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Abstract: This paper aims to develop a resonant accelerometer for high-sensitivity detection and to
investigate the nonlinear vibration of the MEMS resonant accelerometer driven by electrostatic comb
fingers. First, a nonlinear vibration model of the resonator with comb fingers in a MEMS resonant
accelerometer is established. Then, the nonlinear and nonlinear stiffness coefficients are calculated
and analyzed with the Galérkin principle. The linear natural frequency, tracking error, and nonlinear
frequency offset are obtained by multi-scale method. Finally, to further analyze the nonlinear
vibration, a sample-based stochastic model is established, and the uncertainty analysis method is
applied. It is concluded from the results that nonlinear vibration can be reduced by reducing the
resonant beam length and increasing the resonant beam width and thickness. In addition, the resonant
beam length and thickness have more significant effects, while the resonant beam width and the single
concentrated mass of comb fingers have little effect, which are verified by experiments. The results of
this research have proved that uncertainty analysis is an effective approach in nonlinear vibration
analysis and instructional in practical resonant accelerometer design.

Keywords: nonlinear vibration; uncertainty analysis; sample-based stochastic model; experimental
verification; MEMS resonant accelerometer

1. Introduction

The MEMS (micro-electro-mechanical system) resonant accelerometer can directly convert
acceleration into frequency output. It benefits from having small size, light weight, low power,
low cost, high resolution, good stability, wide dynamic range and quasi-digital output [1] etc. It is
widely used in inertial navigation, seismic detection, intelligent robots and other fields, which has
become an important development direction of MEMS sensors. However, when it is vibrating with
large amplitude, hard spring nonlinearity of the resonator arises due to the small size of the resonator,
which reduces the precision and even causes the sensor to be out of order. Therefore, the research on
the nonlinear dynamics of the MEMS resonant accelerometer is of great significance to improve the
precision and ensure its normal running.

In recent years, there have been various reports on the nonlinear research of the MEMS resonant
accelerometer. In terms of temperature characteristics, Zhang proposed a nonlinear dynamic model
of the resonant beam of the differential resonant accelerometer based on Hamilton’s principle under
varying temperature conditions, which could completely describe and analyze the nonlinear behavior
of the resonant cavity [2]. Defoort et al. used the nonlinear amplitude frequency coupling effect to
compensate for the resonator’s passive temperature, which reduced silicon’s temperature coefficient
of frequency (TCF) to a level comparable with that of an AT-quartz resonator [3]. Then, Shin et al. also
used the nonlinear amplitude frequency effect to improve the bias stability of resonant accelerometer
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in a large temperature range. In terms of mechanical coupling [4], Gusso proposed and theoretically
studied the nonlinear damping mechanism of the transverse vibration of the double-clamped beam
resonator [5]. Zou and Seshia optimized the bias voltage of the resonator by using the phase feedback
oscillator circuit, and then improved the noise performance of the MEMS resonant accelerometer in
the linear and nonlinear state in the wide band [6]. Juillard et al. studied the properties of nonlinearly
operated weakly coupled resonators (WCRs) for resonant sensing applications nonlinear operation of
the weak coupling resonator [7]. Lu et al. designed the nonlinear digital gain adjustment for rapid
establishment of resonance oscillation and linearity improvement of MEMS vibratory gyroscopes [8].
In terms of process materials, Agarwal et al. established and verified the amplitude frequency
dependence (A-F) effect model of MEMS resonators and studied the influence and mechanism of
nonlinearity on the frequency stability [9]. Mahmoodi et al. undertook a comprehensive analysis and
detailed comparative study on the nonlinearity of two types of microcantilever sensors actuated via a
piezoelectric ZnO layer, which showed that the nonlinear relation between the stress and strain in some
piezoelectric materials had a considerable effect on the sensor [10]. In 2019, Hashemi Kachapi et al. used
Gurtin–Murdoch surface/interface theory to analyze the nonlinear vibration and frequency response
of double wall piezoelectric nano resonators based on cylindrical nano shells [11]. Behbahani et al.
used methods stemming from the ring dynamics [12] to tune the nonlinearity due to manufacturing
imperfection in resonators [13,14], and similar frequency tuning method [15–17] can be applied to
MEMS gyroscopes and accelerometers. These reports mainly used the methods of nonlinear amplitude
frequency effect, phase oscillation feedback circuit, material performance optimization and modeling
the manufacturing imperfections to reduce the influence of nonlinear vibration of resonators.

