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Abstract: Near-field to far-field transformation (NFFFT) is a frequently-used method in antenna
and radar cross section (RCS) measurements for various applications. For weapon systems,
most measurements are captured in the near-field area in an anechoic chamber, considering the
security requirements for the design process and high spatial costs of far-field measurements. As the
theoretical RCS value is the power ratio of the scattered wave to the incident wave in the far-field
region, a scattered wave measured in the near-field region needs to be converted into field values in
the far-field region. Therefore, this paper proposes a near-field to far-field transformation algorithm
based on spherical wave expansion for application in near-field RCS measurement systems. If the
distance and angular coordinates of each measurement point are known, the spherical wave functions
in an orthogonal relationship can be calculated. If each weight is assumed to be unknown, a system
of linear equations as numerous as the number of samples measured in the near electric field can be
generated. In this system of linear equations, each weight value can be calculated using the iterative
least squares QR-factorization method. Based on this theory, the validity of the proposed NFFFT is
verified for several scatterer types, frequencies and measurement distances.

Keywords: radar cross section (RCS) measurement; near-field to far-field transformation (NFFFT);
spherical wave expansion (SWE)

1. Introduction

In many cases, radar cross section (RCS) measurements for an object under test (OUT) or the
radiation patterns of an antenna under test (AUT) are captured in the near-field region inside an
anechoic chamber or at an outdoor site. The theoretical RCS value is the power ratio of a scattered wave
measured at infinity to an incident plane wave. The far-field region is proportional to the electrical size
of the OUT compared to the wavelength. Specifically, it is calculated as 2d2/λ, where d is the linear size
of the OUT and λ is the wavelength. This implies that, as the target expands or the frequency increases,
the far-field range criterion will become excessively large for practical measurements. Therefore,
in many cases, a specially designed reflector is placed between the feeder and OUT to induce far-field
conditions [1]. Another approach is the use of a near-field to far-field transformation (NFFFT) technique
in a non-ideal measurement environment. Traditionally, field-transformation algorithms have focused
on the processing of field values measured over canonical surfaces (e.g., planes [2], cylinders [3] and
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spheres [4]) using corresponding modal expansion techniques. To minimize measurement time, studies
on non-uniform near-field sampling grids have been conducted continuously for each type of scanning
surface [5–7]. In particular, several approaches have been presented for the arbitrary-probe NFFFT of
spherical near-field measurements. These approaches include angular scanning [8] and probe modal
content tuning [9–12]. However, modal expansion requires every point for measuring a near-field to
exist on a surface with a single coordinate system in order to maintain orthogonality. Additionally,
the far-field conversion process is unintuitive and complicated, because calculating the integral
equation corresponding to each coordinate system is required for the NFFFT process. When measuring
within a specific bandwidth rather than at a single frequency, the computational complexity increases
significantly because the solution for the new integral equation must be calculated according to
the wavenumber corresponding to the sampling frequency within the bandwidth. Additionally,
gaps between measurement samples must exist on the canonical surface, which impairs the flexibility
of near-field measurements. In a real measurement system, the flexibility of near-field sampling is
crucial to avoid limiting the shape of the OUT or the measurement frequency.

To overcome the limitations discussed above, an NFFFT algorithm that can flexibly convert an
arbitrary near-field scanning surface measurement value into a far-field RCS within various frequency
bands is required. In this paper, a far-field RCS prediction method based on the spherical wave
expansion (SWE) method that adapts modal expansion techniques away from canonical surfaces is
proposed. SWE-NFFFT has mainly been used to predict far-field radiation patterns based on near-field
measurements of AUTs [13–21]. First, the point at which an AUT’s radiation field is located is assumed
to be the origin of the coordinate system and an arbitrary near-field measurement point can be
expressed in spherical coordinates. The electric field at a given location can be expressed as a weighted
sum of spherical waves that are orthogonal to each other. Assuming that the weight multiplied by
each spherical wave is unknown, a system of linear equations as numerous as the number of samples
measured in the near electric field can be generated. The unknown weights can be calculated from the
linear system of equations generated in this manner. This process is called an inverse problem. Next,
the RCS defined in the far-field domain can be predicted using the calculated weights. This process is
called a direct problem, and all processes in the inverse problem and direct problem can be considered
as the basic principles of NFFFT, as illustrated in Figure 1.

(a) (b)

Figure 1. Schematic view of electromagnetic scattering and the process of spherical wave
expansion–near-field to far-field transformation (SWE-NFFFT). (a) The geometry of electromagnetic
scattering. (b) Illustration of SWE-NFFFT.

