NSL-KDD dataset and showed
their distributed approach performed better than centralized solutions in terms of detection time
and accuracy. Evmorfos et al. [5] proposed an architecture that uses Random Neural Networks and
LSTM in order to detect SYN flooding attacks in IoT networks. The authors generated their dataset by
creating a virtual network and recorded the traffic into pcap files. Soe et al. [6] proposed a sequential
attack detection architecture that uses three machine learning models for IoT networks. The authors
used the N-BaloT dataset and achieved 99% accuracy. Algahtani et al. [7] proposed a genetic-based
extreme gradient boosting (GXGBoost) model that uses Fisher-score in order to select features in IoT
networks. The authors also used the N-BaloT dataset and achieved 99.96% accuracy. Even though these
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approaches were shown to successfully detect attacks in IoT networks, their design was performed
according to legacy network infrastructures that do not utilize SDN. SDN-based networks have
important differences both in terms of operation and the packet flow features that can be extracted in
real time, requiring compatible models to be built, as will be explained in Section 3.1.

With the increasing adoption of SDN-based network architectures in the past decade, SDN security
has become one of the centers of attention for the cyber security research community. The majority
of the solutions that have been proposed for SDN-based networks so far have focused on techniques
for the detection and mitigation of denial-of-service (DoS) and distributed denial-of-service (DDoS)
attacks. In [8], a semi-supervised model was used to detect DDoS attacks in SDN-based IoT networks.
The model achieved above 96% accuracy on the UNB-ISCX dataset and the own dataset of the authors,
which only included UDP flooding attacks. In [9], an entropy-based solution was proposed for the
detection and mitigation of DoS and DDoS attacks in software-defined IoT networks. The approach
achieved high accuracy on the Bot-IoT dataset and the authors’ dataset containing TCP SYN flooding
attacks. Yin et al. [10] proposed using cosine similarity of packet_in rates received by the controller
and drop packets if a predefined threshold is reached. Their approach only mitigated DDoS attacks.
Ahmed and Kim [11] proposed an inter-domain information exchange approach that uses statistics
that are collected from switches across different domains to mitigate DDoS attacks. Bhunia and
Gurusamy [12] used Support Vector Machine (SVM) in order to detect and mitigate DoS attacks in
SDN-based IoT networks. The authors created their own data; however, the dataset is not publicly
available. Sharma et al. [13] proposed using deep belief networks to mitigate DDoS attacks in
SDN-based cloud IoT. Bull et al. [14] used an SDN gateway to detect and block anomalous flows in
IoT networks. Their approach managed to succesfully detect and mitigate TCP and ICMP flooding
attacks. In spite of the fact that most of these approaches have accomplished successful detection and
mitigation, they only work against DoS and DDoS attacks.

Other works have targeted coverage of additional attacks, but used datasets that are not specific to
SDN for evaluation. Li et al. [15] proposed using the BAT algorithm for feature selection and then used
the random forest algorithm on the KDD CUP’99 dataset, achieving 96% accuracy. In [16], the CART
decision tree algorithm was proposed in order to detect anomalies in IoT networks using SDN.
The authors used the CICIDS2017 dataset and achieved a 99% detection rate. Dawoud et al. [17]
proposed an SDN-based framework for IoT that uses Restricted Boltzmann Machines to detect
attacks. The authors achieved a higher detection rate than existing works on the KDD CUP’99
dataset. Al Hayajneh et al. [18] proposed a solution for detecting man-in-the-middle attacks against IoT
in SDN. Their solution only works for IoT devices that use HTTP for communication. Shafi et al. [19]
proposed a fog-assisted SDN-based intrusion detection system for IoT that uses Alternate Decision
Tree. The authors used the UNSW-NB15 dataset and achieved high detection rates. Derhab et al. [20]
proposed an intrusion detection system, which uses Random Subspace Learning, K-Nearest Neighbor
and blockchain against attacks that target industrial control processes. The authors used the Industrial
Control System Cyber attack dataset and demonstrated their solution achieves high accuracy. Work in
explainable intrusion detection systems has been rather limited so far. One example is the work of
Wang et al., who proposed an explainable machine learning framework for intrusion detection systems
that are based on Shapley Additive Explanations [21]. The framework was evaluated on the NSL-KDD
dataset and it achieved promising results.

Network intrusion detection using ML techniques has been a popular approach of network
security, especially for the past two decades, for which researchers have created a number of extensive
network trace datasets. These datasets, even if they are old, are still in use today by security
researchers as benchmarks. Among existing publicly available network intrusion detection datasets
are the following:

e KDD CUP’99 [22] was generated in 1999 by extracting features from the DARPA98 [23] dataset,
which simulates a U.S. Air Force LAN. KDD CUP’99 has 41 features and four attack categories:
DoS, R2L, U2R and probing. Even though it is an old dataset, many researchers still use this
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dataset. However, it is not without some drawbacks. Firstly, the distribution of the records in the
training and test sets are widely different, because the test set includes some attack types that
are not in the training set [24]. Secondly, around 75% of the data in the training and test sets are
duplicates [24], which could lead to biased classification models. Most importantly, the dataset
was not generated in an IoT environment and it does not include SDN-specific features.

e NSL-KDD [24] was created to improve the KDD CUP’99 dataset. Duplicate records were
eliminated and the number of records was reduced. Also classes were balanced. Still, this dataset
does not represent the behavior of current networks.

e  UNB-ISCX [25] was created by the Canadian Institute of Cybersecurity in 2012. Real network
traces were analyzed to create realistic profiles. The dataset consists of seven days of network
traffic containing three types of attacks: DDoS, brute force SSH, and infiltrating the network
from inside.

e CAIDA [26] contains anonymized network traces. Records were created by removing the
payloads of the packets and anonymizing the headers. This dataset only contains DoS attacks and
features are the header fields. Additional features using the header fields were not generated.

e UNSW-NB15 [27] was created in 2015. The IXIA tool was used to generate the network traffic.
UNSW-NB15 has 49 features and two of them are labels for binary and multi-class classification.
The dataset consists of normal traffic and nine types of attack traffic, namely DoS, DDoS, fuzzing,
backdoor, analysis, exploit, generic, worm, and shellcode. The main problem of the dataset is the
lack of sufficiently many samples for some attack types.

e  CICIDS2017 [28] is another dataset that was created by the Canadian Institute of Cybersecurity.
Realistic benign traffic was created using their B-Profile system. The dataset includes normal
traffic and six types of attack traffic, namely DoS, botnet, port scanning, brute force, infiltration,
and web attack.

e  Bot-IoT [3] was introduced in 2018. The most important feature of the dataset is that it includes
IoT traffic, unlike most of the existing intrusion detection datasets. The dataset has 46 features
and two of them are labels for binary and multi-class classification. The dataset consist of normal
traffic and six different attack types, namely DoS, DDoS, service scanning, OS fingerprinting,
data theft, and keylogging. The main problem of the dataset is the lack of sufficiently many
samples for some attack types. The number of records for normal traffic is also low.