As for the uncertainty analysis method, it was first applied to sheetpile cofferdam design in
1987 [18], and then Padmanabhan and Pitchumani used stochastic model to investigate the influence of
the uncertainty in the process and the material on the nonisothermal filling process [19]. After model
improvement [20], the sample-based stochastic model was used to study the influence of uncertainty
on the variability of refractive index, residual stress, maximum tension and defect concentration in
the optical fiber stretching process [21–23]. At that time, stochastic model had been applied to safety
assessments of technological systems [24], thermosetting-matrix composites fabrication [25], proton
exchange membrane (PEM) fuel cells [26]. In 2012, Peng et al. developed the sample-based stochastic
model to analyze the influence of the uncertainty of parameters on the solid-liquid-vapor phase
change of metal particles and identified the laser fluence had dominant effects [27]. Since then, more
applications of the stochastic model have been found in the design optimization of resonators [28],
thermal damage of living biological tissues by laser irradiation [29], and fluctuation parameters on
flow stability [30]. Therefore, the uncertainty method will be a mighty tool to study the nonlinear
dynamics of the MEMS resonant accelerometer.

Shi and Fan et al. applied uncertainty method to investigate the effects of different uncertain
parameters in electro-thermal excited MEMS resonant sensor, which demonstrated convincingly that
the DC excitation voltage had dominant effects [31]. However, it is more complicated to analyze the
nonlinear dynamics of the MEMS resonant accelerometer driven by comb.

In this paper, the nonlinear vibration model of resonant beam which is driven by comb fingers in
a MEMS resonant accelerometer is established. After being deduced by the Galérkin principle and
multi-scale method, the relation between the equivalent stiffness of the resonator and the geometric
parameters of the accelerometer is discussed. In the other hand, the influence of pairs of comb
fingers on the nonlinear effect of resonator is analyzed. Furthermore, the connection between the
natural frequency-tracking error of the accelerometer caused by the nonlinear vibration and the
measured acceleration and the geometric parameters of the resonant beam is investigated. Given the
uncertainty distribution of geometric parameters and single concentrated mass of the comb fingers
due to fabricating errors, the sample-based stochastic model will be applied to investigate influence on
vibrating nonlinearity including linear natural frequency, nonlinear frequency offset and their ratio.
Finally, we will design a circuit experiment to verify the validity of the uncertainty method.
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2. Working Principle and Theoretical Analysis

2.1. Working Principle

The MEMS resonant accelerometer mainly includes the mass block, support beams, resonators,
drive units and detection units. Each resonator consists of two identical resonant beams. The working
principle of the MEMS resonant accelerometer is shown in Figure 1a. The resonator works in the
resonant state, and the acceleration acts on the mass block. When the natural frequency of the resonator
changes under the inertial force along the axial direction, the drive unit excites the resonator to vibrate
and maintains the resonant state. Meanwhile, the detection unit detects the vibration signal, and the
drive unit tracks the natural frequency of the resonator controlled by the closed-loop feedback control
circuit. It guarantees the frequency of the excitation force is always consistent with the natural
frequency of the resonator. Meanwhile, the detection unit detects the vibration signal, and the drive
unit tracks the natural frequency of the resonator controlled by the closed-loop feedback control circuit,
which guarantees the frequency of the excitation force is always consistent with the natural frequency
of the resonator. According to the vibration signal detected by the detection unit, the change of natural
frequency can be obtained, and then the measured acceleration can be converted. Figure 1b shows a
schematic of the drive/detection units. When the driving voltage (AC and DC bias voltage) is applied
to the fixed comb fingers, the alternating electric field will generate a lateral driving force. Under the
action of the lateral driving force, the active comb fingers will generate reciprocating vibration relative
to the fixed comb fingers. When the frequency of the driving voltage is consistent with the natural
frequency of the active comb fingers, the active comb fingers will resonate, and the resonant frequency
of the resonator will be obtained through the detection.

