
sensors

Article

Data Efficient Reinforcement Learning for Integrated
Lateral Planning and Control in Automated
Parking System

Shaoyu Song , Hui Chen *, Hongwei Sun and Meicen Liu

School of Automotive Studies, Tongji University, Shanghai 201804, China; s.song@tongji.edu.cn (S.S.);
1931574@tongji.edu.cn (H.S.); meicenliu@tongji.edu.cn (M.L.)
* Correspondence: hui-chen@tongji.edu.cn

Received: 27 November 2020; Accepted: 16 December 2020; Published: 18 December 2020 ����������
�������

Abstract: Reinforcement learning (RL) is a promising direction in automated parking systems
(APSs), as integrating planning and tracking control using RL can potentially maximize the overall
performance. However, commonly used model-free RL requires many interactions to achieve
acceptable performance, and model-based RL in APS cannot continuously learn. In this paper,
a data-efficient RL method is constructed to learn from data by use of a model-based method.
The proposed method uses a truncated Monte Carlo tree search to evaluate parking states and select
moves. Two artificial neural networks are trained to provide the search probability of each tree
branch and the final reward for each state using self-trained data. The data efficiency is enhanced by
weighting exploration with parking trajectory returns, an adaptive exploration scheme, and experience
augmentation with imaginary rollouts. Without human demonstrations, a novel training pipeline is
also used to train the initial action guidance network and the state value network. Compared with
path planning and path-following methods, the proposed integrated method can flexibly co-ordinate
the longitudinal and lateral motion to park a smaller parking space in one maneuver. Its adaptability
to changes in the vehicle model is verified by joint Carsim and MATLAB simulation, demonstrating
that the algorithm converges within a few iterations. Finally, experiments using a real vehicle platform
are used to further verify the effectiveness of the proposed method. Compared with obtaining rewards
using simulation, the proposed method achieves a better final parking attitude and success rate.

Keywords: automated parking system; model-based reinforcement learning; data efficiency;
truncated Monte Carlo tree search; artificial neural network

1. Introduction

Automated parking systems (APSs) are important due to their great potential to reduce accidents
in narrow urban parking spaces and increase parking space use [1,2]. For all APS platforms,
the intelligent vehicle must generate its motion after the parking space is detected by the on-board
sensors system, such as Around View Monitoring (AVM) [3,4] and Light Detection and Ranging
(LiDAR) [5]. The conventional motion generation method for APS is the path-velocity decomposition
method [6], where the parking task is decomposed into a kinematic sub-problem and a dynamic
sub-problem, which are solved by path planning and path-following methods, respectively. However,
these systems are usually not flexible in dealing with real-time perceptual information. The motion
generation of APS was solved indirectly in the two stages, which was not human-like and sometimes
troublesome. The deviations between the planned path and real path may cause a collision between
obstacles and the vehicle. Meanwhile, the algorithms are usually rule-based and do not use the
historical parking data to improve their own abilities.

Sensors 2020, 20, 7297; doi:10.3390/s20247297 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-7607-3167
http://dx.doi.org/10.3390/s20247297
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/24/7297?type=check_update&version=3

Sensors 2020, 20, 7297 2 of 25

To solve these problems, data-driven reinforcement learning (RL)-based APSs have been
developed [7–10]. RL includes a model-based method and model-free method [11]. Model-free RL has
achieved acceptable control performance for APS [8], in which the algorithm learns to steer by directly
trying actions in an attempt to attain a maximum accumulative reward. Unfortunately, this method
requires thousands of real-time interactions for applications. Data inefficiency makes model-free RL
impractical and limits its application in parking scenarios, in which the vehicle is required to quickly
acquire driving skills. Model-based reinforcement learning [10] was used to realize multi-objective
optimization and get rid of human experience. However, as the action was determined by the results
of simulations, this method heavily relied on the accuracy of the vehicle model. A large number of
trials were necessary for the obtaining and verification of the vehicle model. Furthermore, it cannot
continuously learn using the limited number of parking data collected on the controlled object with
the unknown model to further improve the ability. Data efficiency refers to the number of needed
data to get a stable performance. Little research has been conducted to address the data efficiency for
RL-based APS especially for model-based RL APS or other automatic driving scenes while maintaining
the continuous learning ability. Regarding model-based RL technology, AlphaGo [12] utilized the
basic rules in the game of Go and function approximation to get the state value function and to defeat
the human player by self-play, which inspired the combining of [10] and the state value function to
overcome the shortcoming of model-based RL parking system.

In this paper, we propose a data-efficient reinforcement learning (DERL) algorithm to solve
APS lateral planning and control in an integrated method. Continuous learning is realized by fitting
a state value function. The approximate modified policy iteration (AMPI) [13] was used to take
advantage of the state transformation function to construct the state value function using a priori
knowledge of the vehicle kinematics, thus showing high data efficiency. The AMPI method used in
this paper is the Monte Carlo tree search (MCTS) [14,15], which has also been used in AlphaGo [12]
and AlphaGo Zero [16]. In a Monte Carlo parking setup, the reward is given at the end of the trial.
Designing a reward function for the final performance is simpler and more objective than offering
immediate rewards. Unlike the model-based method used in [10], the requirement for the accuracy of
the vehicle model can be reduced by limiting the use of simulation in the search process. MCTS uses
the estimation of the state value and the probability distribution of candidate actions. In addition to
the one artificial neural network (ANN) used to learn the probability distribution of the action with
high reward [10], another value ANN is used to predict the state value. To further improve the data
efficiency, several methods are proposed. The update direction of the ANN can be enhanced by adding
a weighting coefficient with the return of the parking trajectory. To better use the ANN, an adaptive
exploration scheme is also developed to encourage exploration in the direction recommended by the
ANN. The vehicle model is used to generate imagination rollouts, which is supplemented with real
parking data. The reasons for using DERL are threefold: First, the Monte Carlo structure is suitable
for parking tasks [10], where rewards are sparse. Second, the use of the value ANN can truncate the
search process and avoid the accumulation of errors. Third, a vehicle model can be used to speed up
the learning, which finds a local optimal solution in a rolling-horizon manner. Compared with the path
planning method using a continuous curvature curve, the proposed method can successfully park a
vehicle in a smaller parking slot in one maneuver. The principal contributions of the proposed method
are fourfold:

• A model-based RL addressing the ability to continuous learning for APS is proposed. A truncated
MCTS algorithm is used to implement this method, of which the data efficiency is improved by
designing an adaptive exploration encouragement factor and weighted policy learning to enhance
the network updating toward the direction of the trajectory with high return. Thus, the influence
of vehicle model and sensor systems can be reduced.

• The proposed approach continuously plans and controls motion, which has lower requirements
for the perception system at the initial parking position, in principle. For its data-driven feature,
the parking trajectory given by the pose estimator can be used to improve the system’s performance.

Sensors 2020, 20, 7297 3 of 25

• The novel training method consists of two phases of learning for the greedy parking lateral action
policy—classification network and state value estimate—fitting network, which do not need
human input at the early stage of APS training.

• The proposed method is verified on a full-size vehicle and is shown to achieve acceptable
performance without time-consuming training on the real platform.

The remainder of this work is organized as follows: Section 2 introduces the related works.
Section 3 introduces the problem definition on the basis of the system structure. The defined optimal
control problem is solved in Section 4. The results and discussion of simulations and real-vehicle
experiments are provided in Sections 5 and 6, respectively. Finally, Section 7 draws the conclusions.

2. Related Work

2.1. Environmental Perception

A parking area is defined as the empty space formed by two obstacles or painted lines.
For an obstacle-formed parking space, the range sensor-based methods were developed [5,17].
Ultrasonic sensors and LiDAR can be used to fit the shapes of obstacles. Although the detection
accuracy has been improved by a recent work [5], these methods could not track the parking space
after the parking motion started. The vision-based approaches were developed for the line-formed
parking space. The AVM system can continuously track the parking slot. To obtain the slot marking
result, deep convolutional network-based segmentation methods were proposed [1,4]. For the tracking
of the object, the prediction accuracy is deteriorated by noises, and the occlusion should be considered.
A kernelized correlation filter was used to explore intrinsic features from background-interfered
samples [18]. During the parking, simultaneous localization and mapping (SLAM) was developed to
localize the vehicle at the centimeter level [3].