Most of the existing work on intrusion detection systems for IoT and SDN environments used the
datasets that are mentioned above. However, these datasets were not created in networks managed by
SDN. Furthermore, these datasets do not contain IoT traffic, except for the BoT-IoT dataset. Most of the
existing datasets were created by recording and processing pcap files with different tools. Therefore,
an SDN controller may not be able to obtain all of the features in real time. To the best of our knowledge,
there is no other publicly available SDN dataset that includes IoT traffic.

3. Preliminaries

This section provides an overview of SDN and the random forest classifier, which are key
components of the proposed solution.

3.1. Software-Defined Networks (SDN)

Software-defined networking (SDN) emerged as a novel networking paradigm in the past decade,
supporting the need for programmatically managing networks, the operational costs of which were
increasing sharply with the widespread use and new technologies that are needed to accommodate
various IoT use cases. SDN differs from traditional networks by separating the data and control planes,
where routers/switches are now responsible for forwarding functionality, where routing decisions are
taken by the controller (control plane).
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The SDN architecture mainly consists of three layers: applications, control, and infrastructure
(data plane), as seen in Figure 1. All of the applications, such as load balancing and intrusion detection
systems, run on the application layer and communication with the controller takes place through
the north-bound API. Communication between the controller and switches takes place through the
south-bound API, mainly using the OpenFlow [29] protocol. The logically centralized controller is
responsible for managing the network. The controller maintains a global view of the network and
installs forwarding rules, called “flow rules”, into the corresponding switches based on the routing
decisions it makes. Switches store flow rules in their flow tables and forward network packets based
on matches with existing flow rules.

|
T |
Applications
(SDN/Business/Security/Cloud/Load Balancing...) —
NB API J ‘ H H 2
Controller software 3_:'|
Control Plane (ONOS, Floodlight, |, 3
POX, Ryu, Beacon...) 2
[}
c
v |
| :
SB API (OpenFlow) gis!
Data Plane
(Routers,
Switches...)

Figure 1. Software-defined networking (SDN) Architecture and Attack Surface.

Figure 2 shows the structure of a flow rule. It is mainly composed of three parts: match fields,
counters, and actions. Unlike traditional networks that perform forwarding based on the destination
addresses, match fields are determined by the configuration of the forwarding application and might
be ingress port, VLAN ID, source and/or destination MAC addresses, IP addresses, and/or port
numbers. Counters keep track of the duration of the flow and byte and packet counts that matched the
flow. The action can be forwarding the packet to the specified port or dropping it, among others.

Match Fields Counters Actions

Forward or drop

Duration, packet and byte count

Ing Eth Eth Eth |VLAN VLAN |IP IP IP IP Port | Port
Port Src Dst  Type |ID Prio | Src Dst Proto ToS | Src Dst

Figure 2. Flow Rule Structure.
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The header fields of incoming packets are compared with the match fields of flow rules in the
switch. All of the required header fields of the packet should match with the match fields of a rule in the
flow table to be forwarded immediately. Otherwise, the switch will buffer the packet and send what is
called a packet_in message to the controller that contains the header fields of the packet. The controller
then examines the packet_in message and generates a routing decision for the packet, which is sent
back to the switch in a packet_out message. The necessary action is taken for the packet and the
corresponding flow rules are installed to the switches by sending flow_mod messages. Even though
the controller decides to install flow rules into the corresponding switches, a packet_out message is
always sent before the flow_mod message. Therefore, unlike traditional networks, the statistics of
the first packet that triggered flow rule installation cannot be seen in the installed flow rule. For TCP
connections, statistics of the SYN and SYN ACK packets are lost, because they are the first packets sent
from source to destination and destination to source, respectively. During DoS and DDoS attacks with
spoofed addresses, all of the incoming packets may have different source addresses. Therefore, all of
the incoming packets from the attacker may trigger a new flow rule installation.

SDN in 5G Networks

While early adoptions of SDN mostly took place in wired enterprise networks, its flexibility,
programmability, speed, and cost advantages have recently made it a promising tool for other
networks, including wireless sensor networks (WSNs) [30] and next generation wireless networking
infrastructures. SDN will be one of the greatest enablers of 5G and beyond networks by providing the
network virtualization capabilities that are needed to remotely and dynamically manage the networks.
The fast failover and autonomous management capabilities to be achieved with SDN applications will
provide the high bandwidth and low delay requirements of 5G networks, making them support a
variety of IoT use cases. SDN, together with network functions virtualization (NFV), will especially
form the basis of network slicing in 5G core and radio access networks, which will be a significant
enabler for operators to efficiently utilize their infrastructure in order to provide the required quality
of service and security guarantees to their customers [31].

A number of SDN-based architectures for 5G networks have been proposed [32]. One of the early
proposals is SoftAir by Akyildiz et al. [33], where the data plane is a programmable network forwarding
infrastructure that consists of software-defined core network (SD-CN) and software-defined radio
access network (SD-RAN). While SD-RAN contains software-defined base stations, including small
cells (microcells, femtocells, and picocells) in addition to traditional macro cells, SD-CN contains
software-defined switches that form the 5G core network, as seen in Figure 3. User equipment and
other devices are connected to the software-defined base stations or wireless access points, which are
connected to the software-defined core network through the backhaul links. As proposed in SoftAir,
SD-CN and SD-RAN can both use OpenFlow as the southbound API, which will provide a uniform
interface with the controller routing traffic from the base stations through the optimal paths in the core
network. This architecture enables the application of many of the same principles in terms of network
control from wired SDN to SDN-based 5G networks.

One of the biggest promises of and reasons for the introduction of SDN is the provisioning of
improved security in the network through global visibility, and the fast automated reconfiguration
of flow rules. This will enable real-time detection and mitigation of malicious traffic in the network.
As seen in Figure 1, an SDN can be attacked at various surfaces (the attack surface is demonstrated by
red arrows pointing out from the devices, applications, or interfaces that could be attacked in SDN).
These attacks could not only target the data plane devices, but also the controller and applications
to cause disruptions in network operation. In this work, we focus on attacks that affect the data and
control planes and propose an intrusion detection and mitigation solution that provides automated
responses to attacks detected while using highly interpretable ML algorithms that are described in the
next section.
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Figure 3. Software-Defined 5G Network Architecture.