Mass block Supporting beam

 Resonator

Driving unit

Detection uint

Supporting beam

(a)

Resonator

Capacitance detection

Electrode

(Detection unit)

Electrostatic 

excitation

Electrode

(Driving unit)

(b)

Figure 1. (a) structural schematic diagram and (b) schematic diagram of drive/detection units.

2.2. Nonlinear Vibration Model of Resonator with Comb Fingers

Figure 2 shows the equivalent mechanical model of the resonator single beam in the MEMS
resonant accelerometer proposed in Figure 1. Neglecting the moment of inertia of the comb fingers,
the comb finger is simplified as a particle attached to the double-clamped resonant beam. Taking the
nonlinear geometric effect into account, the equation of motion of the resonant beam is obtained in line
with Euler-Bernoulli beam modeling when the electrostatic force is considered. The lateral deflection
ŵ(x̂i, t̂) is
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∂t̂4 + c

∂ŵ
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∂ŵ
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∂2ŵ
∂x̂2 +

N/4

∑
i=1

mc
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q(t̂)δ(x̂− x̂i)

(1)

The boundary conditions of the double-clamped resonant beam are

∂ŵ(0, t̂)
∂x̂

= ŵ(0, t̂) = 0

∂ŵ(L, t̂)
∂x̂

= ŵ(L, t̂) = 0
(2)

q(t̂) is the electrostatic force generated by a single driving comb finger, which is defined as

q(t̂) =
ε0beUpUd

g
cos(ω̂t̂) (3)

where ρ is the material density. L,B and H represent the length, width and thickness of the resonant
beam, respectively. E is the young’s modulus of the material. I is the moment of inertia. Na is the axial
load caused by the measured acceleration. Nr is the residual stress. mc is the single concentrated mass
of the comb finger on the resonant beam. N is the pairs of the comb fingers on the resonant beam. x̂i
is the distance from coordinate of the ith concentrated comb mass to the resonant beam end and t̂ is
time. c is the damping coefficient c is simplified to be frequency-independent in the neighborhood of
resonance and the value is determined by the measured quality factor. δ is the Delta function, which is
used to describe the position of the driving moments. ε0 is the permittivity in vacuum. be is the width
of comb finger. g is the gap between two plates of comb capacitance. Up and Ud are the dc voltage
applied to the structure electrode. ω̂ is the working frequency.

Z

X

1x̂

2x̂

ˆincx

4

N

0

L

1 2 3

Figure 2. Equivalent mechanical model of resonant beam with comb fingers.

Upon Selecting dimensionless parameters

w =
ŵ
r

x =
x̂
L

t = t̂ω̂n ω =
ω̂

ω̂n
(4)

where r =
√

I/BH is the radius of rotation of cross section of resonant beam, the moment of inertia
is I = BH3/12, and ω̂n is the linear natural frequency of the resonant beam. Equation (1) and the
boundary conditions are changed as
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(5)

∂w(0, t)
∂x

= w(0, t) = 0

∂w(L, t)
∂x

= w(L, t) = 0
(6)

The Galérkin principle is a method to discretize the partial differential equation into a
reduced-order model. Assuming the lateral deflection w(x, t) of beam is

w(x, t) =
n

∑
i=1

φi(x)ui(t) (7)

where φi(x) is the ith mode of vibration of the resonant beam, and ui(x) is the generalized coordinate
corresponding to the ith mode [32]. φ1(x) is first-order linear undamped mode function of the resonant
beam. The solutions of Equations (5) and (6) can be expressed by mode of the resonant function.
Through multiplying and integrating from 0 to 1, a reduced-order model in the form of ordinary
differential equations can be obtained. Since the distribution of electrostatic force is symmetrical
about the midpoint of the resonant beam and the frequency of electrostatic force is close to the first
natural frequency, it can be considered that the resonant beam vibrates approximately according to the
first mode. According to the undamped free vibration equation of the resonant beam, the first-order
vibration mode satisfies the following relationship

EIr
L4 φiv

1 = ω̂2
nρBHrφ1 +

(Na + Nr)r
L2 φ

′′
1 + mcrω̂2

n

N/4

∑
i=1

φ1(x̂i)δ(x̂− x̂i) (8)

