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Abstract: In this work, we compare first acquisitions from the ASI-PRISMA (Agenzia Spaziale
Italiana-PRecursore IperSpettrale della Missione Applicativa) space mission with model simulations,
past data acquired by the Hyperion sensor and field spectrometer measurements. The test site is
‘Piano delle Concazze’ (Mt. Etna, Italy), suitable for calibration purposes due to its homogeneity
characteristics. The area measures at about 0.2 km2 and is composed of very homogeneous trachybasalt
rich in plagioclase and olivine. Three PRISMA acquisitions, achieved on 31 July and 8 and 17
August 2019, are analyzed. Firstly, spectral profiles of PRISMA top of atmosphere (TOA) radiance
are compared with MODerate resolution atmospheric TRANsmission (MODTRAN) simulations.
The Pearson correlation coefficient is equal to 0.998 and 0.994 for VNIR (Visible and Near InfraRed)
and SWIR (Short-Wave InfraRed) spectral ranges, respectively. PRISMA radiance overestimates
values simulated by MODTRAN for all considered days, showing a mean bias of +5.22 and of
+0.91 Wm−2sr−1µm−1 for VNIR and SWIR, respectively. The relative mean difference between
reflectance values estimated by PRISMA and Hyperion, on the test area, is around +19%, despite the
great difference in time acquisition (up to 19 years); PRISMA slightly overestimates Hyperion
reflectance with an absolute mean difference of about +0.0083, within the variability of Hyperion
acquisitions of ±0.0250 (corresponding to ±2 standard deviation). Finally, FieldSpec measurements
also confirm the great quality of PRISMA reflectance estimations. The absolute mean difference results
are around +0.0089 (corresponding to a relative error of about +21%). In the study, we investigate only
the lower values of reflectance characterizing the test site. A more complete evaluation of PRISMA
performances needs to consider other test sites with different optical characteristics.

Keywords: PRISMA mission; hyperspectral data; Mt. Etna

1. Introduction

Spectral imaging is a data-intensive method that samples image data on the electromagnetic
spectrum. The information retrieved through spectral imagery is crucial for a wide range of earth
sciences applications, such as for geology [1], agriculture [2] and water management aspects [3,4],
inland and coastal water monitoring [5], gas emission retrieval [6] and fire detection [7]. When the
reflected energy is sensed within multiple wavelength bands (<20), the imaging process is referred to as
multispectral (e.g., the Landsat mission). Retrieving data at higher bands with a narrower wavelength
(>20) refers to hyperspectral imaging (e.g., the Airborne Visible/InfraRed Imaging Spectrometer
(AVIRIS) [8]).
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Hyperspectral images allow to distinguish different materials on the Earth’s surface, recognizing its
spectral signatures; thus, they are a powerful geology tool, allowing to detect several minerals with
significant implications for mining activities [9] and volcanic mapping [10]. Hyperspectral sensors
typically collect 200 or more contiguous bands [11], enabling the reconstruction of vegetation
signatures [12]. Agriculture studies can benefit significantly from hyperspectral imaging analysis for
monitoring crop health status [13].

Hyperspectral remote sensing techniques for coastal water analysis have been developed for more
than three decades [11,14]. For this type of application, the availability of a continuous spectrum makes
algorithms more effective in a wide variety of waters with varying water column depths and leads to a
better retrieval of a large number of properties [15]. Moreover, hyperspectral remote sensing allows the
identification and quantification of gas emissions in the atmosphere and pollutants [16]. Images acquired
during an airborne campaign by AVIRIS instrument over the
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The Italian Space Agency launched a hyperspectral imaging platform, PRecursore IperSpettrale
della Missione Applicativa (PRISMA), in 2019 [20]. While some studies have tried to evaluate PRISMA
data for specific applications (e.g., [15] for waterbodies; [21] for topsoil properties), an evaluation of
PRISMA radiometric performance and its level of accuracy in retrieving surface reflectance has not
been yet established. Evaluation of satellite acquisitions requires proximal spectral measurements
(e.g., using field hyperspectral radiometers) [22–24].

In this paper, we tested the accuracy of PRISMA acquisitions in the range 0.4–2.5 µm with
reference to past measurements from the Hyperion mission [25] (launched on 21 November 2000).
The considered test site is a flat area on the Mt. Etna volcano called ‘Piano delle Concazze’ (PdC), for
which the availability of field spectrometer measurements, collected during past surveys, allowed for
performing the assessments with proximal measurements.

2. Test Site Description

In the convergence margin between the African and European Plates, Mt. Etna is situated on the
eastern coast of Sicily, Italy [26]. The Etna area is characterized by a complex geodynamic framework
ranging from a regional N–S compressive regime under the volcanic pile [27], due to the plate
collision, co-existing with a WNW–ESE extensional regime, associated with the dynamics of the Malta
Escarpment [28].