The method described above can be applied to the RCS of an OUT in its current form.
Regarding the process of generating scattered waves, when an electric field is incident on an OUT,
a surface current density is induced on the OUT surface by the incident waves. This induced surface
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current density acts as a source and generates another electric field, which is regarded as a scattered
wave reflected by the OUT. Therefore, an OUT on which an incident wave generates a surface current
density can be modeled as an equivalent current source, such as an AUT emission field.

In this study, an NFFFT algorithm was developed based on the SWE theory to verify the validity
of far-field RCS prediction for an arbitr-ry near-field scanning surface. First, NFFFT RCS results for
two canonical surfaces (spherical and planar) scans were compared and analyzed using a NASA
almond type OUT for which reliable reference measurement data were available. Next, the validity of
SWE-based NFFFT for arbitrary scanning surfaces was confirmed based on the extracted far-field RCS
results from scanning near-field samples for actual missile type OUTs with a larger electrical size.

2. Theory

2.1. Radar Cross Section

An RCS is utilized as a measure of the reflective strength of a target and is defined as 4π times the
ratio of the power per unit solid angle scattered in a specified direction to the power per unit area in a
plane wave incident on the scatterer in a specified direction [22]. Specifically, it is defined as the limit
value of the distance between the scatterer and the point at which the scattered power is measured at
infinity, as follows:

σ = lim
r→∞

4πr2 |Escat|2
|Einc|2

= lim
r→∞

4πr2 Pscat

Pinc
[m2] (1)

σdBsm = 10 log10(
σ

σre f
) = 10 log10(

σ

1
) [dBsm] (2)

where r is the distance from the OUT to the measurement point, Escat is the scattered electric field and
Einc is the incident electric field at the target. The unit for an RCS is square meters. Because objects for
which RCSs are measured have various sizes, the logarithm power scale is often adopted, and 1 m2 is
used as a reference value, as shown in Equation (2).

As shown in Figure 2, depending on the direction in which a scattered wave is measured, the RCS
can be categorized as monostatic or bistatic. If scattering is observed in the k vector direction, which is
the opposite direction of the incident wave, then it is defined as monostatic RCS, while all other cases
are defined as bistatic RCS.

Figure 2. Illustration of monostatic and bistatic radar cross sections (RCSs).
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Based on the definition above, the RCS measurement of an OUT can be performed using two
methods: outdoor and indoor. According to the theoretical definition of an RCS, the measurement
environment that is more suitable for measuring scattered waves at infinite distances is outdoors.
However, it is necessary to consider the effects of various types of clutter that can affect RCS
measurement values (e.g., weather conditions such as rain or snow or wide-open flat spaces). In most
cases, indoor measurements can provide cleaner measurement data with reduced clutter, even though
the measurement space is limited in size. In the near-field region, the shape of an electromagnetic wave
is closer to the shape of a spherical wave than a plane wave. Therefore, if the power ratio is calculated
or measured from a scattered wave in the near-field region, the RCS values will differ from the true
values. Therefore, it is necessary to predict a far-field RCS in which a plane wave is reconstructed
by applying a post-processing technique to the electric field value measured in the near-field region.
The following subsection details the SWE-NFFFT theory for arbitrary scanning surfaces, which is not
limited to the canonical scanning surfaces, unlike the conventional NFFFT algorithm.

2.2. Near-Field to Far-Field RCS Prediction Based on SWE

As shown in Figure 1, the scattered wave formed by an OUT can be derived from an equivalent
surface current density by utilizing Love’s equivalence principle [23]. Specifically, the scattered wave
formed by an OUT can be expressed as a weighted sum of spherical wave functions that are orthogonal
to each other at an arbitrary measurement point, which matches the form of the following spherical
wave expansion:

−→
E (r, θ, φ) =

2

∑
s=1

N

∑
n=1

n

∑
m=−n

Qsmn
−→
F (3)

smn (3)

N = dka + 6(ka)
1
3 e (4)

where s = 1, 2 represent two orthogonal modes of the electromagnetic field, Qsmn is the spherical
wave coefficient and

−→
F (3)

smn is the spherical wave basis function. In Equation (4), k is a wave number
determined by the measurement frequency and a is the radius of the sphere with the smallest volume
containing the entire OUT to be measured. N is the truncation number and is a variable that determines
the minimum amount of data required for valid RCS prediction from the limited measurement data.
Therefore, the number of m and n are determined to be N + 2 and N, respectively.

In this case, the spherical wave basis function
−→
F (3)

smn, which takes the form of a vector, is calculated
with both theta and phi directional components.