Replacing the first-order vibration mode function and Equation (8) into (5) can obtain{
ρBHrω̂2

nφ1 + mcrω̂2
n

N/4

∑
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φ1(xi)δ(x̂− x̂i)

}
ü1 + crω̂nφ1u̇1+{

ρBHrω̂2
nφ1 + mcrω̂2

n

N/4

∑
i=1

φ1(xi)δ(x̂− x̂i)

}
u1 −

EBHr3

2L4 φ
′′
1

∫ 1

0
φ
′
1

2
dx · u3

1

=
N/4

∑
i=1

q(t)δ(x̂− x̂i)

(9)

Multiplying both sides of Equation (9) by φ1(x) and integrating both sides of Equation (9) with
respect to x from 0 to 1, one obtains

ü1 +
1
Q

u̇1 + k1u1 + k3u3
1 = Feq cos(ωt) (10)

where the mechanical quality factor of the resonant beam first-order modal vibration Q, the amplitude
of equivalent excitation force Feq, equivalent linear stiffness coefficient k1 and nonlinear stiffness
coefficient k3 are expressed as
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Equation (12) is the ratio of nonlinear stiffness coefficient to linear stiffness coefficient, which can
reflect the nonlinear degree of resonant beam vibration.

Supposing that when the accelerometer receives positive acceleration, the resonators receive
tensile axial force, and when the accelerometers receive negative acceleration, the resonators receive
compressive axial force. According to the determined structural parameters of the resonators with
comb fingers, the ratio of nonlinear to linear stiffness coefficient k3/k1 with the measured acceleration
and the pairs of comb fingers N can be obtained from Equation (12), as shown in the Figure 3. Although
increasing the pairs of comb fingers on the resonant beam increases the additional mass of the resonant
beam, it can be seen from Figure 3 that increasing the pairs of comb fingers has small effect on the
reduction of nonlinearity.

Acceleration/g
0 500 1000 1500 2000 2500

k
3

/k
1

0

0.02

0.04

0.06

N=80
N=120
N=160

Figure 3. k3/k1 curves with the measured acceleration and the pairs of comb fingers.

The approximate analytical solution of Equation (10) can be obtained by using the multi-scale
method. According to Figure 3 and Equation (12), the nonlinear stiffness coefficient k3 � 1, which can
be designated as the small parameter ε in the multi-scale method. Generally, the resonator in resonant
accelerometer works in vacuum environment to obtain high mechanical quality factor Q, so 1/Q� 1
can be expressed as

1
Q

= 2εµ (13)

µ = −
cL4ω̂n

∫ 1
0 φ2

1dx

EBHr2
∫ 1

0 φ
′′
1 φ1dx

∫ 1
0 φ

′
1

2
dx

(14)

The resonant beam vibrates approximately at their natural frequency when the accelerometer
works, so let ω = 1 + εσ, where σ is the detuning parameter. When the resonant beam vibrates
according to the natural frequency, a small excitation amplitude can cause a large vibration of the
resonant beam, so let Feq = εK, where
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K = −
2ε0beUpUdL4
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ω̂n can be obtained from Equation (12) and considering the relationship between k3 and ε

ω̂n =

√√√√√√− EBHr2
∫ 1

0 φ
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1 φ1dx
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N/4
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The linear natural frequency frn is

frn =
ω̂n

2π
(17)

So far, Equation (10) can be rewritten as

ü1 + 2εµu̇1 + u1 + εu3
1 = εK cos[(1 + εσ)t] (18)

Using the multi-scale method, the amplitude frequency response equation and the phase
frequency characteristic equation of the resonant beam are obtained as

ω̂ = ω̂n +
3α̂2

8r2 ω̂nε±
(

K2r2

4â2 − µ2
)1/2

ω̂nε (19)

ω̂ = ω̂n +
3K2ω̂nε

32µ2 sin2 γ− µεω̂n cot γ (20)

where γ is the phase-shift and α̂ is the amplitude of resonant beam.