2.2. Motion Generation

Many path planning and path-following control methods have been proposed to generate parking
motion. The former includes numerical optimizations, A* search, rapidly exploring random tree (RRT)
family, and curve planners. In the optimization methods, local optimization [1,19] was developed
to find the short-range path. Although the global optimality cannot be guaranteed, they usually
generated feasible paths in a short time. In contrast, the global optimality method [20] took a long run
time to find the optimal parking maneuver. The A* search method [21] discretized the search space,
which guaranteed the completeness and optimality. However, the selection of the grid size requires
expert knowledge. RRT methods [22] can plan in the continuous space using heuristic information.
Curve planners [23] generated continuous curves by combining lines and arcs. For path following
methods, linear quadratic regulator (LQR) [24], sliding mode control [25], and fuzzy controller [26]
were used. These control methods, however, cannot deal with system constrains, such as the actuator
limits of the steering system. To ensure that the designed path can be roughly followed, path planning
must construct an admissible path bounded by the maximum curvature and curvature change rate
under the conservative speed hypothesis. Although the curvature may be continuous, the actual
trajectories still deviate from the expected path owing to the tracking errors. The system is not flexible
enough to deal with real-time perceptual information and maximize the vehicle’s adaptability.

To improve the adaptability of APS, model-free reinforcement learning (RL)-based APS have been
developed, in which the algorithm learns to steer by directly trying actions in an attempt to attain a
maximum accumulative reward. The advantage of RL lies in its ability to cope with system constraints,
as well as its data-driven and human-like continuous learning manner. The RL method explicitly takes
system constraints, typically in the form of actuator limits, into consideration at each time interval.
The algorithm makes decisions based on the real-time motion states and the perceptual information.
Meanwhile, the errors of path-following control can be fundamentally avoided by integrating planning
and control using RL, which increases the upper bound of the system. Deep Q-learning (DQN) [27] has

Sensors 2020, 20, 7297 4 of 25

been used to learn the heuristic information for Hybrid A*, which provides computational advantages
over conventional path planning. Different setups for DQN-based motion planning [7] have been
compared, which demonstrated its acceptable runtime performance on several devices. The deep
determinist policy gradient (DDPG) [9] with preview control, which relies on a reference signal,
has been proposed to solve the optimal control problem of vertical parking. DDPG [8] with manual
guide exploration and different control cycle re-training pipelines has been used to achieve reactive
end-to-end parking in a real vehicle platform. However, model-free RL-based APS requires large
amounts of data, which makes the training on the real vehicle infeasible and unscalable.

In the model-based RL method, MCTS with memory chain was proposed in [10] and [28] to
get rid of the human experience. As shown in Figure 1, the MCTS includes selection, expansion,
simulation, and backup steps. The state value was obtained by multi-step simulation from the leaf node.
The probability to choose action in the simulation was given by a policy ANN, of which the inputs
were the parking states, the output was the probability distribution. During the action selection in the
tree search, the weight of policy was set to 0 (i.e., the coefficient c in Figure 1). The system identification
was used to improve the model accuracy. The multi-objective optimality was realized by combining
MCTS and longitudinal and lateral policies. A large amount of parking data can be obtained. However,
this method has high requirements for the accuracy of the vehicle model, which limits its application.

Figure 1. The tree search used in the previous work [10].

3. System Structure and Problem Definition

3.1. Structure of Automatic Parking System

The overall architecture of the method is shown in Figure 2. The input of the proposed RL agent
is the motion state and the output is the steering wheel angle command. At each control interval,
the control variable is calculated based on the real-time state. Together with the steering wheel angle
command, the torque request is obtained by the controller of the vehicle steering system. Carsim and a
real vehicle are used to validate the learning algorithm. Kalman filtering is used to process motion
sensor data.

3.2. Problem Definition of Parking

Markov decision processes (MDPs) consist of a tuple <S, A, P, r, γ>, where S is the state, A is the
action, P is the transition probability distribution, r is the reward function, and γ ∈ (0, 1] is the discount
factor. The goal is to optimize over a return on K steps:

R(τ) =
∑t+K

k=t
γk r(sk, ak), (1)

Sensors 2020, 20, 7297 5 of 25

where sk and ak are the state and action at time k, respectively, and τ = (st, at, rt + 1, st + 1, at + 1, rt + 2,
. . .) is a complete trajectory. Let π denote a policy to choose an action by the agent. The state value
function, Vπ(s), is the expectation of return on s:

Vπ(s) = Eπ [R(τ)|St = s]. (2)

The goal of RL is to obtain the optimal policy π*, such that:

Vπ*(s) = maxπ Vπ(s). (3)

Similarly, the value function for an action a and state s is defined as a state-action value function:

Qπ(s, a) = Eπ[R(τ)|St = s, At = a]. (4)

The optimal Qπ*(s, a) can be written as:

Qπ*(s, a) = E[rt + γVπ*(st + 1)|St = s, At = a]. (5)

The main criterion for parking is the final position of the car. The desired end position for parallel
parking is parallel to the connecting line of the front and rear obstacle vehicles, while the parking depth
should be ensured such that the wheel avoids hitting the edge of the parking space. As the parking
depth y and orientation θ approach target values, the reward should increase. The gradient near the
target should be high, in order to place a focus on these states. Accordingly, the reward function is:

r(k) = Ry + Rθ + Ra + Rsafe, (6)

with:

Ry =
−20000

1 + e−c1 × | y − yt |
+ 20000, Rθ =

−20000
1 + e−c2 × | θ − θt |

+ 20000, Ra = c3 ×

k∑
i=0

|ai − ai−i|, Rsa f e = −10000, (7)

where the reward components Ry Rθ of the parking depth and orientation are sigmoid-function-like
S curve, which has a bounded function value. The term Ra is used to encourage finishing the task
with relatively small steering action. The constants c1, c2, and c3 are scaling factors. The first two
coefficients determine the decreases in the speed of reward regarding parking depth error and angle
error, respectively. The c3 determines the weight of steering wheel actions. If a collision occurs,
a − 10,000 punishment is given.

The front-wheel steering single-track kinematic vehicle model is extensively used for low-speed
parking (i.e., when the lateral acceleration is below 0.4× g). Sideslip can be ignored. The state transition
function [6] for the agent’s internal simulation is:

x′ = v(t)cosθ(t)
y′ = v(t)sinθ(t)
θ′ = v(t)tanϕ(t)/l.

(8)

The front wheels are simplified to one steering angle. Assuming there is no sliding, given a
steering angle, Ackermann steering geometry ensures that the vehicle will travel in a circle centered at
the intersection of the rear central axis and front wheel perpendicular lines.

Sensors 2020, 20, 7297 6 of 25

Figure 2. Overview of the reinforcement learning (RL)-based parking architecture in which Monte
Carlo tree search (MCTS) was used as the agent. The steering action was realized by the electric
power steering (EPS) system. The associated speed command for each steering action is the function of
distance, and designed to stop within the safety threshold [10].

4. Data-Efficient RL Algorithm Design

Next, the data-efficient learning approach and its algorithm for parking planning and control
are introduced. The parking accuracy issue was solved by introducing the DDPG algorithm [29] for
end-to-end automatic parking [8]; however, obtaining large amounts of data is expensive. To increase
data efficiency, a model-based truncated MCTS for approximate modified policy iteration is used,
followed by three improvement schemes.

4.1. Truncated MCTS for Approximate Modified Policy Iteration

4.1.1. Approximate Modified Policy Iteration

The idea is to use the function space approximating the state value function of a policy
(policy evaluation, E-step), followed by finding better policies using greedy steps based on the
recent evaluation (policy improvement, I-step). The evaluation-improvement pair [13] is as follows:

Vπk(s) = Eπk[rt + 1 + γV′πk> (St + 1)|St = s], E-step, (9)

πk+1(s) = arg maxa Qπk(s, a) = arg maxa E [rt + γVπk (St + 1)|St = s, At = a], I-step. (10)

AMPI starts from an initial value V0 and initial policy π1. At iteration k, the new state value
function Vk is built using the Bellman operator on Vk − 1. Then, the state value function is used to obtain
the action value. A new policy is obtained by choosing a stronger action a. If the policy improvement
theorem Qπk(s, πk(s)) ≥ Vπ(k − 1) is satisfied, the new policy πk converges to the optimal policy. For each
policy pair and estimate of the state value function, a set of rollouts is generated to build N training
samples {st, at, rt + V(st + 1)}. Non-linear approximators P′ and V′ can be used to represent the greedy
policy and state value function, respectively. The policy P′ to be trained is expressed as a classifier,
while V′ is a regressor. The goal of Equation (9) is to minimize the empirical errors:

LV′(s) = arg min V′ [
1
N

∑N

i = 1
(V′(si) − (ri + V(si + 1)))

2], (11)

Sensors 2020, 20, 7297 7 of 25

LP′(π
′) = arg minP′ [

1
N

∑N

i = 1
(P′(si|π

′) − ai)
2]. (12)

The algorithm iterates between policy evaluation and policy improvement. Algorithm 1 provides
a complete description of the approximate modified policy iteration.

