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Abstract: The measurement of the rotational speed of rotating machinery is typically performed
based on mechanical adherence; for example, in encoders. Nevertheless, it can be of interest in
various types of applications to develop contactless vision-based methodologies to measure the
speed of rotating machinery. In particular, contactless rotor speed measurement methods have several
potential applications for wind turbine technology, in the context of non-intrusive condition monitoring
approaches. The present study is devoted exactly to this problem: a ground level video-tachometer
measurement technique and an image analysis algorithm for wind turbine rotor speed estimation are
proposed. The methodology is based on the comparison between a reference frame and each frame
of the video through the covariance matrix: a covariance time series is thus obtained, from which
the rotational speed is estimated by passing to the frequency domain through the spectrogram.
This procedure guarantees the robustness of the rotational speed estimation, despite the intrinsic
non-stationarity of the system and the possible signal disturbances. The method is tested and discussed
based on two experimental environments with different characteristics: the former is a small wind
turbine model (with a 0.45 m rotor diameter) in the wind tunnel facility of the University of Perugia,
whose critical aspect is the high rotational speed (up to the order of 1500 RPM). The latter test case
is a wind turbine with a 44 m rotor diameter which is part of an industrial wind farm: in this case,
the critical point regards the fact that measurements are acquired in uncontrolled conditions. It is
shown that the method is robust enough to overcome the critical aspects of both test cases and to
provide reliable rotational speed estimates.

Keywords: video tachometer; image processing; vision based measurement; wind turbines;
non-stationary machines; correlation matrix.

1. Introduction

The condition monitoring of non-stationary rotating machines [1,2] is a complex task in general,
and it is very important due to the wide industrial applications, in particular as regards renewable
energy systems [3]. For wind energy technology, the maintenance costs are crucially important and
have to be taken into account in the economic balance of industrial plants [4–6]. A wind turbine failure
does not reflect only a lower availability of the power plant or a loss of production, but due to the
increasing size of industrial wind turbines [7,8], even organizing and carrying out repair activity at
high levels or offshore [9–11] can be extremely expensive. Furthermore, it should be noted that most
modern wind turbines transform the slow rotation of the shaft into the fast rotation of a generator
through a gearbox: this implies the necessity of monitoring gears and bearings [12,13] and recognizing
faulty signatures with respect to gear mesh frequencies in non-stationary operation.

For non-stationary rotating machines in general and for wind turbines in particular, it is therefore
crucial to reliably and precisely measure the rotational speed in order to detect future faults with
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appropriate advance notice. Continuous condition monitoring systems are typically based on the use
of encoders or resolvers to measure the rotational speed based on the mechanical contact with the
rotating element. Instead, it might be of practical interest to formulate methodologies that are not
based on intrusion or contact with the machine itself.

This kind of approach can be particularly useful for spot analysis in industrial systems,
as for example in wind farms. In fact, an important issue in industrial sectors characterized by the use
of complex systems regards data openness and site accessibility: this often happens, for example, in the
wind energy industry, where wind turbine owners and constructors are typically different subjects. As,
for example, the operation of wind farms and the access to wind turbines is in general regulated by
agreements between owners and technological providers, the possibility of analyzing certain aspects
of a wind turbine’s dynamical behavior could likely result in the capability of monitoring it reliably,
without intruding and possibly without requiring too much information (as, for example, the gearbox
geometry and therefore the gear meshing frequencies).

Based on these considerations, previous work by the authors of this study has been devoted to
an innovative approach to wind turbine drive-train condition monitoring [14]: the general concept of
that study was to collect appropriate vibration measurements at wind turbines in order to circumvent
the drawbacks associated with this kind of data source (for example, the proprietary nature of data
recorded by industrial turbine condition monitoring systems). The proposal put forward in [14] was to
measure vibrations non-intrusively at the tower of the wind turbines at human height. The rationale for
this choice is the avoidance of the interruption of the normal operation of the machine and the exclusion
of every possible safety issue associated with human intervention in an industrial wind farm. This idea
introduces novel drawbacks, because in general the transfer function from the target drive-train to the
tower is not known: nevertheless, in [14], the method has been shown to be effective for the diagnosis,
with months of advance notice, of bearing faults in an industrial wind farm. Further development
of the analysis proposed in [14] shows the necessity of measuring the rotor speed non-intrusively,
with precision and adequate sampling time. The present study deals exactly with this issue.