−→
F (3)

1mn(r, θ, φ) =
1√
2π

1√
n(n + 1)
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|m| )

m

[
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dθ
eimφφ̂

]
(5)
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z(3)n (x) = jn(x) + iyn(x) (7)

jn(x) = (−x)n(
1
x

d
dx

)n sin x
x

(8)

yn(x) = −(−x)n(
1
x
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dx

)n cos x
x

(9)
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n (x) = (−1)m

√
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Pm
n (x) = (−1)m(1− x2)m/2 dm

dxm (Pn(x)) (11)

where z(3)n (x) is the first kind spherical Hankel function consisting of the sum of the spherical Bessel
function jn(x) and spherical Neumann function yn(x). Pm

n is the normalized associated Legendre
polynomial, and Pm

n is the original associated Legendre polynomial.
As shown in Figure 3, if an electric field is expressed by SWE at an arbitrary near-field

measurement point (rmn, θmn, φmn), then an N(N + 2)-weighted sum is generated. This indicates
that there are N(N + 2) unknown coefficients, which can be derived by constructing a linear system of
equations from the near-field measured sample values.

Figure 3. SWE field modeling at the measurement point for a scatterer.

Based on Equations (4)–(11), Equation (3) can be expressed in the form of a matrix-vector product:

U = CQ =



Fθ,s(−1)1(rm1, θm1, φm1) Fθ,s01(rm1, θm1, φm1) · · · Fθ,sNN(rm1, θm1, φm1)

Fφ,s(−1)1(rm1, θm1, φm1) Fφ,s01(rm1, θm1, φm1) · · · Fφ,sNN(rm1, θm1, φm1)

Fθ,s(−1)1(rm2, θm2, φm2) Fθ,s01(rm2, θm2, φm2) · · · Fθ,sNN(rm2, θm2, φm2)
...

...
. . .

...
Fθ,s(−1)1(rmn, θmn, φmn) Fθ,s01(rmn, θmn, φmn) · · · Fθ,sNN(rmn, θmn, φmn)

Fφ,s(−1)1(rmn, θmn, φmn) Fφ,s01(rmn, θmn, φmn) · · · Fφ,sNN(rmn, θmn, φmn)





Qs(−1)1

Qs01

Qs11
...
...

QsNN


(12)

Q = (CHC)−1CHU (13)

In Equations (12) and (13), U is a measured near-field sample vector that includes both θ and φ

polarization, and C is a matrix that can be calculated from the coordinates of each measurement point.
The subscripts θ and φ of the elements F constituting the matrix C represent the coefficients of the theta
and phi components in Equations (5) and (6), respectively. H denotes the Hermitian operation of a
matrix. From U and C, the unknown vector Q can be derived as shown in Equation (13). This process
is the inverse problem illustrated in Figure 1b and represents the equivalent current source model
for an OUT. The electric field in the far-field region is computed by substituting the rm value of each
measurement coordinate with a significantly large value instead of using the C matrix calculated for
the near-field measurement points.
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E f ar = C f arQ =



Fθ,s(−1)1(∞, θm1, φm1) Fθ,s01(∞, θm1, φm1) · · · Fθ,sNN(∞, θm1, φm1)

Fφ,s(−1)1(∞, θm1, φm1) Fφ,s01(∞, θm1, φm1) · · · Fφ,sNN(∞, θm1, φm1)

Fθ,s(−1)1(∞, θm2, φm2) Fθ,s01(∞, θm2, φm2) · · · Fθ,sNN(∞, θm2, φm2)
...

...
. . .

...
Fθ,s(−1)1(∞, θmn, φmn) Fθ,s01(∞, θmn, φmn) · · · Fθ,sNN(∞, θmn, φmn)

Fφ,s(−1)1(∞, θmn, φmn) Fφ,s01(∞, θmn, φmn) · · · Fφ,sNN(∞, θmn, φmn)





Qs(−1)1

Qs01

Qs11
...
...

QsNN


(14)

The newly calculated C f ar matrix with r → ∞ is multiplied by the solved vector Q. This process is
the direct problem. By substituting the E f ar obtained in the same process as Equation (14) into Escat in
Equation (1), we can predict the far-field RCS for each near-field measurement point. Each component
F in the matrix C f ar can be computed for arbitrary measurement points that are not limited to
specific canonical surfaces. This means that far-field RCS prediction using SWE-based NFFFT is
possible if at least N(N + 2) measurement samples are secured by the minimum truncation number N,
as determined by Equation (4). In this study, in preparation for increases in the matrix size, the least
squares QR-factorization (LSQR) method was utilized instead of a direct solver.

