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Abstract: Classification algorithms require training data initially labelled by classes to build a model
and then to be able to classify the new data. The amount and diversity of training data affect the
classification quality and usually the larger the training set, the better the accuracy of classification.
In many applications only small amounts of training data are available. This article presents
a new time series classification algorithm for problems with small training sets. The algorithm
was tested on hand gesture recordings in tasks of person identification and gesture recognition.
The algorithm provides significantly better classification accuracy than other machine learning
algorithms. For 22 different hand gestures performed by 10 people and the training set size equal to
5 gesture execution records per class, the error rate for the newly proposed algorithm is from 37% to
75% lower than for the other compared algorithms. When the training set consists of only one sample
per class the new algorithm reaches from 45% to 95% lower error rate. Conducted experiments
indicate that the algorithm outperforms state-of-the-art methods in terms of classification accuracy in
the problem of person identification and gesture recognition.

Keywords: biometrics; classification; gesture recognition; one-shot learning; person identification;
small training sets

1. Introduction

Classification algorithms, an important tool in Computational Intelligence Methods and Statistical
learning [1-3], are widely used in many areas, for example biometrics, economic trend analysis,
human-computer interfaces, medical diagnostics, etc. These methods include random forest [3],
k-nearest neighbour (kNN) [4], probabilistic neural network (PNN) [5], multi-layer perceptron
(MLP) [6], support vector machine (SVM) [7], Gaussian processes [8], adaptive neuro-fuzzy inference
system (ANFIS) [9], decision trees [3], radial basis function-based neural network (RBF NN) [10],
generalized regression neural network (GRNN) [5] as well as siamese neural network (SNN) [11].

The common way to construct a person identification or gesture recognition system based on hand
gestures is to collect, with the respect to overfitting, as a large database, as required to reach satisfactory
values of the classification coefficients accompanying the receiver operating characteristic (ROC) curve.
During the research, the system development or the deploying in real application, when users are
volunteers, collecting gestures for predefined gesture recognition tasks is limited only by technical
or algorithmic capabilities. In the case of person identification or personalized gesture recognition
systems for use in real life it is not so obvious. First of all, the real user may not be so patient, or
may be an elder person, or be a disabled person which limits the possibility to record a large number
of repetitions of a single gesture, and then the biometric acceptance factor [12] might be lowered.
Secondly, in the latest literature [13-17] the researchers point out the necessity to develop customizable
gesture recognition systems, where a user can define her/his own gestures. In those systems the small
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training sets will allow for much quicker introduction of new gestures to be recognized and offer a
potential for better user experience in end-user gesture customization. Gesture customization is also
important for the most of motor impaired people having heavy movement constraints who for this
reason may not be able to perform certain gestures defined by the manufacturer of the system [18,19].
In those systems the small training sets prepared individually for each user will allow the system to be
used at all. The small training sets in gesture recognition research approach was already investigated,
e.g., for spiking neural networks algorithm [20] and hand gesture recognition with a depth sensor
concept [21].

The main contribution of the paper is a novel time series classification algorithm for person
identification and gesture recognition where classification model is built using training sets containing
a very limited number of gesture repetitions. The algorithm is based on k-means and kNN algorithms
and comparisons based on the vector space model (VSM) [22].

The algorithm was tested and compared to other ones in the exemplary area of human-computer
interaction based on hand gestures. A typical human-computer communication using hand glove
gestures [23] can be split into two stages: person identification or verification to get access to a computer
system and then the gesture recognition to issue commands for this system. Data acquisition for these
tasks can be performed using a specialized hand glove [23], which records gestures as time series of
data from sensors mounted on it, like accelerometers, gyroscopes and fingers flexion measurement.

The raw data from gesture recordings devices may not be directly suitable for classification or
have noisy features causing low classification accuracy. There are some works where authors develop
preprocessing methods to improve classification algorithms, for example by using specialized feature
extraction algorithms [24] or by applying functional statistical methods [25-27]. The emotional state
of the person performing a gesture is another source of variability that should be accounted for [28].
There is also some work on using other modalities for gesture recognition, for example vision-based
systems [29,30], touchscreen-based methods [31], impedance tomography [32,33], micro-Doppler
signatures [34] or controllers like Kinect [35] or LeapMotion [36,37].