3.2. Random Forest Classifier

7 of 30

Random forest (RF) is a machine learning model that constructs an ensemble of decision trees,
named a forest, such that each decision tree is constructed using an independently and identically
distributed random vector [34]. For classifying a particular data instance, a random forest uses the
outputs of all trees in the forest to pick the majority decision. The utilization of the outputs of multiple
trees makes the classifier more robust than decision trees, which suffer from the overfitting problem in

many cases.

At a high level, the RF algorithm works as follows:

1.  The complete training set S consisting of n data instances with class labels {c;,i =1, ..., n} from a
set of classes C is split into k random subsets using bootstrap sampling:

S=51,5, ... 5

)

2. A random feature vector 0; is created and used to build a decision tree from each S;. All {6;,i=1,
2,3, ..., 0} are independent and identically distributed.
3. Each tree 1(5;, 6;) is grown without pruning to form the forest R.

4.  The classification of a test data instance x is calculated, as follows:

k
H(x) = maxc, ;(I(hi(x) =G))

where [ is the indicator function and #;(x) is the result of classification by r(S;, ;).

@
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Figure 4 shows a simplified view of classification by random forests. Here, the child branches
of the root show the different trees in the random forest. When a data item X needs to be classified,
its probability of belonging to class c is calculated as the sum of the class probabilities for each decision
tree 6; (6...0,, in the figure), averaged over all trees. The item will then be assigned to the class with the
highest probability. The nodes in each decision tree here use binary splits that are based on a specific
feature value (e.g., is number of bytes < 118?), and the branches of the tree are followed up until the
leaves by checking the values of those features in data item X, as depicted by the red arrows pointing
towards child nodes from the internal nodes of the trees.

oo oo

Pa(V =X = 2) Fiy(¥ = c|X = 2)

"ﬂ"n

By(Y = ¢]X = z)
Figure 4. Classification by Random Forest.

Information gain is a commonly used metric for deciding the splitting criteria for the various
nodes in the decision trees. The information gain from the split of a node S based on a random variable
a is calculated as follows:

IG(S,a) = E(S) — E(S|a) 3)

Here, E(S) is the entropy of the parent node before the split and E(S | a) is the weighted average
of the entropies of the child nodes after the split. E(S) is calculated as:

C
E(S) = = )_p(ei)logp(ci) @)

where p(c;) is the probability of a data instance in node S having class label c;.

Figure 5 shows a partial view of a decision tree from the random forest constructed for a sample
network intrusion detection task on the IoT network dataset that we have generated. As seen in the
figure, the entropy of nodes decreases while approaching the leaves, as nodes that are higher up in the
tree are split based on a specific threshold of feature values discovered by the algorithm. A random
forest contains a multitude of such decision trees, each constructed from a different, randomly sampled
subset of the whole training data.

RF is among the ML algorithms with the highest degree of explainability /interpretability, due to
its reliance on decision trees, which construct models based on splits of training data along feature
values, which are easily readable by human domain experts. The effectiveness of RF for a variety
of classification tasks has been shown in many studies [35]. Despite the success of especially deep
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learning algorithms in various classification tasks in recent years, RF continues to outperform many
state-of-the-art ML algorithms, especially in tasks that involve structured data.

samples = 38015
value = [10285, 9944, 9873, 9931, 9942, 10025]
class = Normal

Shytes <= 118.0
entropy = 2.58

Sum <= 4950.5 Dur <= 11.5
entropy = 2.24 entropy = 2.04
samples = 20376 samples = 17639
value = [1329, 4814, 5792, 9885, 9396, 937] value = [8956, 5130, 4081, 46, 546, 9088]
class = Port Scanning class = Fuzzing
Mean <= 2.08 Dbytes <= 402.5
entropy = 1 77 entropy = 1 56
samples = samples =
value = [418, 2575 2272 5300 82,92] value = [6227, 892, 686 30 295, 8652]
dass - Port Scannlng class = Fuzzmg
entropy = 1.24 entropy = 1 46 entropy = 1 35
samples = 1921 ples = samples =
value = [114, 1496, 1404, 20, 0, 0] ’value [304, 1079, 868 5280 82,92] ’ ‘ value = [6158, 546, 412 26 260, 1034]
class = DoS class = Port Scannlng class = Normal

Figure 5. Sample Decision Tree from Random Forest for a Network Intrusion Detection Task.

4. Proposed Security Approach

The proposed intrusion detection and mitigation approach, the overall operation of which is
depicted in Figure 6, provides security in SDN-based networks by automated, intelligent analysis
of network flows, followed by mitigation actions being taken in accordance with the decision of
the intrusion detection component. The end-to-end intrusion detection and mitigation process
relies on three main applications in the application layer, namely Feature Creator, RF classifier,
and Attack Mitigator.

Applications

Aftack Flow class Random Forest Feature set .
e e < Feature Creation
Mitigation Classifier
F
__________________ Flow rule recommendation _ %) }NBAP' Network flow data
F
Control Plane
ONOS Controller
F
Flowrule updates | [ SBAPI . Network flow data

i""~l
Data Plane - (((' {\ '}))@
* ez /\ (s

Figure 6. SDN-based Security Solution Architecture.
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The Feature Creator collects network flows from the switches at regular intervals and calculates
the values of features that are required by the RF classifier for each flow. The RF classifier applies its
pre-built intrusion detection model on the flow instance and passes the result to the Attack Mitigator.
The Attack Mitigator then determines the action to take based on the classification result and installs
flow rules into the corresponding switches to mitigate the attack if necessary. Algorithm 1 summarizes
the end-to-end operation of the proposed security solution.

Algorithm 1 End-to-end Operation

Lg < Get connected SDN switches
M <+ Load RF classifier model
Lp < Blacklist
while True do
forall Sin Lg do
Lg < Pull flow entries from S
F <+ FEATURE_CREATION(LE)
ATTACK_DETECTION(F)
end for
Wait for some time
end while
procedure ATTACK_DETECTION(F)
C < Classify F using M
if C is attack then
I < Get source identifiers from F
MITIGATION(C, I)
end if
end procedure
procedure MITIGATION(C, I)
if I is not in Ly then
E + Create flow entry to block or redirect I
Install E into S
Lg.add(I)
end if
end procedure