3. Numerical Results and Discussion

3.1. SWE-NFFFT Verification

This section describes the validation of the SWE-NFFFT algorithm proposed in Section 2.
The far-field reference and near-field data at a specific distance are simulated using a three-dimensional
full-wave electromagnetic solver FEKO based on method of moments (MoM) analysis. A perfect
electrically conducting NASA almond-type OUT is considered. RCS measurement values have been
well documented at specific frequencies for this type of object [24]. As shown in Figure 4, this object
can be expressed as a closed surface formed by (x(t, ψ), y(t, ψ), z(t, ψ)) according to the positional
variables t, ψ.

Figure 4. NASA almond-type computer aided design (CAD) model used for simulations.

First, when the SWE-NFFFT procedure is utilized with electrical field data extracted from a
distance (other than infinity) that is close to the far-field region, it is necessary to verify whether the
OUT is correctly modeled with an equivalent current source. The incident waves are set as θ-polarized
plane waves incident from a single direction of θ = 90◦ and φ = 0◦. The resulting near and far-field
scattered wave data are all extracted in a bistatic format. The polarization data used for transformation,
based on Equation (12), are θ and φ-pol.

To verify the compatibility of SWE-NFFFT with a canonical surface, a spherical scan was
performed with a radius of 2 m for the entire azimuth and elevation angle, as shown in Figure 5.
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The frequency of the incident wave was set to 100 MHz. Here, 99 near-field samples (N) were required
for each polarization, as shown in Equation (4). For the ease of extraction of near-field data, the samples
in the θ and φ directions were extracted at consistent intervals of Nθ = 9 and Nφ = 11, respectively.
Under these simulation conditions, the size of the matrix C in Equation (12), which was required for
SWE-NFFFT, was 198× 198 and the size of the unknown vector Q was 198× 1. Figure 6 presents
the far-field RCS prediction results based on the vector Q obtained from SWE-NFFFT. Among the
99 far-field RCS data points predicted for all azimuth angles, the vertical transmit and vertical receive
polarization (VV-pol) RCS results are displayed for θ = 45◦ and θ = 90◦ cut planes. The solid line
composed of blue circles represents the reference far-field RCS, whereas the solid line composed of
red stars represents the prediction results when using the SWE-NFFFT method. It is clear that the
SWE-NFFFT-based RCS values show excellent agreement, except for the extremely small RCS values,
which would be negligible a in practical scenario.

Figure 5. Simulation setup for near-field sample data from a spherical scanning surface.

Figure 6. VV-pol SWE-NFFFT results for a 100 MHz incident wave on a θ = 45◦, 90◦ cut plane.

We then considered a frequency of 300 MHz, and all other simulation conditions were kept the
same. Based on this increased operating frequency, the number of near-field samples per polarization
was 323. The samples in the θ and φ directions were extracted at consistent intervals of Nθ = 17 and
Nφ = 19, respectively.

Figure 7 presents the RCS data for various cases with θ = 45◦ and θ = 90◦ cut planes for VV and
VH(-horizontal receive)-pol. Based on the verification processes above, it is confirmed that applying the
SWE-NFFFT method is reasonable in the case of spherical scanning at a distance in the far-field region.
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Figure 7. SWE-NFFFT results for a 300 MHz incident wave on a θ = 45◦, 90◦ cut plane.

We then analyzed the applicability of the SWE-NFFFT method to various scanning surfaces.
We also examined tge partial surface scans and compared the results to electric field integral
equation-based NFFFT, which is dependent on a canonical scanning surface and requires scanning
for all-round surfaces (e.g., spheres and cylinders). Additionally, to verify the validity of RCS
prediction in the near-field region, field samples were extracted at a shorter distance compared
to the previous simulation.

As shown in Figure 8, verification was performed for two cases: a scan of a spherical surface
and a square plane surface containing the same angular region (θ = π

4 ∼
3π
4 , φ = −π

4 ∼
π
4 ) with the

same frequency of 300 MHz. In the spherical scan, all near-field sample points were extracted at
a radius of 0.5 m, whereas in the planar scan, the nearest sample point was located at a distance
of 0.3 m on a square plane with a size of 0.6× 0.6 m. To compare the far-field RCS results at
identical sample points for the two scanning methods, we considered values of Nθ = 19 and Nφ = 21,
which were greater than the minimum truncation number required to have the same θ and φ values.
Based on Equations (5), (6) and (12), SWE-NFFFT was calculated for matrix C under θ polarization
and φ polarization in the transformation process. In the case of the planar scan, the x, y, z polarization
components were extracted and then transformed using Equations (15)–(18);

Xθ̂ = Ax̂ + Bŷ + Cẑ (15)

Yφ̂ = Dx̂ + Eŷ (16)

X = A cos θ cos φ + B cos θ sin φ− C sin θ (17)

Y = −D sin θ + E sin φ (18)

Figure 9 presents the RCS data from the two different scanning methods and the reference values,
which show excellent agreement.
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(a) (b)

Figure 8. Simulation setup for near-field sample data from two canonical scanning surfaces.
(a) Spherical near-field scan. (b) Planar near-field scan.

