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Abstract: This study presents an equivalent circuit model for the analysis of wireless power transfer
(WPT) through both electric and magnetic couplings using merely a resonant coupler. Moreover,
the frequency split phenomenon, which occurs when transmitting couplers are near receiving
couplers, is explained. This phenomenon was analyzed using simple circuit models derived via a
mode decomposition technique. To verify the proposed method, a resonant coupler using mixed
coupling was designed and its efficiency was compared with the result obtained using a commercial
electromagnetic solver. The results of this study are expected to aid in designing various WPT couplers
or sensor antennas by selecting electric, magnetic, or mixed couplings. Furthermore, the results of
this study are expected to be applied to technologies that sense objects, or simultaneously transmit
and receive information and power wirelessly.

Keywords: electric coupling; magnetic coupling; mixed coupling; mode decomposition; near field
communication; wireless power transfer

1. Introduction

The resonance-based wireless power transfer (WPT) technique using strong magnetic coupling was
proposed by Kurs et al. in [1]. Since then, many scholars and researchers have been conducting research
on the WPT. In recent years, simultaneous implementation of the WPT and wireless communication
was studied by combining near field communication (NFC) and radio frequency identification (RFID)
technologies. The reason behind is because the role of antenna or coupler in the WPT and wireless
communications is not different in terms of sending and receiving electromagnetic energy. Finally,
in the WPT and wireless communication technologies, the three methods of exchanging electromagnetic
energy can be largely divided into magnetic field coupling, electric field coupling, and a method to
employ both couplings. In [1], it was concluded that the efficiency of the WPT is proportional to the
product of the coupling coefficient and quality factor. This coupling can be implemented via a mutual
magnetic field between two loops, i.e., inductive coupling, and/or a mutual electric field between the
two conductor plates, i.e., capacitive coupling. Further, the power is transferred primarily through
inductive coupling. In this study, inductive wireless power transfer (IPT) refers to the magnetic field
coupling, capacitive wireless power transfer (CPT) refers to the electric field coupling, and mixed
coupling wireless power transfer (MPT) refers to both the magnetic and electric field couplings. Lately,
research on the CPT method is on the rise [2,3], and very few studies on the MPT method have
been conducted [4,5]. In [4], WPT is implemented via combined inductive coupling and capacitive
coupling. In [5], inductive coupling and capacitive coupling are integrated into one coupler for WPT.
However, their proposed coupler structure was very large and complicated, making it complex for
practical application.
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In [6], IPT and CPT have demonstrated different electrical characteristics due to different main
couplings; therefore, it is necessary to design a more suitable coupling method according to the
application target to maximize the benefits that can be derived from the electrical characteristics of each
method. NFC uses a magnetic field coupling having a resonance frequency of 13.56 MHz [7-14]. In the
resonance-based IPT using 6.78 MHz as the operating frequency, the harmonic component causes the
problem of electromagnetic interference to NFC [15-17]. We can solve the problem of electromagnetic
interference with NFC by using the electric coupling method, such as CPT. As such, it is significant to
design antennas, such as NFC and RFID, for communication or couplers for WPT in various ways
according to the situation and purpose [18-24].

In the WPT method using magnetic field coupling, if there is a metal object between the transmitter
and the receiver, a heating issue occurs due to the current induced in the metal object. For example,
gum wrapper may lead to a fire. In addition, if living organisms are placed between the transmitter
and the receivers, exposure to electromagnetic fields can cause adverse health effects. These problems
are even more serious when demanding high power, such as an electric vehicle. Therefore, there is a
need for technology to detect or sense foreign objects or living objects [25-31]. For detection, a small
power electromagnetic field can be generated to sense metal or living objects. Metal objects can be
sensed using magnetic resonance, and living objects are dielectrics, so they can be sensed using electric
field resonance.