Algorithm 1 Approximate Modified Policy Iteration

Input: Value function V0, policy function P0
Output: Optimal value function V*, optimal policy function P*
1. for: l = 0, 1, 2, . . . , L do
2. Generate rollouts using Vl and Pl by Equation (10)
3. Approximate value by Equation (11)
4. Approximate policy by Equation (12)
5. end for

4.1.2. Truncated MCTS Guided by Artificial Neural Networks

In this study, policy improvement and policy evaluation were implemented using MCTS.
The parking trajectories generated by reinforcement learning are used to train a value network
and a policy network (i.e., the policy evaluation step). Then, the tree search is used to select an action
stronger than the mean value of the output given by the networks (i.e., the policy improvement step).

• Truncated MCTS

When the agent encounters a new state, forward sampling sequences s, a, and r are used to
estimate the value functions. In MCTS, the state s of the agent is viewed as a node, while the edge (s, a)
stores statistical information of the state-action pair. The search tree is incrementally built from the
root node to the target state by adding promising nodes to the tree based on simulated trajectories.
The Q-value is computed as:

Q(s, a) =
1

1 + N(s, a)

∑N

i = 1
I(s, a)zi, (13)

where N(s, a) is the visit number of action a from state s, Ī (s, a) is the bool variable indicating whether
a is selected, and zi is the reward of the i th sampling. In Figure 3, a truncated variant of the MCTS is
used [14]. Compared with the frame of the previous works [10], this study uses the value function
approximation to truncate the simulation in MCTS such that the model errors cannot be accumulated.
Besides the policy ANN, the value ANN (i.e., the ANN in Figure 3c) is also used to select action in
DERL. The statistical value is stored in the edge:

{P(s, a), N(s, a), W(s, a), Q(s, a), UCT}, (14)

where UCT is the value of the upper confidence bound for trees. Each sampling selects an edge from
the root node, according to UCT:

at(s) = arg max a (Q(s, a) + cpuct P(s, a)µ (
∑

b N(s , b)
1 + N(s , a)

)0.5), (15)

where the second term (denoted as U) is for controlling exploration and µ is an adaptive coefficient to
bias the search. The smaller the value of µ is, the stronger the effect of P(s, a). When MCTS traverses to
a leaf node, child nodes are added to the tree and the new nodes are evaluated by the value network
v(s) = V′µ′ (s). The total visit number N(s, a) and the total value of the action chain from the root node

Sensors 2020, 20, 7297 8 of 25

are updated as N(s, a) = N(s, a) + 1, W(s, a) = W(s, a) + v(s). When the computation budget is reached,
the real action is selected by [12]:

π(a|s) =
N(s, a)1/τ∑
b N(s, b)1/τ

, (16)

where τ is a temperature coefficient and b is the root node’s child node.

Figure 3. The truncated MCTS guided by the policy and value networks: (a) Truncated MCTS;
(b) structure of the policy network P’θ (s); and (c) structure of the value network V’µ’ (s).

• ANN Approximation for State Value and Greedy Policy

Two completely connected forward networks were built for policy evaluation. The state value
network represents the value of the current vehicle states, regarding the final overall performance.
The policy network represents the instantaneous reactive experience learned from the training iteration
and provides information to the MCTS for balancing exploration and exploitation. The inputs and
outputs of the ANNs are listed in Table 1. The inputs of V′µ′ (s) include the vehicle pose, steering wheel
angle, and node’s brother number s = [x, y, ϕ, ψ, br], where the output is the state value estimation
Vest. The training is implemented in MATLAB, where the set of parameters for the ANNs is selected
empirically for different models.

Table 1. The inputs and outputs of artificial neural networks (ANNs).

Networks Inputs Outputs

Value network
Pose (x, y, ϕ)

Steering wheel angle ψ
Brother number br

State value Vest

Policy network Pose (x, y, ϕ)
Steering wheel angle ψ

Angle increment probability
distribution p

The target state value, V, is crucial for estimating the true action-state value Q, in order to
determine the priority of adding nodes to the tree, and to select the action in the tree for actual
execution. The value of V is obtained by Equation (6). The optimality and convergence of the policy

Sensors 2020, 20, 7297 9 of 25

iteration rely upon the fitting accuracy of value network V′µ (s) with parameters µ′. The network was
trained using the Levenberg–Marquardt method by minimizing:

L(Vest, V) =
1
N

∑N

i=1
= ‖Vest − V‖22. (17)

The policy network P′θ (s) was used to directly recommend the action probability distribution, such
that the brother number was not necessary for the current state. For multiclass classification problems,
the input is s = [x, y, ϕ, ψ] and the output p(s, a) is the probability for each action. Cross-entropy loss
is used:

H(p, q) = −
∑N

i=1
p(xi) log(q(xi)), (18)

where q(xi) is the target one-hot vector of action category.

4.2. Data-Efficient Promotion Methods for RL

To promote data efficiency during the training process, three ideas were proposed. First, we encouraged
the networks to update towards the high-return direction though weighting policy learning with
trajectory returns [30]. Secondly, the simulation-based search experience was merged with a real episode
to extract parking information. Third, a novel training pipeline customized for MCTS was proposed.

4.2.1. Policy Learning by Weighting Exploration with Trajectory Returns

For state s, if the action value of the new policy is higher than the old policy’s state value
Qπk(s, πk + 1(s)) ≥ Vπk, the algorithm is convergent [11]:

Vπ(st) ≤ Qπ(st, π′(st))
= E[rt + 1 + Vπ (st + 1)|At = π′(st)]

= Eπ′ [rt + 1 + γVπ(st + 1)]
≤ Eπ′ [rt + 1 + γQπ(st + 1, π′(st + 1))]

≤ Eπ′ [rt + 1 + γrt + 2 + γ2rt + 3 + γ3rt + 4 + . . .] = Vπ′ (st).

(19)

Vπ can be updated to maximize its calculated value. Consider a trajectory τ1, τ2, τ3, . . . , τK for
each iteration. The total expected return is:

J(π) =

∫ K−1

k=0
pπ(τk)R(τ)dτ, (20)

where pπ(τk) is the probability distribution of trajectory τk under policy π. For the original policy
iteration, all the trajectories are used to evaluate the policy. In the field of model-free RL, the policy
gradient method [8,9] takes the partial derivatives of the expected return of the network parameter such
that the return is maximized. Inspired by this, if a new distribution p′(τk) considering the trajectory
return is applied to τ, the new total expected return might be higher [30]:∫ K−1

k=0
p′π(τk)R(τ)dτ >

∫ K−1

k=0
pπ(τk)R(τ)dτ. (21)

As discussed in Kober et al. [30], this distribution can improve the lower bound in policy learning.
The rule to update the network associated with the weighting factor is:

θl+1 = θl + α′
R(τk)∑K

k=1 R(τk)
∂θl J(θl). (22)

Sensors 2020, 20, 7297 10 of 25

Differing from the original on-policy AMPI where the evaluated policy is used to make decisions,
our implemented method is off-policy, as it records the entire trajectory. The Ks trials of the highest
historical returns are used to improve the current policy.

4.2.2. Experience Augmentation with Imagination Rollouts

Apart from direct reinforcement learning from real experience, when the environment model is
available, simulated experience can also be used to train the RL. The model of a vehicle contains a priori
information of the environment with which the agent/algorithm is interacting. Extracted information
from the vehicle model benefits the construction of the value function, which is important for organizing
the MCTS. Therefore, imagination rollouts are mixed with the real trajectory to train the network V′µ(s).