The volcano conduit is an open system, constantly filled with magma and showing continuous
activity. In recent years, after the effusive flank eruption of May 2008 to July 2009, there was an
extraordinary period of explosive activity at Etna volcano, with 45 lava fountains emitted from
the New South East crater (NSEC) during 2011–2015 [29]. Sequences of lava fountains took place
in December 2015 and May 2016 from the main central crater Voragine (VOR) [30,31] and a huge
eruption occurred on December 24, 2018 [32,33]. These volcanic activities have not affected the test
site considered in the present work. The PdC site is located on the north-east side of the Mt. Etna
volcano: latitude = 37.766 deg, longitude = 15.013 deg (see red box in the Figure 1). PdC is a large area
dominated by the North East crater and bound by the rim of the wide depression of the Valle del Bove;
it is composed of very homogeneous trachybasalt rich in plagioclase and olivine and characterized by
a flat geometry with an altitude between 2775 and 2790 m (a.s.l.) (see Figure 2). The PdC area is about
0.2 km2 and is easily identifiable by satellite data with a spatial resolution of 30 m or finer. The PdC
area was selected for the above reasons and for the availability of past field campaign measurements
in situ.
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surface. The MODerate resolution atmospheric TRANsmission (MODTRAN) [34] simulations were 
performed by using version 4.0 of the code and considering atmospheric profiles (temperature, 
pressure and humidity) near-synchronous with PRISMA acquisitions; model runs employed, as an 
input parameter, the reflectance spectrum measured at the test site. Hyperion images acquired in the 
period 2001–2009 (19 images overall) are considered in the comparison; reflectance values obtained 
by Hyperion acquisitions are compared with PRISMA reflectance estimations. Moreover, the 
spectrum measured by the spectrometer FieldSpec ASD in the range of 0.4–2.5 µm, at PdC during the 
July 2003 campaign, is considered in the comparison analyses. 
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3. Satellite Dataset, Field Measurements and Simulated Data

The PRISMA dataset considered in this work includes 3 images on the test area acquired from
July to August 2019 (see also Table 1); these satellite acquisitions are clean of clouds and snow on
the surface. The MODerate resolution atmospheric TRANsmission (MODTRAN) [34] simulations
were performed by using version 4.0 of the code and considering atmospheric profiles (temperature,
pressure and humidity) near-synchronous with PRISMA acquisitions; model runs employed, as an
input parameter, the reflectance spectrum measured at the test site. Hyperion images acquired in the
period 2001–2009 (19 images overall) are considered in the comparison; reflectance values obtained by
Hyperion acquisitions are compared with PRISMA reflectance estimations. Moreover, the spectrum
measured by the spectrometer FieldSpec ASD in the range of 0.4–2.5 µm, at PdC during the July 2003
campaign, is considered in the comparison analyses.
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Table 1. Dataset used for comparison purposes.

PRISMA MODTRAN (Simulations) Hyperion FieldSpec ASD

Radiance
(TOA)

31 July 2019
8 August 2019

17 August 2019

Point simulations
synchronous with PRISMA n/a n/a

Reflectance
31 July 2019

8 August 2019
17 August 2019

n/a Acquisitions from
2001 to 2009

Field campaign
in July 2003

3.1. PRISMA Data Description

The PRISMA satellite, launched on 22 March 2019, holds a hyperspectral and panchromatic
payload which is able to acquire images with a worldwide coverage [35]. The hyperspectral camera
works in the spectral range of 0.4–2.5 µm, with 66 and 173 channels in the VNIR (Visible and Near
InfraRed) and SWIR (Short-Wave InfraRed) regions, respectively. The average spectral resolution
is less than 10 nm on the entire range with an accuracy of ±0.1 nm. VNIR and SWIR channels are
overlapped between 930 and 1000 nm and the FWHM (Full Width at Half Maximum) is in the range of
9–15 nm (see Figure 3).
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The ground sampling distance of PRISMA images is about 5 and 30 m for panchromatic and
hyperspectral camera, respectively. In the present study, we employed only hyperspectral data and,
in particular, the Level-1 (top of atmosphere (TOA) radiance) and the Level-2D (reflectance at ground)
delivered by the Italian Space Agency by through the PRISMA portal [36].

3.2. MODTRAN Parameters for Simulations

In order to simulate the radiance emitted from PdC, as well as seen from PRISMA,
the MODTRANTM code [37,38] was used for the spectral region in the range of 0.4–2.5 µm. This code
offers the possibility to calculate the atmospheric contribution to the radiance emitted by modeling
atmospheric inputs, surface reflectance parameters and path geometry. MODTRAN has the capability
to combine the main effects in the atmosphere as the absorption/emission, scattering, surface reflection
and emission.