The controller periodically collects network flow entries from the switches, which are retrieved
by the Feature Creator at regular intervals. Upon retrieval, features are created for every flow,
as summarized in Algorithm 2. Common features for every flow are generated, looping over every
flow entry in the switch using Algorithm 3. e.g., the average duration of flows and total number of
packets in a transaction are created with an initial pass over flow entries. Subsequently, flow-specific
features, e.g., the duration of flow and source-to-destination packet count, are retrieved by passing
over all of the flow entries. While looping over flow entries, the created feature vector for a flow is
immediately sent to the RF classifier, without waiting to finish feature creation for other flow entries.
The Feature Creator also retrieves flow match fields, like source IP and MAC addresses, and the
physical port of the switch where the packet is coming from. The Attack Mitigator uses these features.
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Algorithm 2 Feature Creation

procedure FEATURE_CREATION(Flow entries)
Lg < Flow entries
F + Feature vector
C <+ CALCULATE_COMMON(LEg)
forall Ein L do
F.Sbytes < E.getByteCount()
F.Spkts < E.getPacketCount()
F.Dur + E.getDuration()
F.Mean < C.mean
F.Stddev < C.stddev
F.Sum < C.sum
F.TnP_PSrcIP < C.TnP_PSrcIP
F.TnP_PDstIP < C.TnP_PDstIP
F.TnP_Per_Dport <— C.TnP_Per_Dport
srcIP <— E.getSourcelp()
dstIP < E.getDestinationlp()
P « E.getSwitchPort()
proto_number < E.getInternetProtocolNumber()
if proto_number is TCP or UDP then
srcPort < E.getSourcePort()
dstPort < E.getDestinationPort()
key < dstIP + dstPort + srcIP + srcPort
F.Dbytes <— C.hashMap.get(key)
else if proto_number is ICMP then
key < dstIP + srcIP
F.Dbytes <— C.hashMap.get(key)
end if

end for
return F
end procedure

The common features include Mean, Stddev, Sum, TnP_PSrcIP, TnP_PDstIP, and TnP_Per_Dport.
Their detailed descriptions can be found in Table 1. Hash sets are used to store unique source IPs,
destination IPs, and destination port numbers. A list is used to store the duration of flow entries.
While looping over the flow entries, packet counts of the flow entries are added to the total packet
count. The duration of the flow entries are added to the duration list. Source IPs, destination
IPs, and destination port numbers are added to the corresponding hash sets. Byte counts of the
flows are added to a hash map. Keys of this map are made of source IP, source port, destination IP,
and destination port for TCP and UDP packets. For ICMP packets, the keys are made of source IP and
destination IP, since they do not have port numbers. This map is later used for retrieving reverse flow
statistics. After looping over all of the flow entries, common features are calculated using the total
packet count, hash sets, and duration list. Flow-specific features, i.e., Dur, Spkts, Sbytes, and Dbytes,
are calculated within the second pass over the flow entries. Duration, packet count, and byte count of
the flow entries are extracted. The hash map that was created in the common feature creation is used
to retrieve destination-to-source byte count. After creating the feature vector for a flow entry, it is sent
for classification without waiting for the creation of other feature vectors.
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Algorithm 3 Calculation of common statistics and features

procedure CALCULATE_COMMON(LE)
C <~ Common statistics
srclpSet < Create source IP HashSet
dstIpSet <— Create destination IP HashSet
portSet <— Create destination port HashSet
Lp  Create duration List
total PacketCnt < 0
forall Ein Lg do
pkts <— E.getPacketCount()
total PacketCnt < total PacketCnt + pkts
bytes < E.getByteCount()
Lp.add(E.getDuration())
srcIP < E.getSourcelp()
srclpSet.add(srclP)
dstIP < E.getDestinationlp()
dstlpSet.add(dstIP)
proto_number < E.getInternetProtocolNumber()
if proto_number is TCP or UDP then
srcPort < E.getSourcePort()
dstPort < E.getDestinationPort()
key < srcIP + srcPort + dstIP + dstPort
C.hashMap.put(key,bytes)
else if proto_number is ICMP then
key < srcIP + dstIP
C.hashMap.put(key,bytes)
end if
end for
C.tnP_PSrclp < total PacketCnt /srcIpSet.size()
C.tnP_PDstIp < total PacketCnt/dstIpSet.size()
C.tnP_Per_DPort < total PacketCnt / portSet.size()
C.mean < mean of Lp
C.stddev < standard deviation of Lp
C.sum <+ summation of Lp

return C
end procedure

The RF classifier, which works as explained in Section 3, gets feature vectors from the Feature
Creator one-by-one and classifies them using its pre-built intrusion detection model. If the outcome of
the classification is any attack type, the Attack Mitigator is sent the detected attack type and source
identifiers, i.e., source IP, source MAC address, and the physical switch port that the packet is coming
from. The used machine learning model should be updated dynamically by the inclusion of new
training data for existing attack types or adding new attack types as they are discovered. The RF model
built is a multi-class classification model that is formed using training data that consists of various
attack types in addition to normal traffic. We advocate using multi-class attack classification rather
than binary classification/anomaly detection, as the former provides more informed decision-making
capability in terms of the action to take/the specific flow rule to install.
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Table 1. Flow feature descriptions.

Feature Description
Dur Record total duration
Mean Average duration of aggregated records
Stddev Standard deviation of the duration of aggregated records
Spkts Source-to-destination packet count
Sbytes Source-to-destination byte count
Dbytes Destination-to-source byte count
Sum Total duration of aggregated records
TnP_PSrcIP Total number of packets per source IP
TnP_PDstIP Total number of packets per destination IP
TnP_Per_Dport Total number of packets per destination port

As discussed previously, the RF classifier creates results that are highly explainable to human
experts, as opposed to blackbox ML models, whose results are not easily interpretable. For instance,
when a specific flow is classified as a DoS attack, it is possible to trace the trees in the forest that voted
as a DoS and which feature values caused them to make that decision. This provides the ability for
a human network expert to judge the quality of the model, provide recommendations, update the
model, or take additional actions if necessary.

The Attack Mitigator is informed by the RF classifier upon attack detection. This component
creates a flow rule update recommendation, depending on the attack type. The created rule update is
sent to the controller, which installs the flow entries into the corresponding switches. The installed
flow entries have higher priority than normal flow entries in the switch. The corresponding action can
be dropping the matching packets or redirecting matching flows to a honeypot. Packet blocking and
redirection can be based on the source MAC address, source IP, or the physical switch port.

5. SDN Datasets

In this section, we provide details of our SDN-based IoT network datasets that were generated
based on the packet sending rates and packet sizes from an IoT dataset generated in a real testbed.
All of our features are SDN-specific and they can be retrieved using an SDN application in real time.
The accuracy of the RF classifier was evaluated with the two publicly available SDN datasets we
generated and compared with the accuracies of state-of-the-art ML algorithms. Feature selection was
used to identify important features for detecting attacks in SDN-based IoT networks. The performance
of the model was also evaluated under network changes.