Therefore, the objective of this study is to formulate and test a contactless methodology for
the measurement of wind turbine rotor speed from video acquisitions at ground level. There are
several possible applications of this kind of approach in the wind energy industry and research:
the above discussion indicates that it could complete the drive-train condition monitoring technique
for industrial wind farms, as proposed in [14]. Such methods could also be applied in the context of
condition monitoring for refurbished wind turbines, which are typically not (and presumably will
not be) equipped with condition monitoring systems. Furthermore, interesting applications can be
conceived in the context of small wind energy systems.

Few studies in the literature have been devoted to this kind of issue in the context of wind energy,
despite the rising trend of vision-based measurement in engineering (as stated in [15]). To the best of
the authors’ knowledge, a similar methodology is proposed in [16], in which the approach is tested
on a permanent magnet synchronous motor; in that study, it is indicated that a valuable application
would be non-stationary rotating machines, such as wind turbines. It should be noted that the present
study is more general compared to that in [16] in terms of image analysis and signal processing. In [16],
a portion of the target image is selected by the users for rotational speed reconstruction, while in the
present study, the entire frame captured by the camera is employed; therefore, the method of this study
is more easily automatable. Furthermore, in [16] the rotational speed is estimated from the analysis of
the average of the Fourier transform, while in this study, the spectrogram has been employed because
it has been considered more robust with respect to disturbances in the signal. A recent study dealing
with the application of video-tachometer methods to wind turbines is presented in [17]: the approach
is based on computer vision, deep learning and video mining. First, a Single Shot Multibox Detector
(SSD) is employed to detect the hub of the wind turbine in the image; subsequently, binary classification
algorithms are used to discriminate between blade and non-blade areas. This process is repeated for
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all frames in a specified time window, and it can be used to estimate the angular speed: the method is
validated on images and a video (with 30 frames per second) captured at operating wind farms.

An important aspect of the present study is that two different experimental environments
are considered and each is characterized by different critical points; thus, the robustness of the
measurement and processing methodology is discussed. The considered experimental test cases are
as follows:

• The measurement of the rotor speed of a small horizontal-axis wind turbine model (with a 0.45 m
rotor diameter) in the wind tunnel facility of the University of Perugia. In this case, the critical
points regard the high rotor speed reached by the prototype (hundreds of RPM) and the rapid
variability of the rotor speed for this kind of machine [18].

• The measurement of the rotor speed of an industrial wind turbine (with a 44 m rotor diameter)
in a wind farm. In this case, the rotor speed is in the order of a few dozens of revolutions per
minute, and the critical points are related to the post-processing, because disturbances can be
induced by sunlight and varying backgrounds.

The structure of the manuscript is therefore as follows: in Section 2, the method, including the
equipment and algorithms, is introduced. The test cases are described in Section 3. In Section 4,
results are presented and discussed. Conclusions are drawn and further directions are indicated in
Section 5.

2. Methods and Facilities

In this section, a description of the mathematical background for the proposed video-tachometer
application is presented. Subsequently, the experimental setup of the laboratory and field tests
is shown.

Video-Tachometer Working Principle

The main goal of the proposed contactless video-based tachometer method was to perform an
estimation of wind turbine rotor speeds. The general idea was to collect a reference frame in which one
of the wind turbine blades was clearly visible and then to record a series of video acquisitions while
the rotor was moving. During the post-processing of the data, the reference image was compared
with each frame of the video using a correlation algorithm, obtaining a vector with the calculated
correlation values in which the maximum value of the correlation occurred each time one of the blades
assumed the same position as that in the reference frame. In this way, knowing the camera frame rate,
it was possible to construct a virtual tachometer signal showing peaks with a frequency proportional
to the rotor’s rotational signal, where the proportionality factor depended on the number of blades.