According to the above statements, it is necessary to have an in-depth understanding of IPT, CPT
and MPT to be able to apply a technique that solves interference problems, or a technique that transfers
power and information simultaneously. Therefore, this study aimed to establish an equivalent circuit
analysis for designing IPT, CPT, and MPT. In designing WPT and wireless communication systems,
the antenna or coupler part can be expressed by a simple equivalent circuit composed of the lumped
parameters R, L and C. The reason behind is that analyzing an equivalent circuit without dealing with
a complex electromagnetic theory is much easier. Therefore, the equivalent circuit analysis method is
significantly important. If the two-port network equivalent circuit representing the transmitting and
receiving antennas or couplers can be obtained, the following interpretations can be readily performed
in designing the system: (1) The transmission and reflection efficiencies can be easily interpreted by
switching directly from the two-port network expression to the scattering matrix; (2) By applying
terminal conditions to both ports, the transmission and reflection efficiencies in the actual circuit can
be analyzed; (3) The matching circuit can be easily calculated using two-port network expression;
and (4) Predicting the results of various situations, such as changes in the transmission distance,
will be straightforward.

Consequently, it is vital to establish an equivalent circuit and extract the parameters to express the
antenna or coupler part. The most uncomplicated method of extracting equivalent circuit parameters is
using an RLC meter. The higher the frequency band, the more difficult it becomes to use the RLC meter.
Therefore, in the higher frequency band, a common method is to measure S-parameters using a vector
network analyzer (VNA) and convert them back into the input impedance. The study primarily deals
with the establishment of an appropriate equivalent circuit with extracted equivalent RLC parameters
and its analysis by using the electromagnetic analysis tools in place of the measurements to obtain
S-parameters. In this paper, we propose an equivalent circuit model for MPT that uses both magnetic
field coupling and electric field coupling, i.e., mixed coupling. This model includes an analysis of IPT
and CPT. This paper also presents an intuitive analysis by explaining it as a simple circuit model for
two resonant modes, which are generated when the two couplers are strongly coupled, using mode
decomposition techniques. Finally, to verify our proposed equivalent circuit model, the efficiency
of our model is compared with that of a commercial electromagnetic solver with a simple example
for MPT.

The major contributions of this study are as follows:

1.  Established the MPT equivalent circuit model;
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2.  Proposed a method to interpret the MPT equivalent circuit model using mode
decomposition technique;
3.  Proposed a basic and compact MPT structure based on the intuitive insight.

2. Equivalent Circuit Model for Wireless Power Transfer Using Mixed Coupling

Figure 1 shows simple examples and the corresponding equivalent circuits for IPT, CPT, and
MPT. In the example of IPT, magnetic field energy is transmitted by Faraday’s law by a coil structure
(magnetic coupling), and the desired resonant frequency can be determined by adding lumped C. In the
example of CPT, electric field energy is transferred by charge induction between parallel conductor
plates (electric coupling), and the desired resonance frequency can be determined by adding a lumped
L. In the example of MPT, the coil structure and the parallel plate structure transmit electromagnetic
energy by generating magnetic and electric field coupling, respectively, and resonate by the L and C
of the coil and the conductor plate itself without adding additional lumped elements. We can easily
obtain impedance parameters (Z-parameters) or admittance parameters (Y-parameters) from each
equivalent circuit. Then, scattering parameters (S-parameters) can be obtained from the interrelation
of parameters, and the characteristics of the efficiency for each structure can be obtained using 521;
that is, the transmission coefficient. Because the Z-parameters circuit for magnetic coupling obtained
using Equation (1) and the Y-parameters circuit for electric coupling using Equation (2) are connected
in series in the structure of MPT, the equivalent Z-parameters of MPT can be expressed as Equation (3).

| jwL  jwLy
[Z]IPT - [ ]CULm ]a)L ] (1)
jwC  jwCy
Y = 2
-1
[Zlmpr = [Zipr + [Ylcpr ®3)
Simple example Equivalent circuit
Ll"
@ _‘[ ~ C|_*
IPT L L
Lumped C
Cm
VR Cu
L Y L
CPT c c
Lumped L T T

Figure 1. Cont.
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Figure 1. Structural examples of wireless power transfer (WPT) using magnetic coupling, electric
coupling, and mixed coupling and their equivalent circuits.