Section 2 describes the mathematical model of the data used to present in Section 3 the new
algorithm. Section 4 shows the design of the experiments conducted for this study. The results are in
Section 5 and they are discussed in Section 6. Finally, Section 7 contains conclusions.

2. Mathematical Model

A data sample can be described as a multivariate time series of a number of variables. Values of
the variables at the same moment in time constitute an observations. I assume that a data set of such
samples is given. The samples are attributed to classes distinguishable by unknown characteristics
of the samples. The following description of the algorithm assumes for clarity that samples have
an equal number of observation but it can be easily extended to samples having a varying number
of observations.

The mathematical model for data representation is described by the following symbols:

¢ V—number of variables

e  p—variable index (1,2,...,V)

¢ D—number of observations in a sample

e ji—observation index in a sample (1,2,...,D)

e J—number of all samples in the data set

e j—sample index in data set (1,2,...,])

o x;”i—the value of the ith observation of vth variable and jth sample.
¢ C—number of classes

e c¢(j)—label of the class the jth sample belongs to (1,2,...,C)
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2.1. Data Definition

An observation is a list of values of all variables at the same moment in time and is defined as:

14 1,2 v
0j;i = (x])o=1 = (X} Xjjs -, Xj)- @

A single sample consists of multiple observations as in Equation (2) read at regular time intervals
and is represented by a matrix:

1 2 1%
Y i i
1 2 1%
Yo Xj2 Xj2
=" : : )
1 2 1%
x]«,D xj,D xj/D

Each row of the matrix I'l; corresponds to observation while each column represents a different
variable. This notation is used to describe the algorithm presented in this work.

2.2. Data Sets

Using the data sets of samples described in Section 2.1 we can define a classification problem
which consists of assigning a new sample to one of the predefined classes.
The data set for this task is given by:

T={(e():je{1,2..., ]} ®)

The set of indices of the training samples which are used to build classification function is denoted
by TR in the description of the new algorithm.
Then, the classification of an unknown sample is performed by the learned classification function:

f:F—={12,...,C}, 4)
where F is the feature space, that is the set of real matrices with D rows and V' columns.

3. New Algorithm

The description of the new classification algorithm is divided into training and predicting phases.
We assume that all samples contain an equal number of observations with equal time intervals between
observations, thus the continuous time domain is discretized at a fixed number of regularly spaced
points of time.

Due to their size, pseudocodes describing both phases of the new algorithm have been included
as Supplementary Materials.

3.1. Training
Training is a step consisting of building a classification model using training data set TR.
Step 1. Calculation of signal value differences

Observations described by Equation (1) are extended by V new variables. Values of new variables
are calculated as difference of actual (at time index i) and previous (at time index i — 1) variable values,
except the first observation of each sample which is extended by zeros. As a result, we get observations
containing 2V variables:

1 .2 1%
;.,1 = (lel,lel,. ..lel,0,0,...,g) (5)

V times
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and
S ) 1%
G)],l _— (x],l, x]‘,i,. . .,x]‘,l‘, (6)
1 1 2 2 v _ .V
Xii = Xji—1Xji = Xjicqse-n Xji— xj,zel)

fori € {2,3,...,D} and j € TR. Finally we get a matrix:

1 2 S
- Xip  Xip X7,
A : :
1 2 S
Xip Xjp - Xp
0 0 0 ]
1 1 2 2 S S
x]-,3—x]-,2 x]-,s—lez le3—xj,2 . (7)
1 1 2 2 S S
Xip~=Xjp_1 Xip—Xjp_1 - Xp—Xp_q]

Step 2. Merging of data for clustering

Training samples are merged one-by-one into one long single matrix. This matrix has 2V columns.
The number of rows is equal to the product of the size of the training set and the number of observations
in a sample.