Table 2 reports the main input parameters for MODTRAN simulations. The atmospheric vertical
profiles of temperature, pressure and humidity, collected by radiosonde up to 25 km, were downloaded
from the free available repository of the University of Wyoming [39]. The MODTRAN output
considered in the following analyses is the top of atmosphere (TOA) radiance.
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Table 2. Main input parameters for MODerate resolution atmospheric TRANsmission (MODTRAN)
model runs.

MODTRAN Parameter Value

Surface albedo Reflectance at ground acquired with the
FieldSpec ASD spectrometer at PdC

Surface temperature 283 K

Geographical-seasonal model atmosphere
Radiosonde profiles acquired from Trapani (Sicily)

station on 31 July, 8 and 17 August 2019;
Mid-latitude summer (above 25 km)

Altitude of surface (a.s.l.) 2700 m (PdC mean altitude)
Initial zenith angle as measured from PdC 178 deg

Spectral range 0.4–2.5 µm (4000–25,000 cm−1)
Sun zenith angle 24◦

3.3. Hyperion Data Description

The Hyperion instrument was launched on board the Earth Observing-1 (EO-1) satellite on
21 November 2000, which was decommissioned on March 2017. Hyperion collected 220 spectral
channels, ranging from 0.357 to 2.576 µm, with a 10-nm bandwidth; the spatial resolution is of 30 m for
all bands. In the present work, the Hyperion dataset includes 19 acquisitions, achieved from 2001 to
2009, at the PdC test site. The Hyperion reflectance was obtained by means of the CIRILLO method
applied to TOA radiance images [40].

3.4. FieldSpec Data Description

The reflectance spectrum, in the range of 0.4–2.5 µm, was acquired with a field spectroradiometer
(Fieldspec ASD) during a measurement campaign at the PdC site in July 2003. This instrument has a
spectral resolution of 3 nm at 700 nm and 10 nm at 1400–2100 nm and a sampling step of 1.4 nm at
350–1050 nm and 2 nm at 1000–2500 nm. During the field campaign of July 2003, measurements of
surface reflectance were collected between 10:00 and 12:00 (local time), synchronous with Hyperion
acquisition [23]. In Figure 4, the reflectance measured at ‘PdC’, characterized by very low values in the
range 0.03–0.05, shows the presence of fine tephra and ash deposits.
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4. Results of Comparisons

In this chapter, results of comparisons are reported. Firstly, TOA radiances are obtained by
MODTRAN simulation runs; secondly, the reflectance spectra estimated by Hyperion and measured by
the FieldSpec spectrometer are considered. Specifically, analyses of radiances are considered separately
for VNIR and SWIR spectral ranges, while comparisons of reflectance values are performed on the
entire spectra in the range 0.4–2.5 µm.

4.1. PRISMA vs. MODTRAN Simulations: TOA Radiance Comparison

Spectra profiles of PRISMA and model simulations are reported for VNIR and SWIR spectral
ranges and for the three considered days (see Figure 5).
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The Pearson correlation coefficient is equal to 0.998 and 0.994 for the VNIR and SWIR spectral
ranges, respectively. Moreover, PRISMA TOA radiance overestimates model values for all three days
of measurements (see scatter plots of comparisons in Figure 6).
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days’ data.

Regarding the VNIR spectral range, the overestimation is about 2.61, 8.80 and 4.25 Wm−2sr1µm−1,
for the three considered days, respectively (see Table 3); only for the July 31 measurement, the simulated
profile is included in the ±2 standard deviation range. Furthermore, for the SWIR spectral range,
the comparison results show very similar behaviors: mean PRISMA values overestimate MODTRAN
simulations by 0.64, 1.37 and 0.72 Wm−2sr−1µm−1 (see Table 3). Differences in the comparison may be
due to sensor calibration errors and uncertainties related to atmospheric conditions [41,42].

Table 3. Mean TOA radiance values from PRISMA and model simulations.

Date Model Simulations
VNIR

PRISMA
VNIR

Model Simulations
SWIR

PRISMA
VNIR

31 July 2019 25.53 27.14 2.11 2.75
8 August 2019 24.84 33.64 1.94 3.31

17 August 2019 24.83 29.08 2.19 2.91

4.2. PRISMA vs. Hyperion: Reflectance Comparison

Reflectance values estimated by PRISMA for the three dates are compared with past measurements
by Hyperion in the period 2001–2009. Specifically, the PRISMA mean values are obtained from
the average of the three acquisitions, and the standard deviation is also calculated and reported.
The comparison results show an overestimation of PRISMA values which are included in the interval of
±2 standard deviation, representing the variability of Hyperion values. Figure 7 shows four picks at 941,
1137, 1415 and 1875 nm due to the water absorptions not completely compensated in Hyperion images.
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With the aim to compare results, five spectral sectors are considered excluding the water absorption
regions (see Table 4).