The vehicle model is available in vehicle engineering. As the parking task involves driving the
car at low speed, the single-track kinematic model has been extensively used in APS for small lateral
acceleration [31]. The data augmentation scheme is shown in Figure 4. After the real trajectory (red line
in Figure 4) is generated, the brother nodes of the parking trajectory are used as virtual root nodes.
MCTS performs the simulation using the vehicle model (Equation (8)) on these branch points until the
parking process terminates. The final reward, rT, is discounted and accumulated to obtain the unbiased
estimate of the return (Equation (2)) on the virtual root nodes. The data of the training samples {st, at,
rt + V(st + 1)} can be increased in this way.

Figure 4. Parking data imagination.

A small action difference makes it hard to produce a significant value distribution difference,
as the vehicle speed and control interval are small during parking. Therefore, each move from the
root node is repeatedly sampled many times; we found that 10 times was enough. The simulation
number, which was used to obtain the unbiased estimate of the state value, was chosen by considering
the number of computer kernels. In our implementation, this number was 36.

4.2.3. Warm Start with Pre-Trained RL Model

The proposed method consists of three parts: the value network, the policy network, and the
MCTS. As the convergence of RL is difficult, a novel training pipeline in Figure 5 was proposed to
warm-start the overall method before online training using the value network and MCTS. Figure 5a
is used to obtain the convergent policy network in Figure 5b. Step by step, tuning the parameters
is easier.

Differing from Figure 3, where the value of the leaf node was obtained by V′µ(s), the MCTS
in the pre-train model used the policy network P′θ(s) for simulation, the detailed process to obtain
the simulation results can be found in Zhang et al. [10]. The kinematic vehicle model was used
for simulation. First, the selected parking experience was used to train a policy network. Then,
MCTS controlled the vehicle model to park under the guidance of the policy network. The simulation
data were collected to train the value network in Figure 5b. The data can also be obtained by other
methods, such as the optimization-based method. The reward was determined by the reward function
and the simulated terminal state.

Sensors 2020, 20, 7297 11 of 25

Figure 5. Training pipeline of the proposed method with (a) the pre-train method using MCTS and the
policy ANN [10]; and (b) the training pipeline to obtain the value ANN.

The overall algorithm is shown in Algorithm 2. The coefficient µ in Equation (15) was obtained
by experimental simulation. We determined the direction of the recommended policy action at the
root node. If the current node coincided with the recommendation, µ was set as 0.5, in order to
assign a higher weight to P. In the parking application, this recommended action was abstracted as
{increase_ angle, decrease_ angle, no_action}.

Algorithm 2 Proposed overall algorithm

Input: Value function V0, policy function P0
Output: Optimal value function V*, optimal policy function P*
1. for: t = 0, 1, 2, . . . , T do
2. Generate rollouts using MCTS guided by Pt, Equation (15), where Q is obtained by simulation
3. Approximate policy Pt + 1 by Equation (12) using the loss function Equation (18)
4. end for
5. Generate rollout samples τ = {st, at, rt + V(st + 1)} using MCTS and PT + 1
6. Approximate value network V0 by Equation (11) using the loss function Equation (17)
7. for: i = 0, 1, 2, . . . , I do
8. Generate rollouts using MCTS guided by Pi + (T + 1) and Vi + 0, Equation (15)
9. for: s = s0, . . . , st do
10. calculate recommend action by Pi + (T + 1)
11. pr = {increase_ angle, decrease_ angle, no_action}
12. execute MCTS obtain a
13. if termination
14. r = rewardfunction(st)
15. end if
16. end for
17. Experience augmentation as Figure 4
18. Approximate value by Equations (11) and (17)
19. Approximate policy by Equations (12) and (18)
20. end for
21. function MCTS(s0, P, V, pr, char)
22. execute Equations (15) and (16) with
23. if char = = ’pretrain’
24. v(s) = simulation from s to end with P
25. else
26. v(s) = V(s)
27. end if
28. if a_child ∈ char
29. µ = 0.5
30. else
31. µ = 1.5
32. end if
33. return a
34. end function

Sensors 2020, 20, 7297 12 of 25

5. Simulations

For convenience of comparison, the initial poses for parking were fixed. They were evenly
distributed in x = [1.5 m, 3.5 m], y = [1.25 m, 2.25 m] with 25 positions. The initial heading angles were
set to zero. Parallel parking was considered in this study, in order to determine the effectiveness of the
proposed learning method. The simulation conditions were as follows: the length of the parking space
was 5.5 m with a target parking pose of −0.85 m and 0◦ in y and θ, respectively, in the parking space
co-ordinate system (as shown in Figure 6). The entire set of parameters are listed in Appendix A.

Figure 6. Simulation and experimental environment setup in the parking co-ordinate system (Dr and
Df are the distances from rear and front tyres to the parking space edge; d2 and d3 are the distances
from left and right corners to the rear obstacle; d1 is the minimum distance to the front obstacle).

5.1. Feasibility of the Learning Algorithm

We performed simulations to study the effectiveness of the proposed method. To this end,
the control object was first set as a single-track kinematic model, which was used to quickly obtain the
pre-train model. Then, the policy network was used to obtain the value network. The influence factor
of the algorithm was investigated by controlling the Carsim vehicle.

5.1.1. Model Pre-Trained with the Policy Network and MCTS

The pre-trained model was used to obtain the policy network. In the reward function in Equation
(6), the range of Ry and Rθ was 0 to 20,000, while the experimental value of the convergent −Ra was 600
to 1000. The learning process for pre-training the model is shown in Figure 7. The size of the network
had little influence on the final overall reward and smooth term. A 50 × 50 network was slow to
converge, due to the insufficient training for the larger number of parameters. Using a relatively small
network, the prediction error converged faster. During the early stage of learning, the reward increased
quickly, approaching 19,000. Although the prediction error could be further reduced, the reward of the
pre-train model converged in about 20 iterations, which included 500 parking simulations. Finally,
the hidden layer size of the final policy network was designed to be 25 × 25, considering the real-time
performance of the experiment.

Sensors 2020, 20, 7297 13 of 25

Figure 7. Results of the pre-train model: (a) Total reward using different hidden layer size of the
policy networks; (b) reward of the steering smooth term Ra defined in Equation (6) for 3 sizes of policy
networks; (c) steering wheel angle prediction error; and (d) fuzzy action prediction accuracy of the
selected 25 × 25 hidden layer network.

The policy network’s prediction error is shown in Figure 7c,d. The final prediction error of the
selected network for each exact action (resolution of 5 degrees) was over 30%. To more effectively use
the learned information of the policy network, the action was blurred as {increase_angle, decrease_angle,
no_action}. The prediction accuracy for the heuristic information of the action direction is given
in Figure 7d, where the boundary for successful prediction is when the probability sum of the
corresponding action output of the network is higher than 0.5. The figure indicates that the prediction
accuracy after the fuzzification action was high.

5.1.2. Complete Training of RL Model

After the policy network was obtained, data {st, at, rt + V(st + 1)} were generated (Figure 4) and
the rewards were used to train the value network. To reduce the influence of randomness for the
training of ANN, ten networks were trained with different training processes, where the data sets were
differently randomly divided by the same rate of 80% for training, 10% for validation, and 10% for
testing. The ten networks were obtained using the same data of 90% in the raw data with different
training/validation/testing data, 10% of the raw data was preserved to select the network. This can
ensure that the 10% of the raw data is not seen by the networks during the training. The network with
the lowest test error on the preserved data set was selected. The training of policy networks follows
this same process. Figure 8a depicts the training process of the best value network, showing that 70%
and 69.9% of the training and test sample errors were below 1000, respectively.

Sensors 2020, 20, 7297 14 of 25

Figure 8. The results of the first generation of parking simulations combining MCTS with the policy
network and value network: (a) The training error histogram distribution of the value network; and (b)
the average reward over 25 initial parking positions for different MCTS parameters.

To study the influence of the parameters on the parking results, the performance of the proposed
method over all 25 initial poses with different Monte Carlo sampling times cmax and weight terms cpuct

in Equation (15) was evaluated using the Carsim vehicle. Figure 8b depicts the average reward of
11 different cpuct values (from 0 to 10,000) of the policy network and the corresponding sampling times
cmax (from 10 to 100). The reward upper bound was 20,000. For cpuct ≥ 6000 and cmax ≥ 30, most of
the reward was above 18,120; deducting the mean action punishment of 600, the residue reward was
1230 (0.82 degrees) in Rθ and 50 (0.9 cm) in Ry. For each cmax value, the lowest reward consistently
occurred when cpuct = 0. This suggests that the sampling priority in Equation (15) benefitted from the
guidance of the policy network. The policy network is important and complementary to the value
network, in which the value prediction error was unavoidable.