Step 3. k-means clustering

The vector quantization using k-means clustering with the given parameter k (denoted k1 hereafter)
is performed over sequences G);-’Z- for observation index i € {1,2,...,D} and sample number j € TR.
This clustering partitions observations collected in the previous step into k clusters. As a result we
have a sequence () of symbols representing partitions (clusters),

Q= (w)L,, @®)

where w is the symbol representing the Ith cluster. Each symbol w; for I € {1,2,...,k;} has
a corresponding set of coordinates @, . The coordinates are from the same space as input data,
the ®;,j sequences defined by Equations (5) and (6).

Symbols from Equation (8) are assigned to observations ®;',i' Foreachi € {1,2,...,D}andj € TR
the symbol wer represents the cluster the observation ®},i belongs to. Each observation ®;',i is assigned
to the nearest cluster calculated using a certain distance function d ;.

The set of the features ®' and the corresponding classes ) are a training input to kNN classifier
used in prediction phase Step 2.

Step 4. Replacing observations by symbols

Each observation @’ in each training sample (indicated by j and i) is replaced by a symbol
corresponding to the cluster the observation belongs to, wey - As a results, training samples are

represented by sequences of symbols:
I = (wey )2 ©)

forj € TR.
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Step 5. Calculating the frequency table

For each training sample indexed by j € TR the frequency sequence, known as the Vector Space
Model [22], is computed using the corresponding sequence of symbols H}’ :

k
Bj = (Bj1)1Ly (10)
where B, is the number of times the symbol w; appears in the sequence I‘I}’ .

Step 6. Calculating the class centroid

Within each of class ¢ € {1,2,...,C}, the mean frequency value of each symbol is calculated, as

ky
I, <#Sc Z ﬁ]l) ’ (11)

jE€Se =1

where S, is the set of indices of samples from the training set assigned to the class c and #S is the
number of elements in set S.. These class centroids represent the model of the classification algorithm.

3.2. Prediction

A new sample represented by a matrix I, is assigned to one of the classes using the model
built by the described algorithm. Following steps need to be performed during classification:

Step 1. Difference of signal values

Each observation of the new sample is extended as described in step 1 of the training procedure.
The resulting matrix is denoted IT/,,,, and is computed analogically to H} in Equation (7).

Step 2. Replacing observations by symbols

Extended observations of a new sample collected in the matrix IT},,, are replaced by symbols
from the sequence () defined by Equation (8) developed during the training phase. This step is
performed using the kNN (k-Nearest Neighbor) algorithm. The value of the k parameter is denoted k;
and the distance function is denoted dyyy hereafter. The training data for this algorithm consist of
observations G);»,Z- forallj € TRandi € {1,2,..., D} with corresponding symbols wer used as classes
for the purpose of training the kNN model. /

The matrix ITj,, is transformed to a sequence of symbols IT),,,, corresponding to sequences
calculated in step 4 of the training phase. They are, however, obtained by classifying each row of IT},,,,
using the learned kNN model.

Step 3. Calculate the frequency table

Calculate the symbol frequency table in VSM (Vector Space Model) of the new sample as in step 5
of the training phase:

k
Buew = (.Bnew,l)]lzl (12)
where B0, 1 is the number of times the symbol w; appears in the sequence IT),,,,.
Step 4. Indicate the class label of a new survey

The distances between the symbol frequency table B, of the new sample and centroids I'c of
eachclassc € {1,2,...,C} from Equation (11) are calculated using a distance function dysy. The index
c of the nearest centroid indicates the class for the new sample.



Sensors 2020, 20, 7279 6 of 14

3.3. Parameter Optimization

The algorithm has a set of parameters that have to be adjusted to optimize its accuracy. For the
training phase the number of partitions k; and the distance function d,j,,;; of the k-means algorithm
need to be determined. For the prediction phase, the number of neighbours k; and distance function
of the kNN algorithm were optimized, as well as the distance function dygyy.

Standard distance functions were considered for d.,s, dinyy and dysy, including the city
block distance, Chebyshev distance, correlation distance, cosine distance, Euclidean distance,
Hamming distance, Jaccard distance, Mahalanobis distance, Minkowski distance, squared Euclidean
distance and the Spearman distance.

Tested and optimal parameters are presented in more detail Section 5.