2.3. Natural Frequency-Tracking Error Caused by Nonlinear Vibration

When the phase-locked closed-loop circuit is used to track the natural frequency of the
accelerometer, the phase-shift γ of the resonant beam is locked at π/2. Substituting γ = π/2 into
Equation (20), the vibration frequency of the resonant beam is expressed as

ω̂ = ω̂n +
3K2ω̂nε

32µ2 (21)

The frequency-tracking error of the accelerometer can be obtained by Equation (21)

Er =
3
8

Q2K2ε3ω̂n (22)

The nonlinear frequency offset fo f f is

fo f f =
Er

2π
(23)

Figure 4 presents the change curve of the natural frequency-tracking error of the accelerometer
caused by the nonlinear vibration with the measured acceleration and the geometric parameters
of the resonant beam. As seen from Figure 4, when the measured acceleration increases, the
frequency-tracking error increases with the increase of resonant beam length L (Figure 4a) and
decreases with the increase of resonant beam width B and thickness H (Figure 4b,c). Therefore,
the nonlinear effect can be reduced by decreasing the length and increasing the width and thickness of
the resonant beam.
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Figure 4. The natural frequency-tracking error with (a) length, (b) width and (c) thickness in
accelerometer caused by nonlinear vibration (Q = 10, 000, Up = 0.50 V, Ud = 0.05 V).

3. Uncertainty Analysis Method

3.1. Uncertainty Analysis Method

Based on the nonlinear vibration model of resonator, the nonlinear dynamics of MEMS resonant
accelerometers is studied by using the sample-based stochastic model. Figure 5 illustrates the detailed
procedure on how the sample-based stochastic modeling is realized based on the specific deterministic
physical modeling for nonlinear vibration of resonator described with random selected stochastic
instances. First, the input parameters are selected, and the degree of change is quantified. Then,
through stochastic convergence analysis, a proper number of sample combinations of input parameters
are determined, and the uncertainties of input parameters are calculated by the previously established
deterministic physical model. Finally, the variability of output parameters is quantified according to
the uncertainty of input parameters.

In this study, we focus on the uncertainty in four parameters: the length L, width B, thickness H
and single concentrated mass of the comb finger mc of the resonant beam. The uncertainty of all the
input parameters is assumed to obey the Gaussian distribution, which is commonly used to represent
uncertain parameters of a physical model [20,26]. After determining the distribution of the input
parameters, the Monte Carlo sampling method (MCS) is used to randomly select the input parameters
from the given Gaussian distribution to obtain a sample combination. In the process of stochastic
convergence analysis, with the increase of the number of samples, the mean value and standard
deviation of input parameters will converge to the nominal mean value and standard deviation
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of Gaussian distribution, then the minimum sample value of input parameters will be obtained.
To measure the uncertainty of input parameters, the coefficient of variance (COV) defined as σ/µ

represents the uncertainty degree of the input parameters, where the average value (µ) is represented
by the nominal value of the uncertainty parameters, and the standard deviation (σ) represents the
variability of the input parameters.

LBHmc

Stochastic

Convergence

analysis

Ns samples for 

Uncertain input 

parameters

Deterministic

Input parameters

Nonlinear

Vibration

model

frn foff fnol

Output

parameters

Uncertain Input

Parameters

Figure 5. The sample-based stochastic model.

The intriguing output parameters consist of the linear natural frequency frn, the nonlinear
frequency offset fo f f and the scaling factor fnol defined as fo f f / frn. Likewise, the number of samples of
the output parameters can be obtained by the stochastic convergence analysis. The interquartile range
(IQR) defined as the difference between the output parameter values at the 25th percentile (P25) and the
75th percentiles (P75) is used to evaluate the variability of the output parameters distributions [20,26].

3.2. Results and Siscussions

According to the finite element analysis method [28], we assume the nominal mean values of L, B,
H and mc are 500µm, 40µm, 4µm, 4.66× 10−12 kg and the other relevant properties of the resonant
beam in this paper are shown in Table 1.