To evaluate the contributions of the proposed method to the improvement of the combined model,
more simulations were conducted for comparison. We used parameters cpuct = 6000 and cmax = 30, as they
provided a good result (see Figure 8). As shown in Figure 9, the proposed data-efficient RL achieved
high average reward over 25 initial positions. By contrast, the performance of the policy network alone
was the worst. This verified the contribution of MCTS and the value network. The adaptive search
process µ of Equation (15) was the most crucial component for the DERL. Data augmentation (DA) is
important, given the lack of adaptive µ. This suggests that increasing the weights of promising action
in the same action direction as the recommended action at the root node can significantly enhance
the overall performance. The reason for this is that the policy network’s prediction of the fuzzified
action was accurate (see Figure 7). The proposed method benefits from the extracted information.
Without this extracted information, the value network becomes more important. The reward increased
from 15,523 to 17,297 with the help of data augmentation. The conventional value-based RL method
is sensitive to the fitting accuracy of the value function. The result indicates that using exploration
guidance can potentially conquer this shortcoming, similar to what was observed in the multi-armed
bandit problem [14], where the regret of the algorithm benefited from a predictor.

5.2. Comparison with Curve-Based Path Planning Method

We compared curve-based path planning and the proposed method. Continuous-curvature path
planning uses clothoid curves [23,24]. In the conventional path planning method for parallel parking,
the vehicle is retrieved from the parking space [32]. As shown in Figure 10a, circle arc 1 has the smallest
radius and circle arc 2 has a radius greater or equal to the minimum radius. The clothoid curves and
straight lines are used as transition curves. The goal pose for continuous-curvature path planning was
y = −0.85 m, while θwas determined by whether the parameter could be found by the retrieval process.
The initial goal pose was located at the center of the parking space. If retrieval safety could not be
satisfied, xgoal was reduced and θgoal was increased. The safety buffer distance for both curve-based

Sensors 2020, 20, 7297 15 of 25

path planning and the proposed RL-based method was 0.25 m in the parking slot and 0.15 m at the
corner of the obstacle car.

Figure 9. Average rewards received during training by the original algorithm and the proposed
data-efficient reinforcement learning (DERL) algorithm. The basic MCTS has neither data augmentation
(DA) or adaptive µ.

Figure 10. Vehicle trajectories given by different methods: (a) Ideal trajectory of the planned path using
continuous-curvature curve-based method; (b) vehicle trajectory of the proposed RL method; (c) path
curvatures of different methods; and (d) vehicle speed command of the proposed RL parking.

In Figure 10, the initial pose was (1.5 m, 1.25 m, 0); the final poses for continuous-curvature path
and RL were (−4.60 m, −0.85 m, 4.56◦) and (−4.70 m, −0.86 m, 0.73◦), respectively. Both the path
planning method and the proposed method met the safety requirements. The final angle of RL was
notably smaller than that given by the planned path.

To interpret the differences in the final pose of both methods, the path curvature is compared in
Figure 10c. This figure demonstrates that, during the early stage of parking, the proposed reinforcement

Sensors 2020, 20, 7297 16 of 25

learning method behaved more decisively than the continuous-curvature method. In the conventional
method, the path was designed using a speed of 1 m/s, such that the path could be followed by the path
following control modular. If the real speed is below 1 m/s, the path can theoretically be followed [24].
The continuous-curvature method failed to maximize the system performance. In the acceleration
phase in Figure 10d, the speed was slower than 1 m/s and the steering wheel action in the time domain
resulted in more urgent steering in the distance domain to the first curvature rate change point, as the
action of RL is coupled with time. Figure 10c illustrates that the path length of RL was shorter than the
planned path using continuous-curvature curves. MCTS searches for the most promising action to
maximize the reward Equation (6) at each control interval. The advantage of integrated planning and
control in a rolling optimization manner is verified.

5.3. Data Efficiency Verification During Adaptability to Changes in Vehicle Model

We evaluated the sample efficiency of DERL by comparing the parking sample numbers required
by DERL and several benchmarks to obtain a stable solution. All the algorithms were based on MCTS
and used the same pre-trained policy network. The benchmarks include DERL without adaptive µ,
data augmentation, and off-policy re-weighting. The evaluation index was the total reward, which is
high only if all its component rewards are high. The parameters of the network were updated every
25 trials (one iteration).

The vehicle dynamics model has strong non-linearity at low speed. As in the last section,
the trained RL model using the kinematic model was transferred to control the high-fidelity Carsim
vehicle. Adaptability to changes in the vehicle model is crucial for automatic parking. To represent a
variable vehicle model, the transmission ratio from the steering wheel angle to the front wheel was
altered from 15.88 to variable, as shown in Table 2. Similar to the real system, the steering rate was
higher at small steering wheel angles.

Table 2. Variable steering rate for different steering wheel angle of the controlled vehicle.

Steering Rate

Steering wheel angle (◦) −530 −430 −330 −230 −130 130 230 330 430 530
Steering rate 15.90 16.11 16.21 16.23 16.53 16.45 16.32 16.20 16.07 15.79

Figure 11 shows that the proposed method required the least amount of parking samples to achieve
the same performance level. The initial policy was closer to the optimal solution; the data augmentation
and the guidance of the highly discrete action (Figure 7d) brought benefits to DERL. The basic MCTS
without re-weighting did not reuse historical parking experiences in an on-policy manner and the
training was unstable for the selected parameter. By contrast, the off-policy re-weighting process
smoothed the learning process, as the training data that had high weight among all past experiences
were continuously selected from the data set generated by the different policies. For DERL without
adaptive µ and data augmentation, the former required fewer interactions. This indicated that parking
experience augmentation with imagination rollouts had a stronger impact, compared to the guidelines
provided by fuzzy action prediction. The standard deviation of the proposed method was lower than
those of basic MCTS and MCTS without re-weighting. Both the data augmentation and adaptive policy
guidance contributed to the robustness of the method. This confirms that a mismatched vehicle model,
within a certain degree, can be carefully used to improve the data efficiency.

Sensors 2020, 20, 7297 17 of 25

Figure 11. Average reward over 25 initial parking position during the learning processes of different
algorithms where DERL is the proposed complete method. One iteration is equal to 25 parking trials.

To intuitively interpret the results, the steering angle outputs for each iteration are shown in
Figure 12. The basic MCTS without the re-weighting process updated the value of the state in an
unreliable direction for the second iteration, which led to inconsistent steering wheel action change.
In contrast, the proposed method was more stable with each generation. This indicates that the fitting
of the value function in the proposed method was more robust to the uncertainty of network training.
This phenomenon is similar to that reported by Wang et al. [33], where past experience was used to
improve the actor–critic algorithm’s parameter update direction. The result of removing off-policy
re-weighting revealed that data from past interactions with the environment are also favorable for
AMPI-based reinforcement learning. Compared with the basic MCTS, the reward of DERL with data
augmentation rose more quickly. DERL used unbiased estimation of model-generated rollouts as
supplementary data, which is different from the mode-free method, in which the performance was
sensitive to the model error. In model-free RL, short-range model-generated rollouts branched from
the real-world data were demonstrated to avoid the model pitfalls [34]. However, it is not applicable
in our case where the rewards are sparse.

Figure 12. Steering wheel angle for each iteration at initial position (1.25 m, 1.5 m, 0) using different
methods: (a) Steering angle for the proposed data-efficient reinforcement learning; and (b) basic MCTS
without re-weighting. The black arrows are the direction of the changes.

Overall, the proposed reinforcement learning method achieved an average reward of 18,106 in
25 trials (i.e., one network update) in Carsim and, so, the data efficiency was verified. Each module
of the proposed DERL was supported by the ablation study for its adaptability to changes in the
vehicle model.