We have created 2 SDN datasets [36] and made them available online [37]. Their only difference
is the number of IoT devices. In IoT networks, the number of IoT devices may change over time.
Our second dataset has more IoT devices and the number of active IoT devices also changed during
the traffic recording. The second dataset enables us to evaluate the performance of the models trained
with the first dataset. That way we can have an idea about how our model will be affected when the
number of IoT devices changes and how often we should update our model. Our datasets contain
normal traffic and five different attack types, namely DoS, DDoS, port scanning, OS fingerprinting,
and fuzzing.

5.1. Testbed Overview

We used a similar network topology to the Bot-IoT dataset [3]. Mininet [38] was used to virtualize
our network and an ONOS controller [39] managed the network. An Open vSwitch [40] was used to
connect the controller and simulated devices.

5.2. Benign Traffic

Similar packet sizes and sending rates to the BoT-IoT dataset [3] were used for benign traffic.
Our IoT devices simulated IoT services that send small amounts of data to a server periodically,
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e.g., a smart fridge or weather station. IoT devices sent one or two packets to the server at a time using
TCP. We used five simulated IoT devices in our first dataset. In our second dataset, we initially had
10 IoT devices and two of them were turned off after some time during every recording. Two benign
hosts in our network sent large amounts of data to the server. One of them used UDP and the other
one used TCP. We generated and recorded the benign traffic both with and without the presence of
malicious traffic.

5.3. Malicious Traffic

Up to four attacker hosts performed different types of attacks targeting the server or IoT devices,
depending on the attack type. We performed five types of attacks, namely DoS, DDoS, port scanning,
OS fingerprinting, and fuzzing.

e DoS: the Hping3 tool [41] was used for DoS attacks. One malicious host launched the attacks with
and without spoofed IP addresses targeting the server or one of the IoT devices. Using spoofed IP
addresses causes every attack packet to trigger a new flow rule installation and wastes resources
of both the controller and switches. We performed both SYN flood and UDP flood attacks. All of
the combinations of four packet sending rates (4000, 6000, 8000, and 10,000 packets per second)
and payloads (0, 100, 500, and 1000 bytes) were used.

e DDoS: all of the four malicious hosts participated in this attack. The same scenarios as DoS
were performed.

¢  Port scanning: the Nmap tool [42] was used for port scanning attacks. One malicious host
launched the attack targeting the server or one of the IoT devices. Nmap has two options for port
scanning: by default, the first 1024 ports are scanned and users can also specify the range of ports
to scan. We scanned the first 1024 ports and all of the port numbers (0 to 65,535).

e OS fingerprinting: Nmap was used for the OS fingerprinting attack. During this attack,
the attacker first performs a simple port scanning to detect open ports. Subsequently, the attacker
uses these ports to proceed with the attack. Therefore, we used one malicious host to launch the
attack only targeting the server.

*  Fuzzing: Boofuzz [43] was used for fuzzing attacks. The aim of this attack is to detect vulnerabilities
of the target by sending random data until the target crashes. We performed both ftp fuzzing
and http fuzzing attacks using one of the malicious hosts and targeted the server. Our fuzzers
know the expected input format for http and ftp connections and generated random values for
input fields. For example, for http fuzzing, http methods like get, head, post, put, delete, connect,
options, and trace were fuzzed with random request URI and http version fields.

5.4. Flow Collection and Feature Generation

Our goal was to create a dataset that can be used in the real-time detection and mitigation of
malicious traffic. Therefore, unlike most of the existing datasets that are generated by recording and
processing pcap files, we used an SDN application to retrieve flow entries and create our features.
We configured ONOS to pull flow entries from the switches every second. Our SDN application
periodically retrieved flow entries from the ONOS controller and generated our features for each flow
in the switch. The SDN application waited for one second after every feature generation period and
then continued to create features by retrieving new flow rules from ONOS.

Our datasets contain 33 features and Table 2 shows our features and their descriptions. Attack and
category features are our labels. The attack label can be used for binary classification and the category
label can be used for multi-class classification.

Every match field of the incoming packet must match with a flow rule; otherwise, a new flow rule
is installed, as mentioned in the SDN section. Performing DoS and DDoS attacks using spoofed IP
addresses triggered the installation of lots of duplicate flows into the switch. Therefore, we limited the
number of recorded packets to 100 at each iteration of feature generation for these attack scenarios.
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Our first SDN dataset has 27.9 million records and the second one has 30.2 million records. Tables 3
and 4 show the distributions of records in our datasets.

Feature retrieval time is very important, as there is no point in detecting attacks after they are over
or have caused severe damage. Features should be retrieved quickly for efficient attack detection and
prevention. Additionally, the feature retrieval process should not consume a lot of controller resources,
otherwise network performance would be adversely affected. Figure 7 shows the flow entry collection
and feature creation time up to 1000 flow entries in the switch, which corresponds to the normal traffic.
When the switch had 1000 flow entries, flow collection and feature creation time for all of the flows
was around 22.8 milliseconds, which is quite low.

Figure 8 shows the flow entry collection and feature creation time up to 20,000 flow entries in
the switch, which corresponds to the attack traffic. Even though there were 20,000 flow entries in
the switch, our SDN application collected flow entries and created features for all of the flows in
411.3 milliseconds, which does not cause much overhead for our controller. We observe that the feature
retrieval time increases linearly with the number of flow entries in the switch.
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Figure 7. Feature retrieval time up to 1000 flow entries.
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Figure 8. Feature retrieval time up to 20,000 flow entries.
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Table 2. Features of the created SDN datasets.

Feature Description
srcMac Source MAC address
dstMac Destination MAC address
srcIP Source IP address
dstIP Destination IP address
srcPort Source port number
dstPort Destination port number
last_seen Record last time
Protocol Textual representation of network protocol
proto_number Numerical representation of network protocol
Dur Record total duration
Mean Average duration of aggregated records
Stddev Standard deviation of the duration of aggregated records
Min Minimum duration of aggregated records
Max Maximum duration of aggregated records
Pkts Total count of packets in transaction
Bytes Total number of bytes in transaction
Spkts Source-to-destination packet count
Dpkts Destination-to-source packet count
Sbytes Source-to-destination byte count
Dbytes Destination-to-source byte count
Srate Source-to-destination packets per second
Drate Destination-to-source packets per second
Sum Total duration of aggregated records
TnBPSrcIP Total number of bytes per source IP
TnBPDstIP Total number of bytes per destination IP
TnP_PSrcIP Total number of packets per source IP
TnP_PDstIP Total number of packets per destination IP
TnP_PerProto Total number of packets per protocol
TnP_Per_Dport Total number of packets per destination port
N_IN_Conn_P_SrcIP Number of inbound connections per source IP
N_IN_Conn_P_DstIP Number of inbound connections per destination IP
Attack Attack or not
Category Traffic category

Table 3. Distribution of records in the first SDN dataset.