To obtain the number of input samples Ns, the COV of each input parameters is set to be 0.04.
Figure 6 shows the results of the stochastic convergence analysis of the mean values of input parameters
L, B, H and mc. It can be seen that the mean values fluctuate significantly with the decrease of sample
numbers but converge as the numbers of samples increases. When Ns = 300, the mean values of the
input parameters converge to within 1% for the distributions. In other words, the number of samples of
Ns = 300 may be sufficient so far, but it also depends on the standard deviations of input parameters.
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Table 1. Properties of the resonant beam.

Parameter Expression Dimensions

Length of the resonant beam L 500µm
Width of the resonant beam B 40µm

Thickness of the resonant beam H 4µm
Pairs of the comb fingers N 80

Single concentrated mass of comb finger mc 4.66× 10−12 kg
Material density ρ 2329 kg·m−3

Young’s modulus of the material E 133 GPa
Poisson’s ratio ν 0.278
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Figure 6. Stochastic convergence analysis of Mean value of input parameters: (a) L, (b) B, (c) H and
(d) mc.

The stochastic convergence analysis of the standard deviations of four input parameters are
presented in Figure 7, which indicates that there is still a large fluctuation at 300 samples. The standard
deviation values converge to within 1.3% for all input parameters while the number of samples
exceeding 400.
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Figure 7. Stochastic convergence analysis of Standard deviation of input parameters: (a) L, (b) B, (c) H
and (d) mc.

Figure 8 presents the stochastic convergence analysis of the mean values of the linear natural
frequency frn, the nonlinear frequency offset fo f f and the scaling factor fnol . It can be observed from
Figure 8 that the output parameters mean value converges very fast as well. The mean value converges
to within 0.034% for frn, 1.11% for fo f f and 1.48% for fnol when 400 samples are examined.
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Figure 8. Stochastic convergence analysis of Mean value of output parameters: (a) frn, (b) fo f f and
(c) fnol .

The results plotted in Figure 9 show the stochastic convergence analysis of the standard deviations
of output parameters. The standard deviation converges to within 0.63% for frn, 0.03% for fo f f and
1.40% for fnol that all output parameters are in 2% when 400 samples are used. In consequence, the
minimum number of samples of Ns = 400 is obtained and will be used in the following study.
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Figure 9. Stochastic convergence analysis of Standard deviation of output parameters: (a) frn, (b) fo f f
and (c) fnol .
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Figure 10 illustrates the IQRs of the frn, fo f f and fnol as a function of the COVs of the input
parameters L, B, H and mc. It should be noted that when the COV of one of the input parameters
increases from 0.01 to 0.1, the COVs of other input parameters remain at 0.01. It can be seen from
Figure 10a that the IQR of the linear natural frequency frn significantly increases from about 12.64 kHz
to 123.046 kHz with the COV of the length L increases from 0.01 to 0.1. Moreover, when the COV
of thickness H increases from 0.01 to 0.1, the IQR of frn also shows an observable increase from
14.436 kHz to 64.068 kHz. However, the increase of COV of other parameters has very little effect on
IQR. The results are consistent with the frn being a strong function of the length L and the thickness H.

The IQR of the nonlinear natural frequency fo f f as a function of the COV of various input
parameters is presented in Figure 10b, which shows that the IQR of fo f f increases significantly from
1.562× 10−9 Hz to 1.326× 10−8 Hz with the COV of the thickness H increasing from 0.01 to 0.1.
Meanwhile, when the COV of length L increases from 0.01 to 0.1, the IQR of fo f f also shows an
observable increase from 1.464× 10−9 Hz to 8.022× 10−9 Hz. It is relatively unaffected by the increase
in the COV of other uncertain parameters. Furthermore, the IQR of the scaling factor fnol is a function
of the COVs of the input parameters, as depicted in Figure 10c, where it is seen that the COV of the
length L and thickness H increasing from 0.01 to 0.1 result in a remarkable increase of the IQR of fnol .
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Figure 10. The IQR of output parameters with different COVs of the input parameters. (a) IQR Analysis
of frn, (b) IQR Analysis of fo f f and (c) IQR Analysis of fnol .