Figure 9. Comparison of SWE-NFFFT results according to the scanning method (θ = 60◦, 90◦ cut plane).

The VV-pol as well as VH-pol RCS results at the cut planes of θ = 60◦ and θ = 90◦ are presented
in Figure 9, revealing a maximum error of 2 dB, which is almost negligible. The solid line composed of
blue circles represents the reference far-field RCS, and the solid line composed of red stars represents
the spherical scan NFFFT; the black solid line represents the planar scan NFFFT results. In the
θ = 90◦ cut plane, for VV-pol, a maximum error of 1 dB occurs at φ = 0◦. In the case of the VH-pol,
the maximum error is approximately 2 dB around φ = 10◦. In the case of a planar scan, because each
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near-field sample point has a different distance, larger errors occur compared to the spherical scan,
but reasonable NFFFT results are obtained in general.

3.2. Far-Field RCS Prediction on Arbitrary Scanning Surfaces

In this section, the proposed SWE-NFFFT algorithm is applied to predict the far-field RCS for an
arbitrary scanning surface on a more realistic OUT model.

Compared to the streamlined NASA almond, the OUT model used in this simulation has the
shape of a missile with a length of 1 m and width of 0.62 m, as shown in Figure 10.

Figure 10. Missile CAD model used for simulation.

The direction and parameters of the incident wave were the same as those mentioned in the
previous section and the frequency was increased to 1 GHz. By setting N = 34, which is greater than
the minimum truncation number determined by Equation (4), the far-field RCS can be calculated from
the matrix C (2448× 2448). When considering the size of the missile-shaped OUT and the wavelength,
the minimum far-field region is 7 m. The near-field measurement data were extracted within a range of
3–5 m, and θ and the distance vector r were set to different random values to ensure that the scanning
surface did not correspond to a specific canonical surface. A total of 2448 sample data points were
extracted from 12 surfaces (102 points at 1◦ intervals, with 1224 samples for each polarization).

The SWE-NFFFT-based RCS data are compared with the reference data for 12 different scanning
surfaces under VV and VH-pol in Figures 11 and 12, respectively, revealing excellent agreement.
Figure 13 presents more detailed data.

Figure 11. Simulation setup for arbitrary scanning surfaces.
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Figure 12. Comparisons of SWE-NFFFT results for all near-field sample points.

Figure 13. Partial plot of SWE-NFFFT results for all near-field sample points (306∼407, 612∼713).

It is clear that the proposed SWE-NFFFT method enables the prediction of high-accuracy far-field
RCS data with arbitrary scanning surfaces for general OUTs.
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4. Conclusions

In this paper, a SWE-NFFFT method was proposed for arbitrary measurement points that do not
belong to canonical surfaces, and it was proven that the proposed method is applicable to near-field
RCS measurement systems. Therefore, any arbitrary near-field data can be utilized to derive far-field
RCS data.

First, a system of linear equations is generated from the minimum near-field sample data required
for far-field RCS prediction. When the distance and angular coordinates of each measurement point are
specified, spherical wave functions that are orthogonal to each other can be calculated. The coefficients
multiplied by weights for each function can be derived as determinants by assuming unknown vectors.
In the system of linear equations, an unknown vector is calculated as an inverse problem using the
LSQR method. It is then modeled as an equivalent current source, and the far-field electric field is
derived from the modeled source as a direct problem. Finally, the RCS can be predicted.

In this study, the compatibility of a conventional canonical scanning surface was verified for
different frequencies and measurement distances using a NASA almond-type OUT. Next, the proposed
SWE-NFFFT was validated on an arbitrary scanning surface for a more general shape of an OUT in
the GHz frequency region. Finally, it was verified that RCS prediction can be applied to any arbitrary
scanning surface. Therefore, it has been confirmed that RCS prediction using the proposed SWE-based
NFFFT algorithm is feasible. In particular, in the final verification process for a missile-shaped
OUT, the overall RCS tendency showed high accuracy. It was confirmed that about a 3 dB error
occurred at several points, which was about 10 dB at the null point, which would be negligible in a
practical scenario.

In future work, we plan to extend the NFFFT method for non-uniform sampling, which extracts
near-field sample data more densely from measurement points with large error.
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