Sensors 2020, 20, 7297 18 of 25

6. Real Vehicle Experiments

A real full-sized vehicle experiment was performed to demonstrate the effectiveness of the
proposed method. The initial training positions were the same as in Figure 6. The experimental
platform was a Roewe E50 pure electric car made by SAIC Motor (Shanghai, China), as shown in
Figure 13. The dimensions of the parking space are 5.5 m × 2 m. The algorithm was executed using
a dSPACE MicroAutoBox II 1401/1513 with a 900 MHz processor. Steering was controlled by an
electronic power steering system. The maximum error of the positioning accuracy during parking was
about 0.1 m, using the federated Kalman filter estimation algorithm. As driving torque at low speed
struggles to overcome static friction, the starting and termination speed orders were set to step signals
of 0.2 and 0 m/s.

Figure 13. The test platform equipped with AVM, LiDAR and a 900 MHz processor.

The test platform was equipped with an AVM system, mono camera, LiDAR, radar, and wheel
speed sensors. The AVM system monitored around the body, constructing a bird’s-eye view, was used
for the detection of parking space lines and remote monitoring [3,4,35]. The mono camera was used to
detect pedestrians and other vehicles. The radar was used to detect short-range obstacles. The LiDAR
can detect the parking space (i.e., the space between two vehicles) [5]. After the detection of the parking
space, the vehicle pose was estimated by dead reckoning, using the data of the motion sensors [19,24].

The experiments (also see Supplementary Figure S1, Video S1 and Appendix B) consisted of
two groups: First, the initial positions were set as training positions as shown in Figure 6 (25 tests),
in order to verify the adaptability of the algorithm to real vehicle dynamics. Second, the initial
orientation at (2.5 m, 1.75 m, 0) was changed from 0◦ to [−10◦, 10◦] with an interval of 1◦, in order to
test the generalization ability to unseen initial parking poses for 20 tests. As shown in Table 3, the mean
final angle ∆θ between the vehicle longitudinal axis and the road edge was less than 1◦ with a standard
deviation of 0.0728◦, fulfilling the requirement of ISO 16,787 [36] (−3◦ to 3◦, 1.5◦). Compared to parking
relying on the pre-trained model (MCTS + policy network) and the pre-trained model with a refined
vehicle model, the final pose of the proposed method was better, with respect to a deviation of y,
final angle, and success rate. Among the three methods, using MCTS plus the policy network and
kinematic vehicle model performed the worst, as it suffered from model error. The result shows that
a vehicle model with high precision is required to directly apply the order sequence searched by
MCTS [10]. Compared with Zhang et al. [10], in which MCTS only used the policy ANN and the
refined vehicle model to obtain the reward, DERL does not model the response characteristics of the
vehicle steering and driving system, showing less requirement on the accuracy of the vehicle model.
However, the potential disadvantages of DERL are its longer run time (about 3 m longer) and more
complex structure, which requires more hyper-parameters introduced by the value network.

Sensors 2020, 20, 7297 19 of 25

Table 3. Test results for the offline training positions of 25 × 3 parking trials.

Variable
DERL MCTS + Policy ANN +

Refined Vehicle Model MCTS + Policy ANN

Mean Std. Deviation Mean Std. Deviation Mean Std. Deviation

∆y (m) 0.0224 0.0229 0.0944 0.0267 0.6566 0.3882
∆θ (◦) 0.8867 0.0728 2.2475 0.9722 −13.3821 6.4556
Dr (m) 0.0872 0.0297 0.1697 0.0269 −0.5565 0.3711
Df (m) 0.0516 0.0302 0.0793 0.0363 −0.0260 0.1852

Safe d1 (m) 0.2025 0.0314 0.2166 0.0347 0.1124 0.0922
Safe d2 (m) 0.2298 0.0443 0.2643 0.0365 −0.1112 0.1707
Safe d3 (m) 0.2058 0.0434 0.2034 0.0215 0.2457 0.0030

Time (s) 14.9602 0.8968 15.5552 0.7277 14.8658 0.8314
Success (%) 100 84 8

To analyze the results, the parking control and state profiles for the initial position (3.5 m, 1.5 m, 0)
are shown in Figure 14, which shows that the driving and steering systems had inevitable time delays.
Although we did not model this characteristic, the model error does not accumulate for the proposed
method, due to its rolling planning and control feature at each control time interval. The adaptability
of DERL to vehicle dynamics was confirmed.

Figure 14. Experimental parking control and state profiles of DERL for the initial pose (3.5 m, 1.5
m, 0): (a) Parking trajectory; (b) speed profile; (c) steering wheel angle profile; (d) orientation angle;
(e) acceleration; and (f) steering wheel speed.

The experimental results for different initial poses are shown in Table 4. The results are similar to
those in Table 3: the final pose accuracy and stability performance of DERL were better than those
of the parking trajectory given by the others. The tree search in DERL acted as a local optimizer.
The reactive experience of the policy network and the predictive long-term return of Equation (6) by
the value network were combined by MCTS, thus maximizing its overall performance. Similar to the
results provided in Table 3, MCTS with the policy network using only the vehicle kinematic model
performed the worst, partially due to the deviation in the chassis response (as shown in Figure 14b,c).

Sensors 2020, 20, 7297 20 of 25

Table 4. Test results for changing initial poses for 20 × 3 parking trials.

Variable
DERL MCTS + Policy ANN +

Refined Vehicle Model MCTS + Policy ANN

Mean Std. Deviation Mean Std. Deviation Mean Std. Deviation

∆y (m) 0.0169 0.0148 0.0892 0.0263 0.4389 0.3143
∆θ (◦) 0.9038 0.0800 2.8832 2.5573 −7.8702 10.1951
Dr (m) 0.0846 0.0173 0.1603 0.0277 −0.3454 0.3064
Df (m) 0.0485 0.0186 0.0445 0.0854 −0.0311 0.2066

Safe d1 (m) 0.2182 0.0373 0.2178 0.1344 0.1105 0.0902
Safe d2 (m) 0.2162 0.0507 0.2861 0.0719 0.0791 0.4118
Safe d3 (m) 0.1917 0.0502 0.2081 0.0225 0.2906 0.1601

Time (s) 15.0560 0.6546 15.5248 0.3983 14.1632 1.3715
Success (%) 100 70 10

The test control and state profile are shown in Figures 15 and 16, respectively. The generalization
ability of the proposed method was confirmed by the experimental results. Both the proposed DERL
and the widely used DDPG [8] use off-policy reinforcement learning. The significant difference was
that DERL used the vehicle model to extract an unbiased estimate of the state value information
using Monte Carlo simulation, which is performed offline. This feature allows DERL to combine real
parking information with imaginary rollouts. The integration of the planning algorithm and machine
learning is potentially more scalable and effective. Compared with [10], which relied on many data to
build and verify the accuracy of vehicle model, DERL uses a kinematic vehicle model without system
identification. The advantage of value ANN in MCTS has been confirmed.

Figure 15. Experimental parking control and state profiles of DERL for the initial pose (2.5 m, 1.75 m,
−10◦): (a) Parking trajectory; (b) speed profile; (c) steering wheel angle profile; (d) orientation angle;
(e) acceleration; and (f) steering wheel speed.

Sensors 2020, 20, 7297 21 of 25

Figure 16. Experimental parking control and state profiles of DERL for the initial pose (2.5 m, 1.75 m,
10◦): (a) Parking trajectory; (b) speed profile; (c) steering wheel angle profile; (d) orientation angle;
(e) acceleration; and (f) steering wheel speed.

7. Conclusions

In this work, a novel design for a reinforcement learning algorithm composed of Monte Carlo tree
search and two neural networks was proposed for data-efficient automatic parking. First, MCTS guided
by an action classification network is used to obtain a pre-trained model. Subsequently, the state
value fitting network is trained using the parking data generated by the pre-trained model. Then,
the classification network and fitting network are combined with MCTS. If the controlled objective is
changed the ANNs can be updated. In the simulation, DERL achieved better parking in a slot within one
maneuver, and showed better adaptability than the path-velocity decomposition method. The ability
of continuous learning was realized by the use of value ANN. The improvement in data efficiency was
confirmed by both high-fidelity Carsim simulations and real vehicle experiments. The key to its success
is the integration of Monte Carlo tree search, adaptive action exploration guidance, machine learning,
and the use of the vehicle model. DERL demonstrated that model-based reinforcement learning is not
only feasible but also scalable and practicable for a safety-crucial autonomous driving task.