The results presented the thickness H and the length L of the resonant beam are the main
factors that cause the nonlinear vibration of the MEMS resonant accelerometer, and the influence
degree of the thickness H is similar to the length L. This is consistent with the result that the natural
frequency-tracking error of the accelerometer caused by the nonlinear vibration changes with the
measured acceleration and the geometric parameters of the resonant beam. In addition, the width B
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of the resonant beam and single concentrated mass of the comb finger mc have little influence on the
nonlinearity of the MEMS resonant accelerometer, which is consistent with the pairs of comb fingers
making little difference to reduce nonlinearity (Figure 3).

4. Experimental Verification

4.1. The Equivalent Circuit Model

From the analysis of sample-based stochastic, it can be found that the length L and thickness H of
the resonant beam have a great influence on the nonlinear vibration of the resonator. To verify this
conclusion, the electromechanical equivalence principle forms a very effective base on which each
term of the dynamic Equation (18) is converted into a one-to-one corresponding circuit unit and the
equivalent circuit is established. Then, the equivalent circuit of the MEMS resonant accelerometer is
established based on the study of its nonlinear vibration theory. In the circuit design, the excitation
force only maintains the vibration of the resonant beam and has no influence on the vibration frequency,
so the excitation term of Equation (18) is not considered.

The equivalent circuit model of the nonlinear vibration model of resonator with comb fingers is
shown in Figure 11. It gives the circuit units corresponding to the terms in the differential Equation (18).
u1(t) is the expression of first-order modal vibration of the resonant beam, which can be obtained by
twice integrations of ü1(t). The −u1(t) term can be obtained by using proportional amplifier ¬ as a
feedback loop. The term of nonlinear stiffness coefficient k3u3

1(t) can be obtained by using proportional
amplifier ® and multiplier. The −u1(t) term corresponds to the proportional amplifier . The three
terms mentioned above are added by an adder to be the ü1(t) term, then the u̇1(t) term and the u1(t)
term can be obtained by integrator ¯ and integrator ° respectively. The nonlinear frequency offset
is obtained by detecting the difference between the output frequency of u1(t) and the linear natural
frequency calculated by theory.

Proportional 

amplifier ③

Proportional 

amplifier ②

Proportional 

amplifier ①

Multiplier Adder
Integrator

④

Integrator

⑤

1( )u t 1( )u t1( )u t

Figure 11. Equivalent circuit model of resonant beam with comb fingers.

The circuit principle diagram of the nonlinear vibration model of resonator with comb fingers is
demonstrated in Figure 12. The green box corresponds to the Proportional amplifier ¬, the pink box
to the Proportional amplifier , the yellow box to the Adder, the purple box to the Integrator ¯, the
orange box to the Integrator °, the blue box to the Proportional amplifier ®, and the red box to the
Multiplier. The nonlinear coefficients corresponding to different geometric parameters are obtained by
adjusting the feedback resistance R2 of the proportional amplifier in the blue box.

Figure 13 is the diagram of experimental setup. The green box represents the experimental
verification module. First, we assume the nominal mean values of L, B, H and mc are 500µm, 40µm,
4µm and 4.66× 10−12 kg. Twelve points are sampled for each group of geometric parameters, and to
ensure the comparability of the four group of data, one-fortieth of the nominal value of each change is
taken. It should be noted that when studying the influence of one geometric parameter, keep the other
three geometric parameters as nominal values. As mentioned above, the corresponding nonlinear
coefficient k3 will also change when the other three parameters are kept unchanged and only one
parameter is changed. The change in k3 can be achieved by adjusting the variable resistor shown in
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Figure 12. Secondly, the signal generator gives a signal to the experimental verification device to make
it working in a resonant state. Then, adjusting R2 according to the change of geometric parameters,
and the measuring instrument records the different frequencies of the output signal. Finally, through
the data processing unit analyzes and processes the output frequency recorded by the measuring
instrument, the variation of the detected frequency with geometric parameters is obtained. At the same
time, the nonlinear frequency offset varying with geometric parameters can be obtained by comparing
the detection frequency with the theoretical frequency.
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Figure 12. Circuit principle diagram of resonant beam with comb fingers.

① Signal generatorl
③Measuring instrument

④ Data processing unit

② Experimental 

verification device

Figure 13. Diagram of experimental setup.