Mathematically, the comparison between the frames was performed by evaluating the Pearson
product–moment correlation coefficient. Images were acquired as 8 bit black and white images,
with an m× n dimensional matrix. Subsequently, the matrixes were reshaped in order to obtain a
vector, whose dimension was n ·m. Labeling as X̂ and Ŷ, respectively, the matrix of the reference image
and of a sample frame of the video, both having dimensions m× n equal to the height and width of
the selected resolution of the images, Equation (1) can be written as follows:

X̂ =


x1,1 ... ... x1,n

. .

. .

. .
xm,1 ... ... xm,n

 Ŷ =


y1,1 ... ... y1,n

. .

. .

. .
ym,1 ... ... ym,n

 (1)

As the frames were acquired in black and white with an 8 bit depth, the elements of the matrice
assumed values between 0 and 255.
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A further step was to reshape the matrices into a single dimension vector, as shown in Equations (2)
and (3):

X =
[

x1 = x1,1 x2 = x1,2 ... xmxn = xm,n

]
(2)

Y =
[
y1 = y1,1 y2 = y1,2 ... ymxn = ym,n

]
(3)

After the reshaping, the covariance matrix C was calculated according to Equations (4)–(6):

C1,1 = var(X) =
1

nm− 1

nm

∑
i=1

(Xi − X̄)2 (4)

C2,2 = var(Y) =
1

nm− 1

nm

∑
i=1

(Yi − Ȳ)2 (5)

C1,2 = C2,1 = cov(X, Y) =
1

nm− 1

nm

∑
i=1

(Xi − X̄)(Yi − Ȳ) (6)

where X̄ and Ȳ are the mean values of X and Y, respectively.
From the covariance matrix, the Pearson correlation coefficient [19] could be calculated as shown

in Equation (7):

R =
C2,1√

C1,1C2,2
. (7)

In this way, for each frame, a corresponding value of correlation was obtained. The correlation
can be considered to be a useful parameter to evaluate the similitude between two objects [20,21],
which in this case were the two vectors X and Y, representing the reference and a frame of the video.
This property of the correlation was used in the algorithm to determine when the similitude reached
its maximum and extract its periodicity, which was expected to be proportional to the rotational value.
The correlation coefficient was close to its maximum value of 1 as the blade assumed a position closer
to that of the reference image. The minimum value of the correlation, which could be hypothetically
equal to zero, in the practical case was found at about 0.7–0.8, as there were some parts of the pictures
that remained unchanged in all the frames (for example, the background and part of the hub). Figure 1
shows how the value of the correlation varied during the revolution of the rotor.

reference

a) b) c)

e)d) f)

Figure 1. Referenceimage (a) and variation of correlation coefficient (b–f).
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Figure 2 shows an excerpt of a virtual tachometer signal obtained from the correlation of
a video acquisition: it can be seen that, from one revolution to another, the maximum value
of the correlation, as well as the minimum value, did not assume a constant value but showed
some variability. This effect can be caused by many factors, such as vibrations, blade deflection,
a slight eccentricity of the rotor or even from a difference between the azimuth position of the blade
in the reference image and in the acquired frame. All these occurrences led to a non-constant value of
peaks, introducing a subtle challenge to the determination of the effective rotational speed that should
be evaluated as the number of peaks in a given temporal interval. As the maximum (or minimum)
value variable, two thresholds were defined as extreme limits above or under which the maximum or
minimum were considered to be reached.