3.4. Time Complexity

The time complexity of the training depends linearly on the product of: the number of variables
in an observation, the number of observations in a sample, the number of samples in each class and the
number of classes. Scaling up of training depends only on the number of classes, because we consider
small (and constant) training sets, as in motivation of this work and rest of the parameters are constant.

The classification time complexity of a single gesture is similar to training, but the number of
samples in each of classes is omitted. Scaling up of classification is also linearly dependent only on the
number of classes.

4. Experiments

The new algorithm presented in this article was tested, evaluated and compared to other methods
using a database of gesture execution records [23] available as Supplementary Materials. To build
this database the DG5 VHand glove was used. The database was used in two different problems:
person identification using a known gesture and gesture recognition assuming the person performing
it is identified. Two experiments with evaluation based on data set resampling were performed to
compare the new method to well-known algorithms listed in Section 1. The different methods were
compared quantitatively by determining the correlation between the training set size and the error
rate of classification.

4.1. Gestures Data Set

The glove used to acquire the data has 10 sensors: five finger flexion sensors, one for each of the
fingers (thumb, index, middle, ring, little), three accelerometers to measure hand movements in each
of x-, y-, and z-axis and two gyroscopes to determine hand orientation (roll and pitch). The sensors are
numbered from 1 to 10 in the given order. A single database record, called survey, corresponds to one
gesture execution performed by a single person. Surveys are represented by matrices structured as in
the example in Table 1. Their rows correspond to sensor readings at a particular moment. The first
column denotes timestamp while the other ones correspond to readings from ten glove sensors pulled
at that time. Glove readings of a sample survey are visualized in Figure 1.

Table 1. Gesture execution example (survey).

Variables
Timestamp Sensor1l Sensor2 Sensor3 ... Sensor10
0 0 14.8438 17.1875 14.2725 ... 0.0343
.5 47  14.8438 17.1875 14.2529 ... 0.0467
'§ 63 14.8438 17.1875 14.2432 ... 0.0513
-
—éJ 1869  47.7539  67.0801 203076 ... —0.0044

1900 47.6465 66.8164 18.8184 ... 0.0010




Sensors 2020, 20, 7279 7 of 14

120
v | [
= 80 e |
g ’ , "‘/ o
.Ef 60 /;(\ — |
s e
5 . o N
S 4 . . ~_
8 20 777/~_f f/// I : o
0 == T .
=20

0 250 500 750 1000 1250 1500 1750 2000

Timestamp [ms]

Sensor 1 --------- Sensor 5 — - Sensor 9 - - - -
Sensor 2 - Sensor 6 —--—-  Sensor 10 ——
Sensor 3 ————- Sensor 7 -~ - - -
Sensor4 —— Sensor 8 ------

Figure 1. Visualization of exemplary gesture execution signals values.

Each sensor corresponds to a variable, a single reading of all sensors at the same time is an
observation and the time series of observations from a particular gesture execution is a sample.

The database consists of surveys of 22 different hand gestures executed 10 times by 10 people,
J = 2200 records in total. The details of this database are discussed in [23]. A single survey (single
gesture execution) contains from 12 to 149 observations and lasts from 360 ms to 4625 ms. Readings are
recorded at a sampling rate varying between about 20 Hz to 40 Hz.

4.2. Experiment Design

In both experiments, the comparisons of the algorithms were performed separately for each
number n € {1, 2,..,5— 1} of surveys taken from each class to the training set. For a given n,
S separate samplings from the data set were performed. The samples for the training set TR, were
selected using a circular sliding window scheme within each class:

TRyw = {jc,73 c e {1,2,. . .,C},

(13)
re{ww+1,...,w+n—-1}},

wherew € {1,2,...,5} is the resampling number and ., is the sample index of the rth sample in class c,
r€{1,2,...,5}. In Equation (13) it is also assumed that j ,,s = j, for each class c € {1,2,...,C} and
sample number r € {1,2,...,S}.

The test set consisted of the other S — n samples from each class. The dependency of the error
rate on the size n of the training set was measured.