Category Size (M) %
Normal 1.67 5.99
DoS 0.79 2.84
DDoS 0.19 0.67
Port Scanning 20.68 74.08

OS and Service Detection 3.39 12.15
Fuzzing 1.18 4.24
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Table 4. Distribution of records in the second SDN dataset.

Category Size (M) %
Normal 2.67 8.84
DoS 0.49 1.67
DDoS 0.18 0.60
Port Scanning 22.44 74.23
OS and Service Detection 3.39 11.20
Fuzzing 1.05 3.48

5.5. Pre-Processing

Our datasets contain millions of records and record counts that belong to every category is not
the same, as shown in Tables 3 and 4. Processing millions of data records is not feasible and it may
lead to overfitting. Additionally, imbalanced datasets might cause biased models. Around 74% of the
records belong to the port scanning attack. Therefore, we wanted to take an equal number of records
from every category for model training. We also wanted to take an equal number of records from
each recording of a category. The reason is that, depending on the configuration and target, the record
counts differed a lot. For example, one of the DoS attacks without spoofing had the lowest record count
of 3251, while DoS attacks with spoofing had up to 137,000 records. We recorded DoS traffic 12 times,
so the maximum number of records that we could get was 39,012. Therefore, we took 35,000 records
from every attack category taken equally from every scenario of that attack type, which resulted in a
total of 175,000 attack records.

For multi-class classification, we also took 35,000 normal records. Normal records were taken
equally from the DoS, DDoS, port scanning, OS fingerprinting, fuzzing, and normal traffic without
attack files, 5834 each. The constructed dataset had 35,000 records from every category, with a total of
210,000 records. We split this dataset into training and test sets. The training set has 25,000 records
from every category, with a total of 150,000 records. The test set had 10,000 records from every category,
with a total of 60,000 records.

The same procedure was followed for both of the datasets, and training and test datasets were
created for both.

5.6. Multi-Class Classification

The constructed training and test sets were used in order to evaluate the performances of different
machine learning algorithms. We have used all of the features, except host identifiers: srcMac, dstMac,
srclP, dstIP, srcPort, dstPort, last_seen, and proto_number. Different machine learning algorithms
were trained and tested using the first SDN dataset’s training and test sets. Figure 9 shows the
results of multi-class classification of different algorithms: naive bayes (NB), logistic regression (LR),
k-nearest neightbour (K-NN), support vector machines (SVM), kernel support vector machines (K-SVM),
random forest (RF), and XGBoost (XGB). RF and XGB performed better than the other algorithms.

Our goal of creating two datasets was to perform tests on the second dataset using the models
that were trained with the first dataset and see how the system would be affected from network
changes. We applied feature selection based on the feature importance attribute of random forest and
XGBoost algorithms. The feature importance attribute returns impurity-based feature importance of
each feature in the training set. We used the features that had higher feature importance than the
average of the feature importance values. We also added one feature whose importance was close to
the average and ended up with 10 features. Table 5 shows the selected features and their descriptions.

The overall F1 score of the RF model, trained with the selected features, on the first dataset,
was 97.86%. Performance was still close to the model trained with all of the training data and
24 features, even though we reduced both training data and the number of features by more than half.
Using less features also allows for our SDN application to retrieve features much more quickly. Table 6
shows the performance metrics for all classes in the first dataset.
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Table 5. Initially selected features.
Feature Description
Dur Record total duration
Mean Average duration of aggregated records
Spkts Source-to-destination packet count
Sbytes Source-to-destination byte count
Dbytes Destination-to-source byte count
Sum Total duration of aggregated records
TnP_PSrcIP Total number of packets per source IP

TnP_Per_Dport
N_IN_Conn_P_SrcIP
N_IN_Conn_P_DstIP

Total number of packets per destination port
Number of inbound connections per source IP
Number of inbound connections per destination IP

Table 6. Performance of random forest (RF) using initially selected 10 features.

Class F1 Score Precision Recall

Normal 94.69 96.71 92.75

DoS 98.37 98.08 98.66

DDoS 98.03 97.21 98.87

Port scanning 98.86 98.54 99.19

OS and service detection 98.36 98.35 98.37
Fuzzing 98.86 98.32 99.41

18 of 30

Normal traffic had the lowest F1 score, which is not desirable, as we do not want to classify
normal packets as malicious packets and block legitimate traffic. Five over six of the normal records

in our test set belonged to the normal traffic during attack scenarios. Distinguishing normal traffic
from attack traffic during an attack is not an easy task. Therefore, we must be sure before taking action
upon detecting an attack. In the absence of any attack traffic, our model’s accuracy of detecting normal
traffic was 99.67%, which is quite high.

The overall F1 score on the second dataset was 84.48% using the initially selected 10 features.
Two features were replaced and the overall performance increased to 91% using the features that are
listed in Table 7 and the hyperparameters listed in Table 8. Our model’s performance for the normal
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traffic on the second dataset was similar to the performance on the first dataset. However, the overall
performance was lower than the first dataset, because our model classified some of the DoS attacks
as DDoS attacks on the second dataset as expected, due to the increased number of IoT devices in
the second dataset. Because the mitigation action taken is the same, the network performance is
not affected.

Table 7. 10 best features.

Feature Description
Dur Record total duration
Mean Average duration of aggregated records
Stddev Standard deviation of aggregated records
Spkts Source-to-destination packet count
Sbytes Source-to-destination byte count
Dbytes Destination-to-source byte count
Sum Total duration of aggregated records
TnP_PSrcIP Total number of packets per source IP
TnP_PDstIP Total number of packets per destination IP

TnP_Per_Dport Total number of packets per destination port

Table 8. Hyperparameters of Random Forest model.

Hyperparameter Value

n_estimators 100
criterion entropy

max_depth 40

max_features auto
min_samples_leaf 1
min_samples_split 6

bootstrap True
random_state 0

F1 scores for every class in the first dataset are shown in Table 9. Results are similar to the initially
selected features. On the other hand, using the features in Table 7 performed well both on the first and
second datasets.

Table 9. Performance of random forest (RF) using 10 best features.