Table 4. Mean reflectance values from Hyperion and PRISMA in the considered spectral sectors;
the absolute differences are also reported.

Spectral Range (nm) Hyperion PRISMA Absolute Difference
PRISMA-Hyperion

Sector 1: 427.1–908.9 0.0448 0.0438 −0.0010
Sector 2: 972.9–1109.8 0.0438 0.0484 0.0046
Sector 3: 1163.5–1328.1 0.0387 0.0522 0.0135
Sector 4: 1501.8–1774.9 0.0427 0.0531 0.0104
Sector 5: 1975.8–2364.4 0.0445 0.0606 0.0161

PRISMA reflectance overestimates Hyperion in all sectors except the first one; the overall main
difference is about 0.0083 and is contained in the variability of Hyperion values, corresponding to
±0.0250 (equivalent to ±2 standard deviation). The relative overestimation results at about 19%, but this
parameter has little statistical significance because we are probing only very low values of reflectance.

The timing of satellite measurements is very different and the ideal comparison would be for
synchronous measurements. Unfortunately, this was not possible because the EO-1 Hyperion mission
was decommissioned in March 2017 and the PRISMA mission represents the natural successor of
Hyperion. The comparison of reflectance is, however, valid (within a certain error) for two main
reasons: first, the surface has never been involved in new volcanic eruptions, although small changes
in the surface roughness probably occurred; second, the contribution of atmosphere was removed
from satellite images, at the same time of acquisitions, to obtain reflectance products. Therefore,
the comparison is not affected by atmospheric conditions or great surface changes.
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4.3. PRISMA vs. FieldSpec: Reflectance Comparison

Lastly, the PRISMA reflectance values are compared with the measurement by the FieldSpec ASD
in July 2003 [43]. The ground measurement, at very high spectral resolution (in the order of a few
meters), is convolved on Gaussian response functions centered at PRISMA channels. Regions around
1415 and 1875 nm are excluded from the comparison, being strongly affected by water absorption.
Results of the comparison are shown in Figures 8 and 9.
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The mean reflectance value estimated by PRISMA is about 0.0511 with respect to the FieldSpec
mean value of 0.0422. Despite the big difference in time acquisition between the two measurements
(2003 and 2020 for ground and space measurements, respectively), the absolute mean error is +0.0089
(corresponding to a relative error of about +21%); this also confirms the great homogeneity of the PdC
test site in terms of time and space. The correlation between the two sets of measurements is around
0.45, showing a moderate agreement; this depends on atmospheric gas absorptions not removed in
satellite acquisitions.

5. Conclusions

First, acquisitions from the PRISMA space mission were compared with MODTRAN model
simulations, past data acquired by the Hyperion sensor in the period 2001–2009 and field spectrometer
measurements. The considered test site is ‘Piano delle Concazze’ (Mt. Etna, Italy), which is a flat and
homogeneous area of about 0.2 km2. The site is located at 2780 m of altitude in a position not covered
by the degassing plume most of the time, thus making it suitable for calibration purposes; moreover,
past Hyperion acquisitions demonstrated a high spectral homogeneity.

Spectra profiles of PRISMA TOA radiance were compared with MODTRAN simulations for the
three days considered in this work. The correlation is very high for both VNIR and SWIR spectral
ranges, resulting greater than 0.998 and 0.994, respectively. PRISMA radiance overestimated model
values for the three days considered, showing a mean bias of +5.22 Wm−2sr−1µm−1 (about +20%) and
of +0.91 Wm−2sr−1µm−1 (about +43%) for the two different spectral ranges. The biggest difference
with modeled radiance values out of the PRISMA estimations’ variability (out of ±2 SD) was for the
August 8 acquisition; this case needs further investigation.

The agreement between reflectance values estimated by PRISMA and Hyperion on the PdC area
was contained in a relative mean difference of about 19%, despite the great difference in time acquisition
(up to 19 years). PRISMA slightly overestimates Hyperion reflectance, with an overall mean difference
of about +0.0083, within the variability of Hyperion acquisitions of ±0.0250 (corresponding to ±2 SD).
The timing of satellite measurements is very different, but the comparison of reflectance is, however,
valid, because the atmospheric contribution to imagery was removed and small changes in surface
roughness occurred.

Finally, the FieldSpec measurements also confirmed the great quality of PRISMA reflectance
estimations. The relative main difference was about +0.0089 (corresponding to a relative error of about
+21%).

The evaluation of PRISMA performance, in terms of reflectance estimation, is not complete in the
present work because we considered only low levels of reflectance values. A more complete evaluation
needs to consider other test sites, with different optical characteristics, and field campaigns synchronous
with PRISMA satellite passages. The Italian National Institute of Geophysics and Volcanology (INGV)
is also planning a new field campaign at PdC to measure ground reflectance and better evaluate aerosol
characteristics and vertical atmospheric profiles.
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