4.3. Data Preprocessing

Surveys acquired directly from glove are of different length because of differences among gestures
shapes and irregular speed of their execution. Additionally, the readings from the glove hardware
are not performed at regular time intervals. The preprocessing step is performed to resample the
surveys to ensure that each survey is represented by a matrix Il; of the same size given by Equation (2)
and that time intervals between consecutive readings are constant. This step is performed using
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linear interpolation method. As a result, every survey record contains exactly the same number of
observations, and thus observations can be consistently numbered by an index i € (1,2,...,D).

For other compared methods it is required additionally to transform the matrices II; to
a single-column vector. This is done by concatenating columns of each matrix I; as in the previous
work [23].

4.4. Methods Evaluation

The new algorithm was compared to the well-known ones listed in Section 1. Each method has
various parameters to be adjusted to configure the given algorithm for the best classification results.
The optimal parameters were looked for to minimize the mean error rate as algorithm evaluation
criteria. The values of these parameters were determined using grids of parameter values and the
exhaustive search. The Winner Takes All (WTA) rule was used to indicate the correct class in this
multi-class classification problem and all other classes were indicated as incorrect.

Implementation of the test environment was based on Matlab software, scikit-learn Python
Library [38] based on SciPy, NumPy and NeuPy, and LIBSVM.

5. Results

The model presented in Section 3 was tested using the database described in Section 4.1 in two
experiments introduced in Section 4. Both experiments are the classification problems where the
single class is a set of samples described in Section 2.1. In the first experiment the new algorithm
was compared to other in task of the person identification using one given gesture. There were
22 sub-experiments for each gesture separately. Each of the sub-experiments had 10 classes (C = 10)
corresponding to 10 people who performed a given gesture. In the second experiment the task of
gesture recognition using a gesture performed by the identified person was considered. There were
10 sub-experiments for each person separately. In each-sub experiment there were 22 classes (C = 22),
one for each gesture type. In both experiments the number of samples per class S is equal to 10, and the
number of surveys in each of sub experiments is equal to, respectively, 100 and 220.

Proposed algorithm may be a part of a complete system that includes hardware, data acquisition
and recording module, classification algorithm, decision module, etc. If a person is doing nothing,
the part of the system that processes the signal from hardware should tag this signal as empty and the
system should not pass it to the classification algorithm.

5.1. Parameter Selection

The PNN algorithm depends on one parameter: the spread. The method was tested with spread
in a range from 0.01 to 1.00. No particular value in this range resulted in the highest accuracy in
all cases.

The kNN method depends on the number of neighbours and the distance function. The number
of neighbours was tested in the range from 1 to 4, with 1 neighbour resulting in the most accurate
classification. The city block distance was found to be the best on average in terms of classification
accuracy but for some particular gestures or persons different distance functions were better.

For the SVM based classification, the core parameters are SVM type and kernel (with its
parameters). In the experiments there were tested SVM types: C-SVC, v-SVC, one-class SVM, e-SVR
and v-SVR and SVM kernel types: linear kj;,(x,y) = x'y, polynomial Kpory(x,y) = (xTy + )9,
Radial Basis Function-based kgzr = exp(—7|x — y||?) and sigmoid Ksigm(x,y) = tanh(yxTy + C).
The C-SVC variant with the polynomial kernel was the most accurate among variants of the SVM
classifier. The degree d of the polynomial kernel was tested in the range from 1 to 5 and -y parameter
tested in the range from 0.5 to 1.0.
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In the standard multi-layer perceptron neural networks the optimized parameters are the number
of neurons and the network optimization algorithm used for training. The number of neurons in
the hidden layer was tested in the range from 10 to 100 with the step equal to 10, but the most
accurate classification was obtained mostly in the range from 10 to 40 neurons. The hyperbolic tangent
activation function was used in the hidden layer and the softmax activation function was used in
the output layer. Different optimization algorithms were tested but scaled conjugate gradient and
Fletcher-Powell conjugate gradient produced neural networks with the highest accuracy.

The number of trees affected the accuracy of the random forest classifier (denoted TBG) to the
greatest degree. It was found that in the studied problems the forest should have at least 50 trees.