4.2. Experimental Results

Figure 14 illustrates the theoretical frequency and detected frequency varying with geometric
parameters and the trend fitting curves of the nonlinear frequency offset fo f f . It can be seen from
Figure 14a that as the length L increases from 437.5µm to 575µm, both the theoretical linear natural
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frequency and the nonlinear natural frequency of the circuit output show a decrease trend between
300 kHz and 700 kHz. Moreover, when the length L increases from 437.5µm to 575µm, the nonlinear
frequency offset fo f f shows an observable increase from −150 kHz to 60 kHz in the fitting graph.
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Figure 14. The experimental and theoretical results. (a) L, (b) H, (c) B and (d) mc.

Figure 14b presents the theoretical frequency and detected frequency varying with the thickness H.
For the convenience of observing the trend, the absolute value of the nonlinear frequency offset point
after the nominal value of the resonator thickness H is taken. It can be observed that the theoretical
frequency and the detected frequency of the circuit output show an increase trend from 150 kHz to
700 kHz with the thickness H increasing from 3.6µm to 4.7µm. Furthermore, the nonlinear frequency
offset fo f f shows a remarkable increase from −85.156 kHz to 152.802 kHz in the fitting graph, which
indicates that the nonlinear frequency offset is also strongly affected by the thickness H.

The results plotted in Figure 14c show the theoretical frequency and detected frequency varying
with the width B. It can be seen that as the width B increases from 36µm to 47µm, both the theoretical
frequency and the detected frequency of the circuit output show a slightly upward trend from 380 kHz
to 510 kHz. Meanwhile, the nonlinear frequency offset fo f f of the width B increases more tardily from
−32 kHz to 5 kHz in the fitting graph than the length L and the thickness H.

Moreover, when the single concentrated mass of the comb finger mc increases from 4.0775 ng
to 5.359 ng, as depicted in Figure 14d, it can be seen that neither the theoretical frequency nor the
detected frequency of the circuit output changes significantly. The nonlinear frequency offset fo f f of
the single comb finger mass mc varies from −0.416 kHz to 0.7912 kHz, which indicates that the single
comb finger mass mc has little effect on the nonlinear frequency offset fo f f .

In conclusion, the detected frequency of the circuit output and the theoretical frequency change
significantly with the increase of the length L and the thickness H, followed by B and mc. Meanwhile,
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the length L and the thickness H are the main factor affecting the nonlinear frequency offset fo f f , which
is consistent with the results of the uncertainty analysis method.

5. Conclusions

• The nonlinear vibration model of resonator with comb fingers has been established. The nonlinear
stiffness coefficient k3 and the linear stiffness coefficient k1 have been calculated and analyzed
with the Galérkin principle. The linear natural frequency frn, the nonlinear frequency offset fo f f
and the scaling factor fnol are obtained by multi-scale method.

• According to theoretical analysis, it is found that the pairs of comb fingers have little effect on
the nonlinear vibration of the resonator. After further analyzing the relationship between the
natural frequency-tracking error and the geometric parameters of the resonant beam, we can
find that the frequency-tracking error increases with the increase of the length L of the resonant
beam, and decreases with the increase of the width B and thickness H of the resonant beam. The
nonlinear effect can be reduced by reducing the length L and increasing the width B and thickness
H of the resonant beam.

• Based on the nonlinear vibration model of the resonator and considering uncertainty distributions
of structure size due to fabricating errors, a sample-based stochastic model is established to further
investigate the effect of input parameters (L, B, H, mc) on the output parameters ( frn, fo f f , fnol).
The results show that the length L and thickness H of the resonant beam have a greater influence
than the width B and the single concentrated mass of the comb finger mc on the nonlinear
vibration of the resonator, which are consistent with the results of theoretical analysis.

• In the experimental verification, the detected frequency of the circuit output and the theoretical
frequency change significantly with the increase of the length L and the thickness H, followed
by B and mc. Meanwhile, the length L and the thickness H are the main factors affecting the
nonlinear frequency offset fo f f , which is consistent with the results of the uncertainty analysis
method. According to the above conclusions, to reduce the nonlinear characteristics of the sensor,
four geometric parameters can be properly adjusted to increase the stiffness and obtain better
structural performance.
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