This approach, although feasible, is not recommended in this application because it would add an
element of uncertainty, given the fact that the calculated speed may give inaccurate results depending
on the choice of the threshold values. A more robust approach for the extraction of rotational speed
from the virtual tachometer can be obtained using a spectrogram, or rather by dividing the signal into
multiple time intervals and calculating the spectrum at each section. In this way, the spectrogram shows
a peak corresponding to the blade passing frequency, which is three times the rotational frequency.
The spectrogram is formally computed through a Short-Time Fourier Transform (STFT), which in its
discrete formulation is given in Equation (8):

STFT(T, f ) =
k−1

∑
t=0

z(t)h(t− T)e
−2πit f

k , (8)

where z(t) is the input signal, h(t) is a Tukey window function, T and f are the time and frequency
indexes, respectively, and k is the number of samples used for the Fourier transform.
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Figure 2. Example of virtual tacho signal.

The spectrogram gives an array whose elements are the square modules of the STFT(T, f ) as
a result.

If a single FFT that composes the spectrogram is considered, a plot similar to Figure 3 is obtained,
where peaks related to different frequencies are present. As expected, the maximum value of each FFT is
in correspondence with the blade passing frequency; it is then possible to track all these values to calculate
the rotation speed for a machine operating in non-stationary conditions. In Figure 4, the principle
of maximum tracking is shown with many FFT splaced side-by-side in the time–frequency domain.
The spectrograms in the following sections are 2D representations of Figure 4 with higher resolution in
frequency, and the amplitudes are depicted with a color intensity scale. The tracking algorithm may fail
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if some peaks in FFT are higher than that related to the blade passing frequency: this aspect is discussed
in detail in Section 4, after calculating the signal-to-noise ratio (SNR) value and percentage difference.

MAXIMUM AT 745.7 RPM

Figure 3. Example of maximum tracking from the Fast Fourier Transform (FFT): the value of 745.7 RPM
has been computed by determining the frequency at which the maximum peak appears (blade passing
frequency) and dividing by no.o f blades
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Figure 4. Visualization of maximum tracking with multiple Short-Time Fourier Transforms (STFTs).

Figure 5 shows all of the steps of the correlation algorithm used to estimate the rotational speed of
wind turbines. In Section 4, the method is first validated to ensure its reliability through wind tunnel
tests and then applied to a full-sized turbine operating in the field.
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Figure 5. Block diagram of correlation algorithm.

3. Test Cases and Experimental Set-Up

3.1. Wind Tunnel Tests

The correlation-based algorithm for the estimation of rotating speed has been tested in the
“R.Balli” wind tunnel facility in the Department of Engineering at the University of Perugia (Italy) .
The closed-loop tunnel has an open test chamber with a squared inlet and outlet ducts of 2.2× 2.2 m
and 2.7× 2.7 m, respectively. Wind speeds can reach up to 45 m/s thanks to a fan driven by a 375 kW
electric motor. More details about the wind tunnel facility can be found, for example, in [18].

A small-scale wind turbine with a 0.45 m rotor diameter has been used for this test: its blades
are constructed from titanium and the hub, as well as the nacelle, has been internally designed for
research purposes and 3D printed. The rotational speed of the turbine can be controlled by varying the
electrical resistance applied to the generator; in this case, the electric load was kept constant for all tests
at 3 Ω. To validate the video tachometer method, an optical tachometer was installed on the nacelle of
the turbine, and a marker was applied to the rotor in order to obtain a transistor–transistor-logic signal
from the sensor, from which the rotational speed was calculated. The aim of the test was to evaluate
the capability of the correlation method to estimate the rotational speed, with the measurement from
the optical tachometer used as the term of comparison. In the following, the rotor speed obtained
from the correlation algorithm is labeled as the “estimated speed”; in contrast, the speed from the
sensor is called the “measured speed”. To investigate a comprehensive series of case studies, many test
runs were realized with different flow conditions, which were both steady and unsteady. In particular,
three tests were conducted with steady flow at 4, 5 and 6 m/s of wind speed; two tests were conducted
with sinusoidal wind, with a 4.5 m/s mean value and ±0.3 m/s and ±0.6 m/s amplitude; one test was
conducted with a shut off from 5 m/s; and one test was conducted with a ramp from 3 m/s to 8 m/s.