Class F1 Score Precision Recall
Normal 94.80 96.75 92.92
DoS 98.44 97.77 99.12
DDoS 97.93 97.29 98.58
Port scanning 98.89 98.52 99.27
OS and service detection 98.08 98.40 97.76
Fuzzing 98.76 98.20 99.32

6. Experimental Evaluation

In this section, we provide an experimental evaluation of the proposed security approach using
an SDN-managed IoT network simulation environment. We performed experiments to evaluate the
end-to-end intrusion detection and mitigation model in terms of its effect on the network parameters
during DoS attacks of different types. The experiments were conducted on a machine with Intel Core
i7-8750H @ 2.20GHz processor and 16 GB RAM.
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6.1. Experiment Setup

For the deployment of the proposed intrusion detection and mitigation system, the testbed setup
in Figure 10 was used. Mininet was used to create a virtual network. The maximum bandwidth
of each link in the network was limited to 100 Mb per second. An ONOS controller managed the
network. Simulated IoT devices, benign hosts, and the server transmitted data, as explained in the
SDN Datasets section.

Some attack types also affect the performance of the network as well as the target. DoS and
DDoS attacks decrease the available bandwidth and consume resources of the controller and switches.
Other attack types in our dataset do not have a significant effect on the network. Their purpose is
to find vulnerabilities of the target and crash it if possible. Therefore, we focused on DoS and DDoS
attacks in our network performance experiments. One malicious host was used to perform DoS attacks
and effects of the attacks on the network were measured.

The ONOS controller was configured to pull flow entries from the switch every second. Our SDN
application retrieved flow entries from the controller and generated the 10 best features that were
required by our random forest classifier for each flow entry. The SDN application waited for one
second after creating features for all of the flow entries in the switch and then continued to create
features by retrieving new flow entries from the controller.

e
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Figure 10. Testbed environment.

Our model classified every flow entry. When our application detected the third attack flow
coming from a switch port, the mitigation process started. If an attack was detected, then the attacker
was blocked based on the port through which it was connected to the switch through installation of a
new flow rule. The installed flow rule had a priority of 1000, which is higher than the default flow rule
priority (10). Figure 11 shows a flow rule installed by our application to drop the packets coming from
port 1, and Figure 12 shows a flow rule for a packet classified as normal. Here, “Selector” shows the
packet match fields and their values. The “Immediate” field of the “treatment” shows the action upon
matched packets. If “OUTPUT” is specified, then packets are forwarded to the specified switch port.
“NOACTION” means dropping the packet.
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1d=c1000073ce90cf, state=ADDED, bytes=751301724, packets=713606, duration=91, liveType=UNKNOWN, priority=1000, tabl
eld=0, appld=org.foo.app, selector=[IN_PORT:1, ETH_TYPE:ipv4], treatment=DefaultTrafficTreatment{immediate=[NOACTION],

deferred=[], transition=None, meter=[], cleared=false, StatTrigger=null, metadata=null}

Figure 11. Installed flow rule for dropping packets.

1d=7900009388300f, state=ADDED, bytes=490758, packets=554, duration=15, liveType=UNKNOWN, priority=10, tableId=0,
appld=org.onosproject.fwd, selector=[IN_PORT:5, ETH_DST:BE:BC:79:20:AD:4C, ETH_SRC:3A:37:AF:3F:CB:DB, ETH_TYPE:ipv4,

IP_PROTO:6, IPV4_SRC:10.0.0.5/32, IPV4_DST:10.0.0.11/32, TCP_SRC:60840, TCP_DST:12345], treatment=DefaultTrafficTrea
ment{immediate=[OUTPUT:10], deferred=[], transition=None, meter=[], cleared=false, StatTrigger=null, metadata=null}

Figure 12. Installed flow rule for normal packets.

6.2. Network Performance Results

In the following subsections, performance measurements of our intrusion detection and mitigation
system are reported.

6.2.1. Time Measurements

We measured the feature retrieval time and also feature retrieval and classification time using
our SDN application. The counter was started before our application pulled flow entries from the
switch and stopped when feature calculation and classification was over for all of the flow entries in
the switch.

Figures 13 and 14 show the feature retrieval times of our 10 best features used by the RF model.
Figure 13 corresponds to the network without presence of attacks. Figure 14 corresponds to the
network under a DoS attack. The feature retrieval time of all features for 20,000 flow entries was
411 milliseconds, whereas it was 327 milliseconds for retrieving the 10 best features. When our
application calculates the common features, it also creates a hash map that uses source IP, source port,
destination IP, and destination port as the key and byte count, packet count, and packet rate as values.
This map is later used for obtaining reverse flow statistics, i.e., destination-to-source packet count,
byte count, and packet rate. Converting source and destination IP to a string for the key of the map
takes a long time. Our model uses destination-to-source byte count (Dbytes) as a feature, as shown in
Table 7. This is the reason why improvement on the feature retrieval time was not much.
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Figure 13. Feature retrieval time of 10 best features up to 1000 flow entries.
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Figure 14. Feature retrieval time of 10 best features up to 20,000 flow entries.

Figure 15 shows the feature retrieval times of the 10 best features and classification time for
up to 1000 flow entries in the switch. It is fairly low and it does not affect the performance of the
network. Figure 16 shows the feature retrieval times of the 10 best features and classification time for
up to 20,000 flow entries in the switch, which corresponds to the DoS attack with spoofed addresses.
Feature retrieval and classification take around 900 milliseconds for 20,000 flow entries. However,
the SDN application does not wait to finish classifying every flow entry in the switch before taking
action. The attackers are blocked immediately when they reach the detection threshold. Therefore,
most of the time, attacks are mitigated before a huge number of attack flows are installed into the switch.
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Figure 15. Feature retrieval time of 10 best features and classification time up to 1000 flow entries.
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Figure 16. Feature retrieval time of 10 best features and classification up to 20,000 flow entries.

Our application calculated the feature vectors and classified them in nine milliseconds when the
switch had 100 flow entries. This procedure takes 49 milliseconds when the switch has 1000 flow
entries. We believe that these times are fairly low and they do not affect normal operation of the
controller and the network. Under a DoS attack, feature vector calculation and classification take less
than a second for all 20,000 flow entries. The flow entries are classified one-by-one and mitigation is
performed immediately upon attack detection. Therefore, attacks are swiftly mitigated before they can
cause serious damage to the target and the network.

6.2.2. Bandwidth Measurements

The maximum available bandwidth of all the links between the switch and hosts in our network
were set to 100 Mb per second. The iPerf3 tool [44] was used to measure the available bandwidth
between one of the IoT devices and the server with and without the presence of DoS attacks.
One malicious host was used to perform a DoS attack targeting the server. The packet sending
rate was 1000 packets per second and the payload of the packets was 1000 bytes. Attacks started after
five seconds.