The siamese neural network was based on a convolutional neural network and was adapted into
one-dimensional data. The architecture consisted of two convolutional layers with ReLU activation
function and maximum pooling. Using more than two such layers did not give any relevant
improvement. Three parameters were optimized in both convolutional layers: the size of filters
in the range from 1 to 10, the number of filters in the range from 2° to 28, and the filter stride from 1 to
the filter size. The best results were achieved when the first layer consisted of 64 filters of size 6 and
stride 1 and in the second layer there were 128 filters of size 7 and stride 1 as well. There was also the
fully connected layer optimized with the size of features vector in the range from 27 to 2'2, with 2!
resulting in the most accurate classification. As the SNN algorithm needs at least two training samples
for each class to learn when samples are similar, the results start also from the number of training
samples equal to two.

Finally, the new algorithm (denoted QUA, as it is based mainly on vector quantization) was tested
for parameters listed in Section 3.3 and the most accurate classification was reached for the number
of clusters k; in the range from 140 to 200 (tested with step 20), the city block distance function d s,
the number of neighbours in the kNN algorithm k; equal to 1, the kNN distance function diyy equal
to the standardized Euclidean distance and the city block distance used in VSM as dysp.

5.2. Efficiency Results

The mean error rate as algorithm evaluation criteria was used:
ERR=1-ACC (14)

where ACC is the number of correctly classified instances divided by the number of all
classified instances.

The comparison of the new algorithm and other classification methods optimized with respect to
the mean error rate there is presented as follows. In Table 2 and correspondingly Figure 2 there are
results of the person identification experiment, while in Table 3 and correspondingly Figure 3 there
are results of the gesture recognition experiment. Both tables and figures present dependence of the
average error rate of different classifiers on the number of training samples per class.

The two confusion matrices were calculated to evaluate the behavior of the proposed algorithm
for the most interesting case of using only one training sample from each class. The matrices are
attached as Supplementary Materials and the results are as follows. In the case of person identification
the most distinguishable gestures executions were performed by person number 3, and the least by
persons number 4 and 8. The lowest number of misclassified executions of gestures were assigned
to person number 10, where the most misclassifications were assigned to person number 2. In the
case of gesture recognition the most distinguishable gestures have numbers 11 and 19, and the least
distinguishable were 7 and 21. Misclassfied gestures were most commonly recognized as gesture 15
and least often as gesture number 11.
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Figure 2. Dependence of the average error rate of different classifiers in the problem of person

recognition on the number of training samples per class n.
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Figure 3. Dependence of the average error rate of different classifiers in the problem of gesture

recognition on the number of training samples per class 7.

Table 2. Person recognition error rate.

The first column, labelled 7, denotes the number of

training samples per class. The best result in a given row is shown in bold and indicates the least

erroneous classifier.

n  PNN kNN SVM MLP TBG SNN QUA
1 16.67% 12.53% 16.67% 77.24% 18.72% — 6.87%
2 11.65%  856%  11.07% 29.95%  9.23% 9.42% 4.13%
3 9.05% 6.50% 8.27% 1557% 579%  6.78% 3.03%
4 739%  520% 6.68% 8.67%  428%  5.33% 2.45%
5 615%  4.21% 5.40% 6.09%  3.31% 4.28% 2.10%
6 514%  347%  438%  420%  252% 3.23% 2.03%
7 426% @ 2.74% 3.48% 3.65% 1.94%  229% 1.65%
8 3.25% 1.93% 2.61% 2.39% 1.82%  1.77% 1.43%
9  245% 1.23% 1.77% 1.86% 1.68%  1.09% 1.14%
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Table 3. Gesture recognition error rate. The first column, labelled #n, denotes the number of
training samples per class. The best result in a given row is shown in bold and indicates the least
erroneous classifier.