As a small-scale wind turbine can rotate at much higher rotor speeds with respect to
full-sized turbines, this test can be considered particularly stressful for the algorithm as video acquisition
has to be captured at a high frame rate. For this reason, exploring the response to different air flows and
speeds allowed us to find the limits of this method and its stability during transients. One of the most
critical points is the maximum frame rate of the camera, which is strictly dependent on the acquisition
parameters, such as the pixel dimensions of the frames and exposure. To achieve an adequate trade
off between performance and image quality, we decided to acquire an array of 450× 200 px with an
exposure of 4 ms and a frame rate reaching 250 FPS. Figure 6 shows the arrangement of the equipment
in the wind tunnel: the turbine was centered with respect to the inlet section of the flow, and the camera
was installed on the left side of the chamber, pointing towards a blade of the rotor. Because of the
low exposure time of the acquisition, an external LED light source was used in order to guarantee
sufficient illumination.
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Additional light 
source

High speed 
camera

Test case wind 
turbine

Figure 6. Experimental setup for wind tunnel tests.

Finally, some considerations need to be addressed regarding the optimal orientation of the camera
with respect to the rotor. Even if an extensive sensitivity assessment regarding this aspect exceeds
the purposes of the present study, it has to be taken in account that some preliminary tests were
executed with different experimental setups, light conditions (laboratory or external environment)
and turbine sizes in order to find the best location for the camera. The best results were obtained by
placing the camera on one side of the turbine and pointing it tangentially towards a blade. The reasons
for considering this arrangement as the most suitable are the fact that if the number of pixels undergoing
a noticeable variation during a rotor revolution increases, the difference between the maximum and
minimum values of the correlation increases; thus, the effect of noise or harmonics, which is discussed
in detail in Sections 4 and 5, decreases. Therefore, the general recommendation is to limit the amount of
image occupied by non-rotating elements as much as possible in the background, tower or nacelle.

3.2. Field Measurement Campaign

Field measurement campaigns were performed in September 2019 at a wind farm sited in Italy
comprising two 44 m rotor diameter turbines with 750 kW of power each. This test case can be
considered peculiar, and thus worthy to be studied, because of its location and its long operation lifetime.
Being situated at a mountain ridge, the wind turbines are often affected by icing and are in general
subjected to a harsh environment consisting of strong gusts with non-negligible vertical components.
According to this, and taking into consideration the fact that the wind farm has been operating since
1999, it is important to constantly survey these wind turbines with innovative, unintrusive methods
without interfering with their energy production activity. In addition, the tested wind turbine model has
a particular drive-train configuration with a variable speed gearbox with two alternating and fixed rotor
speeds of 27 and 16 rotor RPM; this is therefore a useful property to test the video-tachometer algorithm.

An advantage of performing this kind of measurements with a full-scale wind turbine is the low
rotational speed of the rotor with respect to that of the wind tunnel tests. This can be considered a
facilitating element because the required frame rate from the camera decreases consistently to 25 RPM,
allowing the exposure to be increased and for sufficiently bright pictures to be acquiredeven with
weak solar light.

Critical issues to be noted in this context include the uncontrollable environmental variables
that may affect the calculation of the correlation factor, such as the luminosity changes or the yaw
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movements of the wind turbine nacelle. As the correlation algorithm is based on the comparison of
video frames with respect to a reference image, if some alteration in lighting or in nacelle position
appears during the acquisition, the computed correlation would be compromised. For this reason,
for the field test, the algorithm was upgraded in order to refresh the reference image as the mean value
of correlation was subjected to drift.

Figure 7 shows how the equipment was installed at the base tower of the wind turbine to perform
the measurement of the rotational speed. For this test, it was not possible to obtain a measured
signal for an instantaneous rotational speed with the same sampling time as the estimates; in this
sense, this application was particularly important because it compensated for the lack of information.
From the wind turbine data sheets, it was possible to determine that the reference speed during the
measurement campaign was 27 revolutions per minute, with possible oscillations due to wind gusts.