Figure 17 shows the available bandwidth under TCP SYN flood attack without spoofing. All of
the packets coming from the attacker passed over the same flow entry in the case of no spoofing.
Therefore, it took three detection processes to exceed the threshold. Available bandwidth between one
of the IoT devices and the server was around 95 Mb per second during the normal operation of the
network. Without protection, the bandwidth decreased to 37 Mb per second. When our protection was
active, the attacker was blocked based on the physical port after exceeding the threshold. Bandwidth
returned back to normal after a couple of seconds.

Figure 18 shows the available bandwidth under TCP SYN flood attack with spoofing. Every packet
coming from the attacker that missed the flow rules in the switch caused a new flow rule installation.
This process slowed the forwarding of malicious packets. The available bandwidth under attack
decreased to 45 Mb per second. When our protection was active, bandwidth decreased to 82 Mb per
second only for a second and then returned back to normal. The threshold was exceeded in the first
detection process and the attacker was blocked immediately.
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Figure 17. Available bandwidth under SYN flood without spoofing.
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Figure 18. Available bandwidth under SYN flood with spoofing.

Figures 19 and 20 show the available bandwidth under UDP flood attack with and without
spoofing. The results are similar to the TCP SYN flood attack.

Overall, the available bandwidth returned back to normal within one to three seconds,
depending on the attack properties when our protection was active. Our protection quickly prevents
attackers from causing damage to the target and networks. For the DoS attacks with spoofed
addresses, attackers are detected within a second and the network recovers immediately. For the
DoS attacks without spoofed addresses, our application waits until attackers reach the threshold
(around three seconds) and then blocks the attackers. The network recovers in 1-2 s after detection.
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Figure 19. Available bandwidth under UDP flood without spoofing.

=3

2 4 6 8

Time (s)

10

12

—a— Without attack
—o— Unprotected
Protected

Figure 20. Available bandwidth under UDP flood with spoofing.

6.2.3. CPU Measurements

DoS and DDoS attacks with spoofed addresses waste the resources of both the controller and
switches. Spoofed match fields of the attack packets cause “table miss” events for each packet.
Switches buffer these packets and send a packet_in message to the controller for every attack packet.
The controller processes these packets and decides the route. The controller sends a packet_out
message to the switch, which contains the determined action for the packet. The controller also installs
flow rules for every attack packet.

The ONOS controller and switch were running on the same machine in these experiments.
Therefore, we used the Linux top command to measure CPU usages of their processes. Our machine
had six cores and two threads per core, which makes the maximum CPU utilization 1200%.
One malicious host was used to perform the DoS attack with spoofed IP addresses. Packet sending
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rate was 1000 packets per second and payload of the packets was 0 byte. Attacks started after five
seconds. Under normal conditions, most of the time the CPU utilization of the hosts were 0%. Rarely,
CPU utilization of the two benign hosts that sent data to the server were 5.9-6.1%. During DoS attacks,
the CPU utilization of the attacker was around 30%.

Figure 21 shows the CPU usage of the controller under TCP SYN flood attack. CPU usage was
around 2% for our normal network traffic. During the attack without protection, CPU utilization
reached 500% within two seconds and stayed there for 7-8 s. Subsequently, it dropped to 400%.
When our protection was active, CPU utilization reached 180% for a second and then dropped to
around 35% for the next 15 s. Afterwards, CPU utilization returned to normal. Even though the
attacker was blocked in the first detection process, attack flows were installed into the switch until
the controller installed the block rule. Our classification model kept classifying them in the following
detection processes until these flow entries timed out. This is the reason why CPU utilization remained
around 35% for a short time.
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< 300
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(e e e e S e e e B =il el sl )
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Figure 21. Controller CPU under SYN flood.

Figure 22 shows the CPU usage of the switch under TCP SYN flood attack. The CPU usage was
around 1% for our normal network traffic. During the attack without protection, the CPU utilization of
the switch process reached around 370%. When our protection was active, CPU utilization increased
to 135% for a second and then returned back to normal within a couple of seconds. The controller
installed the flow block rule in the first detection process and all of the packets coming from the
attacker were dropped by matching the installed flow rule.

Figures 23 and 24 show the CPU utilization of the controller and the switch. The results are similar
to the TCP SYN flood attack experiments.

Overall, without our protection, both the controller and switch consumed around 400% of the
CPU, 800% total. The DoS attack wasted a huge part of the CPU of the switch and the controller
when considering the maximum CPU utilization of our machine was 1200%. One attacker caused the
network to use 2/3 of its available CPU. When we performed the DDoS attack with four attackers,
CPU utilization reached to a maximum in a short time and the SDN controller crashed after some time.
When our protection was active, attacks were detected within a second and the attackers were blocked
immediately and the switch’s CPU utilization went back to normal, which is close to 2%. All of the
packets coming from the attacker matched with the block rule and were dropped. Our application kept
classifying attack rules remaining in the switch until they timed out. Therefore, the CPU utilization
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of the controller was around 40% for 15-20 s after attack detection. Subsequently, CPU utilization
returned back to normal.
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Figure 23. Controller CPU under UDP flood.
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Figure 24. Switch CPU under UDP flood.

7. Conclusions

In this work, we proposed an automated, intelligent intrusion detection and mitigation approach
for SDN, which aims to provide explainable security in the IoT networks of the 5G era. The proposed
approach relies on automated flow feature extraction and highly accurate classification of network
flows by a random forest classifier in the SDN application layer, for detecting various classes of attacks
and taking remedial action through the installation of new flow rules with high priority at the data
plane. We presented our SDN-specific dataset modeling a realistic IoT environment, which includes
flow data for common network attacks as well as normal traffic, and provided results on the accuracy
of intrusion detection as well as performance results in the presence and absence of our proposed
security mechanism.

The proposed security approach is promising for achieving real-time, highly accurate detection
and mitigation of attacks in SDN-managed networks, which will be in widespread use in the 5G and
beyond era. We believe that the created dataset will also be a useful resource for further research
in ML-based intrusion detection in SDN-managed IoT networks. Our future work will include
an extension of the created dataset with more attack types and network topologies, as well as an
evaluation of the proposed security approach with these additional network conditions. We also aim
to integrate an interface for interpretability by human experts to further enhance the explainability
of the security model. While the proposed approach has achieved successful results in the network
environment it has been trained for, applicability to different networks will require training the
model actively through online learning. This will not only provide the capability to detect previously
detected attack types, but also to correctly classify recently arising attacks through continuous learning.
While transfer learning approaches are successful to a certain extent, their performance cannot compete
with the performance of training ML models with datasets being obtained in the real operation
environment in many cases. Therefore, our future work will also focus on building a continuous
learning with human-in-the-loop system, which is expected to be achieve high performance in a variety
of network structures.
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