PNN kNN SVM MLP TBG SNN QUA

9.71% 747% 9.71% 79.23% 17.21% — 3.96%
6.40% 4.74% 6.16% 27.26% 817% 556% 2.65%
4.83% 3.62% 447% 12.00% 4.84% 418% 1.97%
3.95% 2.84% 3.44% 7.51% 3.22% 350% 1.63%
3.15% 2.19% 2.68%  5.28% 225% 2.78% 1.33%
257% 1.78% 2.14%  3.84% 1.67% 242% 1.18%
2.06% 145% 171%  3.05%  0.95% 2.08% 1.00%
1.57% 1.27% 130% 2.07%  052% 214% 1.05%
1.05% 091% 0.95%  1.68% 1.00% 191% 0.55%

O O N ULk WN =X

5.3. Performance Results

Training and testing times of the new algorithm and other existing algorithms were compared.
To benchmark algorithms a computer running Linux Mint 20 Ulyana with Intel(R) Core(TM) i7-9700KF
CPU @ 3.60 GHz CPU and 32 GB of Crucial DDR4 RAM at 2667 MT/s was used. The SNN
implementation was tested using Gigabyte graphic card with GeForce RTX 2070 SUPER graphic
processor unit with driver version 455.32.00 and CUDA version 11.1. The results are presented
as follows. In Table 4 there is an efficiency comparison of algorithms in the person identification
experiment, while in Table 5 there is a comparison in the gesture recognition experiment.

Table 4. Algorithm performance for person identification, time in milliseconds. The training time was
measured for classes size of 1. The classification time was measured for one sample.

PNN kNN SVM MLP TBG SNN QUA

training 12.75 3.17 0.42 92.20 57.55 59.16 s 11.87
classification 0.0514 04819 <0.1ps 0.0574 04290 151.84 10.3926

Table 5. Algorithm performance for gesture recognition, time in milliseconds. The training time was
measured for classes size of 1. The classification time was measured for one sample.

PNN kNN SVM MLP TBG SNN QUA

training 15.71 4.00 1.92 95.77 61.76 60.74s 1493
classification 0.0376 0.5081 <0.1us 0.0289 0.2638 10432 11.50

6. Discussion

Both experiments that were performed for the tasks of person identification and gesture
recognition indicated that the new classifier provides higher accuracy than all other well-known
algorithms. The difference is the most significant when the number of training samples is small, up to
about 6 to 9 samples per class.

In addition to methods listed in Section 1 some other ones were also tested. For methods like
Gaussian process classifier, an adaptive neuro-fuzzy inference system, decision trees, radial basis
function-based neural networks and generalized regression neural networks either the computation
time or achieved results were not sufficient to reach fully comparable results and thus they are not
discussed in more detail.

It can be observed that the new algorithm results in the most accurate classification when the
20-dimensional extended observation space is quantized into a relatively large number of clusters.
Depending on the problem, there are either 2100 or 4620 points grouped into from 140 to 200 clusters.
This step reduces a continuous-variable classification problem into a discrete one which is one of the
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sources of generalization power of the proposed method. It is also notable that the algorithm has only
five discrete free parameters (k1, k2, dcjyst, Ay and dysyg), which makes overfitting less likely then in
most classification methods.

The data is further reduced in steps 5 of 6 of the training phase, where the frequency table
approach is used. It reduces the need to perform curve registration by only considering how long
the gesture execution stayed in a particular discrete state. The temporal component of the data is
however still present in the form of the difference components calculated in step 1 of training and
prediction procedures.

The experiments have shown that the time taken by the training phase of the new algorithm
was average compared to benchmark results of other algorithms. The classification time was not
the longest among all algorithms however, but substantially longer than the fastest one. The main
bottleneck of the new classification algorithm is located in Step 2. where replacing observations are
replaced by symbol. For this step the kNN algorithm is used. The shortest recorded survey (gesture
execution) lasts 360 ms and the mean classification time of about 11 ms to 13 ms is less than 4% of it.
In real applications of person identification or gesture recognition this classification time should not be
noticeable. However, future work on the new algorithm should be concentrated on improving the
performance of Step 2.

7. Conclusions

In this article the new time series classification algorithm was presented. The algorithm is based
on vector quantization of recorded observations, transforming them into sequences of discrete symbols
comparing them using a vector space model. The algorithm was tested, evaluated and compared to
state-of-the-art methods using hand gesture recordings in tasks of person identification and gesture
recognition. It was shown that the new algorithm is more accurate than other methods, especially on
small training sets.

Supplementary Materials: The following are available online at http:/ /www.mdpi.com/1424-8220/20/24 /7279 /s1:
pseudocodes of the proposed algorithm, gesture execution records, confusion matrices.
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