PC for acquisition 
and post processing

video camera 
connected to PC 

Figure 7. Instruments layout for in-site measurements.

4. Results

The estimation of rotational speed for the wind tunnel tests was realized by processing the
spectrograms of the virtual tachometer signals acquired from six different runs; the corresponding
time–frequency plots are shown in Figure 8a–f. The accuracy of results from STFT usually depends on
the choice of some parameters, such as the number of samples, which reflect the frequency and
time resolution. For the following analysis, the spectrograms were realized using a Tukey window,
with a 0.25 shape parameter, on 256 sample-length segments with an overlap of 200 samples. The effective
resolution of the spectrogram was 0.977 Hz. By adding zero padding to the sample segment, it was
possible to finely interpolate the signal in the frequency domain. At least 744 points of zero padding
should be added to the 256 sample in order to reach a reliable measurement (i.e., an RMSE lower than
1.4 RPM). Increasing the length of the zero padding leads to a better estimation (lower RMSE) at the cost
of higher computational effort. In Figures 8 and 9, 9744 zero padding points have been used; an interval
length greater than 256 samples leads to an insufficient time resolution.
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(a) (b) (c)

(d)
(e) (f)

Figure 8. Estimated rotational speed from wind tunnel tests. (a) 4 m/s; (b) 5 m/s; (c) 6 m/s;
(d) sinusoidal wind with a 4.5 m/s mean value and 0.3 m/s amplitude; (e) as the previous run,
with 0.6 m/s of amplitude; (f) transitory from 5 m/s.

(a) (b)

(c) (d)
Figure 9. Spectrograms from four sample field measurements. The wind turbine has a constant nominal
speed of 27 revolutions per minute.

The estimated rotational speed curves (shown by a dotted yellow line) were obtained by tracking
the instantaneous maximum value of the spectrogram and applying the scale factor to calculate
the shaft speed from the blade passing speed. The presence of harmonics is visible in most of the
acquisitions, in particular in Figure 8f, even if their low intensity did not affect the algorithm, as the
maximum value was always related to the rotational frequency.
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Once the method was validated in the wind tunnel, the same approach was used in the field
measurement campaign with the full-scale wind turbines, as described in Section 3.1. For this test,
the rotor speed was nominally constant at 27 revolutions per minute, and four sessions were recorded
(Figure 9a–d) in order to verify the functionality and the performance of the algorithm. The results show
that the tracking of the spectrum maximum correctly estimated the rotor speed of the wind turbine,
even in the case of the low variations caused by wind gusts. For some runs (as shown in Figure 9b,d),
it appears that the spurious harmonics were more prominent with respect to the cases in the controlled
laboratory environment. In these cases, the maximum values were also reached at the rotational
frequency, and therefore the algorithm correctly estimated the rotational speed.

Having stated that the method of the correlation and tracking of spectrogram maxima can
estimate the rotational speed of both small-scale wind turbines and full-scale turbines, even in different
environmental conditions, the subsequent step is the discussion of the robustness of the methodology
in order to determine the possible limits of the measurement system and its capability to track the
spectrogram maxima. As has been noted above, the spectrograms of Figures 8 and 9 show the presence
of harmonics in addition to the rotational speed signal, which may cause the maximum tracking process
to fail in the recognition of peaks if their intensity overtakes that of the rotational speed.