The proposed method generates one control order at each time interval, in a receding horizon
manner under time-varying perception errors. That is realized by truncating the simulation in [10].
The location errors are inevitably delivered to the planning and control system, as the latter make
decisions based on the perception result. The real vehicle experimental results showed that the final
parking performance of DERL, which did not use system identification, was better than that of MCTS
guided by a policy network using a refined vehicle model, which planed fewer motions and was more
affected by vehicle model errors and perception errors. Similar to [1,8,19], re-planning proved to be a
powerful tool for autonomous driving systems under perception uncertainty.

The suggested areas of future studies are threefold: First, the error characteristics of parking
space detection and vehicle odometry can be explicitly modeled, and the uncertain information of the
motion sensors and the filtering algorithm can be integrated into the tree search, in order to realize
probabilistic inferences. The potential method is the likelihood function learning of the multiple-input
multiple-output systems [37]. Second, the proposed method can be expanded to maneuver planning,
such that the agent can park in smaller spaces; by contrast, the current work only realizes backward
motion. Also, the dimensions of the parking space, cross-parking scenarios, as well as irregularly
placed obstacles should be further considered. Third, we plan to apply the proposed method to

Sensors 2020, 20, 7297 22 of 25

multi-agent interactive parking, where the tracking and behavior prediction of other vehicles are
necessary. The proposed model-based data-efficient learning algorithm may serve as an essential
component of a larger intelligent system.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/24/7297/s1,
Figure S1: All parking trajectory of experiments, Video S1: PARKING20200905.mp4.

Author Contributions: Conceptualization, H.C. and S.S.; methodology, S.S.; software, S.S.; validation, S.S., H.S.;
formal analysis, H.S.; investigation, M.L.; resources, H.S.; data curation, H.S.; writing—original draft preparation,
S.S.; writing—review and editing, H.S.; visualization, M.L.; supervision, H.C.; project administration, H.C.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors are sincerely grateful to the anonymous reviewers for their insightful suggestions
and comments, which improved this manuscript. The authors thank J.L., F.H., J.S., X.C., Q.Y. and J.Z. for helping
to establish the experimental platform, J.Z. and F.H. for the valuable advice on the pre-trained model, and J.Z. for
the paper review and helpful suggestions and comments.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Whole set of parameters.

Vehicle Parameters

Overall length 3.569 m
Overall width 1.551 m

Front overhang 0.72 m
Rear overhang 0.544 m

Wheel base 2.305 m
Transmission ratio 15.88

Neural network parameters

Size of policy network’s hidden layers [25, 25]
Size of value network’s hidden layers [50, 50]

Data divide {80%, 10%, 10%}
Number of ANNs 10

Control setup

Steering wheel angle resolution 5◦

Number of discrete actions 9
Control interval 50 ms

Maximum steering order speed 400◦/s

MCTS

cpuct 0–10,000
Sampling times 10–100

µ, τ {0.5, 1.5}, 0.1

Reward function

c1, c2, c3 1.1, 0.3, 0.5

Data augmentation

Action repeat numbers 10

Simulation numbers 36

http://www.mdpi.com/1424-8220/20/24/7297/s1

Sensors 2020, 20, 7297 23 of 25

Appendix B

Table A2. Test extreme results for training poses for 25 × 3 parking trials.

Variable
DERL MCTS + Policy ANN +

Refined Vehicle Model MCTS + Policy ANN

Max Min Max Min Max Min

∆y (m) 0.0827 0.0021 0.1465 0.037 1.6275 0.0943
∆θ (◦) 0.9927 0.7335 5.0014 0.0753 −2.1382 −23.7052
Dr (m) 0.1573 −0.0040 0.2213 0.1115 −0.0192 −1.4875
Df (m) 0.1197 −0.0405 0.1532 −0.0281 0.3293 −0.5608

Safe d1 (m) 0.2975 0.1611 0.3518 0.168 0.4318 0.0154
Safe d2 (m) 0.2986 0.1695 0.3515 0.1993 0.1878 −0.377
Safe d3 (m) 0.2727 0.1453 0.2761 0.1724 0.2492 0.2374

Time (s) 17.875 13.825 16.875 14.285 16.155 13.32

Table A3. Test extreme results for changing initial poses for 20 × 3 parking trials.

Variable
DERL MCTS + Policy ANN +

Refined Vehicle Model MCTS + Policy ANN

Max Min Max Min Max Min

∆y (m) 0.0474 0.0018 0.1269 0.0374 1.0407 0.0006
∆θ (◦) 0.9887 0.6989 8.9211 −0.1239 25.3742 −19.9785
Dr (m) 0.1219 0.0575 0.2046 0.1119 0.1502 −0.9195
Df (m) 0.0874 0.0178 0.1168 −0.1696 0.1541 −0.8375

Safe d1 (m) 0.2930 0.1761 0.5076 0.0104 0.4184 0.0087
Safe d2 (m) 0.2878 0.1203 0.4331 0.1892 1.6144 −0.2839
Safe d3 (m) 0.2610 0.1005 0.2652 0.1783 0.9498 0.238

Time (s) 16.5250 14.175 16.14 14.83 15.085 8.7

References

1. Jang, C.; Kim, C.; Lee, S.; Kim, S.; Lee, S.; Sunwoo, M. Re-Plannable Automated Parking System With a
Standalone Around View Monitor for Narrow Parking Lots. IEEE Trans. Intell. Transp. Syst. 2019, 21, 1–14.
[CrossRef]

2. Banzhaf, H.; Nienhuser, D.; Knoop, S.; Zollner, J.M. The Future of Parking: A Survey on Automated Valet
Parking with an Outlook on High Density Parking. In Proceedings of the 2017 28th IEEE Intelligent Vehicles
Symposium, Los Angeles, CA, USA, 11–14 June 2017; pp. 1827–1834.

3. Qin, T.; Chen, T.; Chen, Y.; Su, Q. AVP-SLAM: Semantic Visual Mapping and Localization for Autonomous
Vehicles in the Parking Lot. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems, IROS 2020, Las Vegas, NV, USA, 25–29 October 2020.

4. Yan, W.; Tao, Y.; Junqiao, Z.; Linting, G.; Wei, J. VH-HFCN based Parking Slot and Lane Markings
Segmentation on Panoramic Surround View. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium
(IV), Piscataway, NJ, USA, 26–30 June 2018; pp. 1767–1772.

5. Yang, Q.; Chen, H.; Su, J.; Li, J. Towards High Accuracy Parking Slot Detection for Automated Valet
Parking System. In Proceedings of the SAE 2019 New Energy and Intelligent Connected Vehicle Technology
Conference, Shanghai, China, 21–22 May 2019; pp. 1–10.

6. Kant, K.; Zucker, S.W. Toward Efficient Trajectory Planning—The Path-Velocity Decomposition. Int. J. Robot. Res.
1986, 5, 72–89. [CrossRef]

7. Du, Z.; Miao, Q.; Zong, C. Trajectory Planning for Automated Parking Systems Using Deep Reinforcement
Learning. Int. J. Automot. Technol. 2020, 21, 881–887. [CrossRef]

8. Zhang, P.; Xiong, L.; Yu, Z.; Fang, P.; Yan, S.; Yao, J.; Zhou, Y. Reinforcement Learning-Based End-to-End
Parking for Automatic Parking System. Sensors 2019, 19, 3996. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/TITS.2019.2891665
http://dx.doi.org/10.1177/027836498600500304
http://dx.doi.org/10.1007/s12239-020-0085-9
http://dx.doi.org/10.3390/s19183996
http://www.ncbi.nlm.nih.gov/pubmed/31527481

Sensors 2020, 20, 7297 24 of 25

9. Bejar, E.; Moran, A. Reverse Parking a Car-Like Mobile Robot with Deep Reinforcement Learning and
Preview Control. In Proceedings of the 2019 IEEE 9th Annual Computing and Communication Workshop
and Conference, Las Vegas, NV, USA, 7–9 January 2019; pp. 377–383.

10. Zhang, J.R.; Chen, H.; Song, S.Y.; Hu, F.W. Reinforcement Learning-Based Motion Planning for Automatic
Parking System. IEEE Access 2020, 8, 154485–154501. [CrossRef]

11. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; The MIT Press: London, UK, 2018;
pp. 323–339.

12. Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. Mastering the game of Go with deep neural networks and tree search.
Nature 2016, 529, 484–489. [CrossRef] [PubMed]

13. Scherrer, B.; Ghavamzadeh, M.; Gabillon, V.; Lesner, B.; Geist, M. Approximate Modified Policy Iteration and
its Application to the Game of Tetris. J. Mach. Learn. Res. 2015, 16, 1629–1676.

14. Rosin, C.D. Multi-armed bandits with episode context. Ann. Math. Artif. Intell. 2011, 61, 203–230. [CrossRef]
15. Browne, C.B.; Powley, E.; Whitehouse, D.; Lucas, S.M.; Cowling, P.I.; Rohlfshagen, P.; Tavener, S.; Perez, D.;

Samothrakis, S.; Colton, S. A Survey of Monte Carlo Tree Search Methods. IEEE Trans. Comput. Intell.
AI Games 2012, 4, 1–43. [CrossRef]

16. Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.; Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.;
Bolton, A.; et al. Mastering the game of Go without human knowledge. Nature 2017, 550, 354. [CrossRef]

17. Song, J.; Zhang, W.W.; Wu, X.C.; Cao, H.T.; Gao, Q.M.; Luo, S.Y. Laser-based SLAM automatic parallel
parking path planning and tracking for passenger vehicle. IET Intell. Transp. Syst. 2019, 13, 1557–1568.
[CrossRef]

18. Chen, X.; Xu, X.; Yang, Y.; Wu, H.; Tang, J.; Zhao, J. Augmented Ship Tracking Under Occlusion Conditions
From Maritime Surveillance Videos. IEEE Access 2020, 8, 42884–42897. [CrossRef]

19. Lee, S.; Lim, W.; Sunwoo, M. Robust Parking Path Planning with Error-Adaptive Sampling under Perception
Uncertainty. Sensors 2020, 20, 3560. [CrossRef]

20. Li, B.; Wang, K.; Shao, Z. Time-Optimal Maneuver Planning in Automatic Parallel Parking Using a
Simultaneous Dynamic Optimization Approach. IEEE Trans. Intell. Transp. Syst. 2016, 17, 3263–3274.
[CrossRef]

21. Chao, C.; Rickert, M.; Knoll, A. Path planning with orientation-aware space exploration guided heuristic
search for autonomous parking and maneuvering. In Proceedings of the 2015 IEEE Intelligent Vehicles
Symposium (IV), Piscataway, NJ, USA, 28 June–1 July 2015; pp. 1148–1153.

22. Banzhaf, H.; Sanzenbacher, P.; Baumann, U.; Zoellner, J.M. Learning to Predict Ego-Vehicle Poses for
Sampling-Based Nonholonomic Motion Planning. IEEE Robot. Autom. Lett. 2019, 4, 1053–1060. [CrossRef]

23. Vorobieva, H.; Glaser, S.; Minoiu-Enache, N.; Mammar, S. Automatic Parallel Parking in Tiny Spots:
Path Planning and Control. IEEE Trans. Intell. Transp. Syst. 2015, 16, 396–410. [CrossRef]

24. Fan, Z.; Chen, H. Study on Path Following Control Method for Automatic Parking System Based on LQR.
SAE Int. J. Passeng. Cars Electron. Electr. Syst. 2016, 10, 41–49. [CrossRef]

25. Du, X.X.; Tan, K.K. Autonomous Reverse Parking System Based on Robust Path Generation and Improved
Sliding Mode Control. IEEE Trans. Intell. Transp. Syst. 2015, 16, 1225–1237. [CrossRef]

26. Ballinas, E.; Montiel, O.; Castillo, O.; Rubio, Y.; Aguilar, L.T. Automatic parallel parking algorithm for a
car-like robot using fuzzy pd+i control. Eng. Lett. 2018, 26, 447–454.

27. Bernhard, J.; Gieselmann, R.; Esterle, K.; Knoll, A. Experience-Based Heuristic Search: Robust Motion
Planning with Deep Q-Learning. In Proceedings of the 2018 21st International Conference on Intelligent
Transportation Systems, Maui, HI, USA, 4–7 November 2018; pp. 3175–3182.

28. Hu, F.; Chen, H.; Zhang, J. Study on Robust Motion Planning Method for Automatic Parking Assist System
Based on Neural Network and Tree Search. In Proceedings of the SAE 2019 New Energy and Intelligent
Connected Vehicle Technology Conference, Shanghai, China, 21–22 May 2019.

29. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous
control with deep reinforcement learning. In Proceedings of the 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, 2–4 May 2016.

30. Kober, J.; Peters, J. Policy search for motor primitives in robotics. Mach. Learn. 2011, 84, 171–203. [CrossRef]
31. Wang, W.; Song, Y.; Zhang, J.; Deng, H. Automatic Parking of Vehicles: A Review of Literatures. Int. J.

Automot. Technol. 2014, 15, 967–978. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2020.3017770
http://dx.doi.org/10.1038/nature16961
http://www.ncbi.nlm.nih.gov/pubmed/26819042
http://dx.doi.org/10.1007/s10472-011-9258-6
http://dx.doi.org/10.1109/TCIAIG.2012.2186810
http://dx.doi.org/10.1038/nature24270
http://dx.doi.org/10.1049/iet-its.2019.0049
http://dx.doi.org/10.1109/ACCESS.2020.2978054
http://dx.doi.org/10.3390/s20123560
http://dx.doi.org/10.1109/TITS.2016.2546386
http://dx.doi.org/10.1109/LRA.2019.2893975
http://dx.doi.org/10.1109/TITS.2014.2335054
http://dx.doi.org/10.4271/2016-01-1881
http://dx.doi.org/10.1109/TITS.2014.2354423
http://dx.doi.org/10.1007/s10994-010-5223-6
http://dx.doi.org/10.1007/s12239-014-0102-y

Sensors 2020, 20, 7297 25 of 25

32. Choi, S.; Boussard, C.; D’Andrea-Novel, B. Easy path planning and robust control for automatic parallel
parking. In Proceedings of the 18th IFAC World Congress, Milano, Italy, 28 August–2 September 2011;
pp. 656–661.

33. Wang, W.; Yu, N.; Gao, Y.; Shi, J. Safe Off-Policy Deep Reinforcement Learning Algorithm for Volt-VAR
Control in Power Distribution Systems. IEEE Trans. Smart Grid 2020, 11, 3008–3018. [CrossRef]

34. Janner, M.; Fu, J.; Zhang, M.; Levine, S. When to trust your model: Model-based policy optimization.
In Proceedings of the 33rd Annual Conference on Neural Information Processing Systems, NeurIPS 2019,
Vancouver, BC, Canada, 8–14 December 2019.

35. Hamada, K.; Zhencheng, H.; Mengyang, F.; Hui, C. Surround view based parking lot detection and tracking.
In Proceedings of the 2015 IEEE Intelligent Vehicles Symposium (IV), Piscataway, NJ, USA, 28 June–1 July
2015; pp. 1106–1111.

36. British Standards Institution. Intelligent Transport Systems-Assisted Parking System (APS)-Performance
Requirements and Test Procedures; BS ISO 16787:2017; BSI Standards Limited: UK, 2017.

37. Jeon, Y.-S.; Lee, N.; Poor, H.V. Robust Data Detection for MIMO Systems with One-Bit ADCs: A Reinforcement
Learning Approach. IEEE Trans. Wirel. Commun. 2020, 19, 1663–1676. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TSG.2019.2962625
http://dx.doi.org/10.1109/TWC.2019.2956044
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Environmental Perception
	Motion Generation

	System Structure and Problem Definition
	Structure of Automatic Parking System
	Problem Definition of Parking

	Data-Efficient RL Algorithm Design
	Truncated MCTS for Approximate Modified Policy Iteration
	Approximate Modified Policy Iteration
	Truncated MCTS Guided by Artificial Neural Networks

	Data-Efficient Promotion Methods for RL
	Policy Learning by Weighting Exploration with Trajectory Returns
	Experience Augmentation with Imagination Rollouts
	Warm Start with Pre-Trained RL Model

	Simulations
	Feasibility of the Learning Algorithm
	Model Pre-Trained with the Policy Network and MCTS
	Complete Training of RL Model

	Comparison with Curve-Based Path Planning Method
	Data Efficiency Verification During Adaptability to Changes in Vehicle Model

	Real Vehicle Experiments
	Conclusions
	
	
	References