3. Equivalent Circuit Analysis with Mode Decomposition

In this section, we address the frequency split phenomenon, which occurs when the coupling
coefficient between transmitter and receiver is large, with equivalent circuit analysis using the mode
decomposition technique [32]. The natural mode of two-port networks can be divided into two
representative orthogonal modes, namely differential mode (DM) and common mode (CM), by the
mode decomposition technique, as shown in Figure 2. Natural voltage and current matrices can
be divided into mode voltage and current matrices using mode conversion matrices, T, and Tj,
as shown below:

1
[V} = Tv[vm]r Ty _[ 2% 1 ] 4)
1

=1l T=|

NI=RN=

] ©)

From the above relations, the mode impedance parameters, [Z,,] are expressed as

(6)
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If the coupler is symmetric (Z1; = Zp) and reciprocal (Z12 = Z1), [Zn] can be simplified

as follows:
2(Z11 = Z12) 0 ] [ Z; 0 ]
Ll = = 7
2 [ 0 1(Z11 + Zy) 0 Z @

This indicates that if we know the impedance of each mode, the natural impedance matrices can
be reconstructed from Equation (6).

Next, the mechanism of frequency split is described with the practical equivalent circuit model
of MPT by using the mode decomposition technique. The practical equivalent model of MPT can be
expressed as in Figure 3a. Figure 1 demonstrates the equivalent circuit model for the MPT, which
is a simple model to enhance the understanding of the IPT, CPT and MPT. Whereas the equivalent
circuit model of the MPT in Figure 3a is more realistic and precise considering resistance R and
parasitic capacitor Cc. In Section 4, we will discuss the predictability of the practical equivalent model
compared to the simplified equivalent model. In the coil-shaped portion for magnetic field coupling,
a parasitic capacitance, C, exists between the wires of the coil and the self-inductance, L. Additionally,
the self-capacitance, C, exists between the metal bodies of the plate-type structure for the electric field
coupling, and the total loss resistance of the MPT is represented by R. The mutual inductance, Lp,,
and mutual capacitance, Cp,, refer to the magnetic and electrical coupling between the transmitter
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and receiver. The equivalent circuit of MPT in Figure 3a can be expressed as shown in Figure 3b by
the pi and T equivalent circuits. In the middle (the symmetrical plane indicated by the dashed line)
of the MPT equivalent circuit, DM can be regarded as a short circuit (an electric wall) as shown in
Figure 3¢, and CM can be regarded as an open circuit (a magnetic wall) as shown in Figure 3d. Thus,

the impedance and resonance frequency of each mode are expressed as
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Figure 3. (a) Practical equivalent circuit for practical mixed coupling wireless power transfer (MPT).
(b) An alternative form of the equivalent circuit with pi and T networks. Simplified equivalent circuit
in the case of (c) differential mode and (d) common mode.

The mode decomposition analysis helps understand that the frequency split phenomenon is
caused by mutual inductance and mutual capacitance. The coupling effect reduces the charge-storing
capability and the stored flux in the single resonator when the electric wall is inserted in the symmetrical
plane of the coupled structure (DM case). In contrast, the coupling effect enhances these properties
when the magnetic wall is inserted in the symmetric plane (CM case). From the equivalent parameters,
the coupling coefficient of the MPT, k., can be expressed as

CLy+LCwn ket kn

T LCH+ LG 1+ Kok (12)

where
km = — (13)

If kokyy < 1, then Equation (12) is expressed as
kem ~ ke + ki (14)