The robustness and the repeatability of the algorithm were investigated to ensure that the
maximum values relative to the rotational speed had a much higher magnitude with respect to
the background noise introduced by the harmonics. For this reason, in Tables 1 and 2, for each test
run, the mean value of the signal-to-noise ratio (SNR) is reported. The signal S is intended to be the
maximum value of the spectrogram, relative to the tracked rotational speed, and the noise N is the
mean value of STFT(T, f ) (Equation (8)). This provides a metric to assess the predominance of the
required signal with respect to noise. The results shown in Tables 1 and 2 confirm that the signal
related to the rotational speed is at least one order of magnitude larger than the mean value of the
STFT both in wind tunnel and open-field tests. This is a crucial point, as the maximum tracking
algorithm is therefore as efficient as the signal of the rotational speed is broad with respect to other
undesired harmonics or noise. In the field measurements, the presence of spurious harmonics can be
considered non-negligible: therefore, a necessary assessment has been conducted by calculating the
mean difference between the peaks of the rotational speed and the first harmonic in order to ensure that
the maximum tracking does not detect the rotational speed incorrectly if the first harmonic assumes
values higher than the rotational speed. This check has been conducted only in consideration of the
first harmonic, because the subsequent harmonics have lower maxima with respect to the first for all
the conducted tests.

The percentage difference in Table 2 has been computed as

di f f% =
peakrot − peakharmI

peakrot
× 100 (9)

where peakrot is the peak value (maximum) of rotational speed in a time interval of the spectrogram,
and peakharmI is the peak value (maximum) of the first harmonic in a time interval of the spectrogram.

Table 1. Signal-to-noise ratio (SNR) evaluation for wind tunnel tests.

Run S N SNR

4 m/s 5.220× 10−3 5.742× 10−5 9.089× 101

5 m/s 4.013× 10−3 3.831× 10−5 1.047× 102

6 m/s 2.860× 10−3 2.935× 10−5 9.742× 101

Sinusoidal 0.3 m/s amplitude 2.783× 10−3 3.098× 10−5 8.984× 101

Sinusoidal 0.6 m/s amplitude 2.326× 10−3 2.772× 10−5 8.389× 101

Shut down 1.892× 10−3 2.768× 10−5 6.209× 101



Sensors 2020, 20, 7314 12 of 15

Table 2. SNR evaluation for in-field tests.

Run S N S/N % Difference (Mean)

1 2.269× 10−2 2.234× 10−4 9.987× 101 9.277× 101

2 1.343× 10−2 2.172× 10−4 6.189× 101 5.072× 101

3 1.201× 10−2 1.364× 10−4 8.785× 101 8.124× 101

4 4.236× 10−3 5.176× 10−5 8.184× 101 7.522× 101

A stress test for the measurement equipment was performed in the wind tunnel facility,
subjecting the test case wind turbine model to a sharp wind ramp from 0 m/s to 8 m/s and causing the
rotational speed to reach up to 1900 RPM in about 50 s from the beginning of the run. As can be seen in
Figure 10, the algorithm was able to follow the measured speed up to order of 1500 RPM with low error;
beyond this limit, the estimated rotational signal began to be unstable as the maximum value of the
spectrogram passed from the rotational speed to its first lower harmonic. This means that the operation
of the maximum search does not guarantee that the highest value belongs to the required harmonic.
As soon as the wind decreased and the speed slowed to under the level of 1500 RPM, the algorithm
again correctly estimated the rotational speed. The impossibility of measuring rotor speeds above the
order of 1500 RPM is due to the frame rate of the acquisition rather than the data analysis method.

Figure 10. Wind ramp test at 0–8 m/s: the rotational speed quickly reaches 1900 RPM.

Finally, an analysis has been conducted to determine the sensitivity of the presented algorithm to
external factors concerning the noise that may affect the acquisition of images, especially in conditions
of low illumination; i.e., when a low exposition time is required or when some meteorological variability
appears in the open field.

To include random noise in this study, a Gaussian white noise signal was digitally added to the
frames in one of the wind tunnel tests. A Gaussian distribution p(x) can be described by the following
Equation (10):

p(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 (10)

where the mean value µ is equal to zero for the considered white noise and σ2 is the variance.
As a first test, one matrix with the same dimensions as the frames was generated with random values
and then added to the reference image and to all the frames of the video acquisition. Three test values
for the variance of the white noise were considered: σ2 = 5, σ2 = 50, σ2 = 500 (Figure 11). This was
done in order to determine the highest value admissible by the correlation algorithm. The effect of
external noise was computed by using the root mean squared error (RMSE) between the time history
of the measured and estimated rotational speed. In this situation, even in the case of the heaviest noise
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with σ2 = 500, no noticeable deviations in the RMSE were found: its values were found to be 0.256 in
all cases.

(a) (b) (c)
Figure 11. Different levels of white noise added to the video frames: (a) σ2 = 5; (b) σ2 = 50; (c) σ2 = 500.

A second test was subsequently set up with the matrix of white noise, which was recalculated
for each frame of the video; in this case, the random effect of the noise acted both in space and in
time. The calculated RMSE valeus for the three cases were RMSE5 = 0.259, RMSE50 = 0.255 and
RMSE500 = 17.136. We can observe that the impact of noise becomes non-negligible when a random,
time-varying white noise is added whose σ2 becomes greater than 500. This can be considered to be
a qualitative evaluation of the acceptable noise threshold for the algorithm to obtain reliable results.

5. Conclusions

In this study, a method to estimate the rotational speed of a wind turbine through contactless video
acquisition has been presented. A straightforward motivation of this work is its possible application in
the context of non-intrusive wind turbine condition monitoring techniques, but the potentiality of the
proposed method is more general.

In the present study, a correlation-based algorithm has been proposed that employs a reference
image of wind turbine blades and a series of frames extracted from a continuous recording while the
machine is operating. Knowing the frame rate of the camera, the correlation coefficient with respect to
the reference image is computed for each frame. As a result, a virtual tachometer signal is obtained
that presents a periodicity corresponding to the blade passing frequency. Finally, the rotor speed
time history is extracted by post-processing the virtual tachometer signal with STFT and tracking the
maximum values.

The proposed method has been tested in a wind tunnel facility with a small-scale wind turbine
model and then applied in a full-scale, industrial-size wind farm. The validation of the algorithm
was set up in wind tunnel tests, because the wind turbine was equipped with an optical tachometer
sensor, and therefore a comparison between the estimated rotational speed and the measured speed
was possible. In the full-scale tests, no reference rotor speed signals were available, even if a reference
nominal rotor speed was known from the wind turbine data sheet.
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The response of the algorithm has been shown to be robust and repeatable even in consideration of
the different conditions of the laboratory environment and the wind farm. On one hand (wind tunnel),
there were conditions of controlled and constant lighting, and the critical points regarded the extremely
high rotor speed reached by the test case wind turbine device (up to 1500 RPM) and its possible
relevant variability in time in the case of transient wind or gusts. On the other hand (industrial wind
farm tests), the nominal rotor speed was 27 RPM, and therefore there were no critical aspects as
regards the management of the camera frame rate; in this case, the difficulties were constituted by the
environmental variability in luminosity and by the dynamics of the rotor (such as yaw movements).
In both cases, the speed estimation was considered to be reliable: the behavior of the signal-to-noise
ratio shows that the effect of noise did not disturb the algorithm of maximum tracking as much as it
compromised the quality of the rotor speed estimation. In fact, the harmonic required to estimate the
rotational speed (the signal) was shown to be predominant, up to a factor of 102, with respect to the
mean value of the module in each STFT (the noise).

Further developments of the present study will involve the use of this methodology in
combination with base tower vibration measurements (in a manner similar to [14]) for wind turbine
drive-train condition monitoring applications in industrial wind farms. The approach proposed in this
work could be particularly valid in the context of fault diagnosis for wind turbines which have not been
equipped at their installation with condition monitoring systems because of economic considerations.
These kinds of machines are at present typically reaching the end of their expected lifetime, and for this
reason, they are typically operating out of warranties and full service agreements with the constructor
company; therefore, condition monitoring for these wind turbines is mostly an overlooked topic,
and the methodology proposed in this work might constitute a basis for setting up periodic inspections
of these turbines.
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