4. Results and Discussion

For the verification, we propose an example of the MPT structure and discuss the results obtained
through an electromagnetic solver (FEKO) simulation, which is a commercial tool for electromagnetic
analysis based on the method of moments [33] and the equivalent circuit model. The proposed MPT
structure is shown in Figure 4. The basic structure is the same as that of the MPT in Figure 1; however,
the coil has five turns. The coupler exhibits a coil structure and a plate structure, in which the magnetic
field and electric field are mainly coupled, respectively. The equivalent circuit parameters (RLC) [34]
were extracted using the MPT structure by comparing the real and imaginary parts of the input
impedance by FEKO simulation as shown in Figure 5. In addition, the resonant frequencies and
coupling coefficients were obtained using the extracted parameters and listed in Table 1. As shown
in Figure 5a, the real part of the input impedance and extracted equivalent parameter, R, are well
matched. Further, Figure 5b confirms that the imaginary part of the input impedance and extracted
equivalent parameters C, L and C. are matched appropriately. The actual input impedance of one
coupler of the MPT is as follows.

L + L (15)

Z:(R—l—]wL)//],wCC T
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The real and imaginary parts of this input impedance can be graphed as shown in Figure 5.
According to (15), if the resistance R is neglected, the series and parallel resonance frequencies will be
respectively derived as follows.

1
Series resonance frequenc g = ——— (16)
queney friee = L(C.+C)
Parallel resonance frequency fpauies = ——— (17)

21t VLC,

As presented in Table 1, if we substitute the extracted L, C and C, into the resonance frequency
formulas, the series and parallel resonance frequencies will become 6.93 MHz and 11.35 MHz,
respectively. It can be confirmed that the two resonance frequencies can be seen in the imaginary part
of the graph in Figure 5b. C and L can be extracted from the front (band lower than series resonance
frequency) and middle parts of the imaginary part, respectively, when the imaginary part of the input
impedance is obtained using an electromagnetic solver or the VNA. Further, C. can be extracted from
the parallel resonance frequency. When L, C and C, are extracted, the remaining R can be obtained
from the real part of the input impedance. In the proposed MPT structure shown in Figure 4, L, and
Cm can be obtained separately by merely simulating the coil and the plate-type structure, respectively.

Table 1. Equivalent Parameters of MPT.

R 050 fq 721 MHz

L 8.137 uH fe 6.67 MHz
C 40.73 pF fo 6.93 MHz
Ce 24.17 pF Kem 0.086
Lm 0.529 uH Ke 0.021
Cm 0.866 pF Km 0.065

Figure 6 shows that the graph of 521 calculated by electromagnetic solver (FEKO) agrees well with
the results obtained from the practical equivalent circuit model (see Figure 3a). However, the simplified
equivalent circuit model (see Figure 1) is indicated by the red dashed line in Figure 6. It presents
completely different results compared to the electromagnetic solver and the practical equivalent circuit
model. Therefore, our proposed method can accurately predict the electric coupling, magnetic coupling

or mixed coupling.
300 mm
150 mm '

300 mm
\
150 mm 00 mm
150 mmv
<:; iPort

Figure 4. Proposed MPT structure: (a) bird view and (b) top view.

;ne,./ /
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Figure 5. Input impedance by electromagnetic solver (FEKO) simulation and extracted equivalent
circuit parameters (RLC): (a) real part; (b) imaginary part.
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Figure 6. 521 results obtained by the electromagnetic solver (FEKO), practical equivalent circuit and
simplified equivalent circuit.

5. Conclusions

In this paper, we proposed an equivalent circuit model of MPT and presented an analysis by
implementing the mode decomposition technique along with the description of the frequency split
phenomenon. Unlike IPT and CPT, a separate lumped C or L was unnecessary for the MPT structure
because the coupler itself resonates. The exposure level of the undesirable external electric and magnetic
fields can be varied by appropriately designing the electric and magnetic couplings. The results of this
research are expected facilitate the design of the couplers of various WPT methods and antennas, such as
NFC and RFID, in the future. As further work, we will study a simultaneous wireless information
and power transfer system using the proposed MPT method and apply it to various sensors with
continuous power.
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