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Abstract: The traditional potential field-based path planning is likely to generate unexpected path
by strictly following the minimum potential field, especially in the driving scenarios with multiple
obstacles closely distributed. A hybrid path planning is proposed to avoid the unsatisfying path
generation and to improve the performance of autonomous driving by combining the potential field
with the sigmoid curve. The repulsive and attractive potential fields are redesigned by considering
the safety and the feasibility. Based on the objective of the shortest path generation, the optimized
trajectory is obtained to improve the vehicle stability and driving safety by considering the constraints
of collision avoidance and vehicle dynamics. The effectiveness is examined by simulations in
multiobstacle dynamic and static scenarios. The simulation results indicate that the proposed method
shows better performance on vehicle stability and ride comfortability than that of the traditional
potential field-based method in all the examined scenarios during the autonomous driving.

Keywords: potential field; sigmoid curve; path planning; autonomous vehicles

1. Introduction

Path planning as an essential part of the autonomous driving has been widely researched in recent
years. The path planning layer of autonomous vehicles (AVs) can be classified into the global and local
path planners according to the planning horizon [1,2]. The global path planners are mainly focused
on the navigation with the optimal economic, the least congestion and the highest average speed by
considering the entire configurable space from the start point to the target point [3]. Different from
the global path planners, local path planners usually pay more attention to the improvements on the
driving safety and the vehicle stability in the process of dynamic obstacle avoidance by considering
the constraints of kinematics and dynamics, during autonomous driving [4].

Many planning algorithms of AVs are inherited from wheeled-robotics principles because
of their similarities in structure and control. In the wheeled robotics community, path planning
methodologies can be classified into four groups, including graph search-based, sampling-based,
interpolation-based and numerical optimization-based [5]. The idea behind graph search-based
methods is to construct a configurable state-space based on graph theory and then use different search
strategies (e.g., Voronoi diagrams [6], the Dijkstras algorithm [7], the A∗ algorithm [8] or the State Lattice
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algorithm [9]) to generate a discrete route with grid or lattice occupancy. Being different from graph
search-based methods, sampling-based methods can be further categorized into stochastic sampling
and deterministic sampling depending on the sampling space used. Deterministic sampling-based
methods [10] require less computation cost than the stochastic sampling-based methods [11], as they
sample in a semistructured space instead of an entire configuration action-space or state-space.
There are some common features between graph-based and sampling-based methods. For example,
the paths generated from both methods are connected by a series of discrete waypoints [12], and these
paths need further smoothing for practical application in AVs or wheeled-robotics. Since continuous
curvature is a necessary requirement of drivable paths, interpolation-based path planning methods
have been developed to generate smooth and continuous-curvature routes based on different curve
models, such as spline curves model [13], clothoid curve model [14], etc.

The feasible solutions of satisfying the smooth and drivable constraints are usually not unique.
Thus, numerical optimization-based path planning methods are developed to obtain the optimal
route based on designing an objective function [15], e.g., the shortest-distance, the highest-efficiency,
the shortest-time, etc. A potential field-based path planning method (PFBM), as a typical numerical
optimization approach, was proposed by establishing the attractive potential field (PF) around a
target point and the repulsive potential fields around obstacles to realize the obstacle avoidance
of a robot in [16]. A composite PF is established with the constructed repulsive and attractive PFs,
to automatically guide a robot to the destination by searching the gradient descent direction. Up to now,
the PFBM has been applied both in structured [17,18] and unstructured [19] environments for AV path
planning. Traditional PFBMs are usually based on a known target point and span the entire discrete
space, which makes them reasonable and efficient for robotics control in indoor or simple environments.
However, these requirements are difficult to accurately determine for autonomous driving in practical
road environments. Furthermore, there is no qualitative assessment of the reasonability of the paths
generated using PFBM, especially in driving scenarios with multiple obstacles. Besides, the planned
paths are very sensitive to the configuration of the parameters [16]. For example, if the parameters of the
PF functions are inappropriately configured or the obstacles are located with short distances, the route
generated using PFBM is likely to fall into local minima, resulting in rough and unexpected routes.

To address the above mentioned problems, in this paper we propose a hybrid potential field
sigmoid curve method (HPFSM) as shown in Figure 1, which aims to optimize the planned path of
PFBM and to achieve an expected collision-free trajectory to improve the performance of autonomous
driving. Firstly, the PF functions are designed based on the geometric shape, relative position and
distance, etc. Then, the potential fields are established for the obstacles, the target lane and the
road boundaries according to the defined PF functions, respectively. A collision-free route with the
minimum PF can be achieved by fusing the established PFs. A constrained nonlinear optimization
problem is constructed based on the collision-free path and the sigmoid curves. Finally, an optimal
path of satisfying the constraints of collision avoidance and vehicle dynamics can be achieved by
solving with the interior point algorithm. The main contributions of this study include:

(1) A novel hybrid path planning method is proposed to get better collision-free path for
improvements on vehicle stability and ride comfort during autonomous driving by combining
potential field with sigmoid curve.

(2) Based on the distribution function of two-dimensional joint probability density, an improved
potential field of the obstacle is designed to mimic more realistic distribution of collision risk by
decoupling the PF in longitudinal and lateral directions.

(3) With the designed objective of the shortest path generation, the trajectory is optimized to
improve the vehicle stability and the ride comfort during autonomous driving by considering the
constraints of collision avoidance and vehicle dynamics.

This paper is organized as follows: Section 2 designs a potential field-based path planning and
shows how PFBM can generate unexpected paths. Section 3 introduces the proposed HPFSM. Section 4
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presents the validation and evaluation results by comparing the proposed method with PFBM both in
the static and dynamic driving scenarios. Finally, Section 5 presents our conclusions.
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where 𝑈OPF 𝓁, 𝜇, 𝛴 denotes the designed PF function for the obstacle; 𝓁 and 𝜇 are the positions of the ego vehicle and the obstacle;

𝑈TargL denotes the designed PF function for the target lane; 𝑈RBd denotes the designed PF function for the road boundary; 𝑓sig,𝑖 denotes the

sigmoid function of ith curve; 𝑎sta, 𝑎 and 𝑏 are the shape coefficients of the PFs; 𝑌TrgL, 𝑌Br and 𝑌Bl denote the lateral coordinates of the center

line of the target lane, the right boundary and the left boundary of the road, respectively; 𝑆𝑠𝑖𝑔,𝑖 denotes the length of ith sigmoid curve; 𝑘1,𝑖 and

𝑘2,𝑖 denotes the optimization variables of ith curve; 𝐾Ineq
𝑖 and 𝐾Eq

𝑖 denote the inequality and equality constraints of the optimization variables.

Figure 1. Framework of the hybrid path planning method by combining potential fields with
sigmoid curves.

2. An Improved Potential Field-Based Path Planning

Because of the good collision-free performance, PFBM has been widely used as a path planning
approach for AVs [20]. The path planning process of PFBM can be mainly divided into two
parts, namely, the part for designing PF functions and the collision-free route generation part for
obstacle avoidance.

2.1. The Design of PF Functions

The PF is affected by obstacle properties including the obstacle’s physical characteristics
(e.g., geometric shape and structure), and its dangerous degree is affected by the mass and motion
state of the obstacle [21,22].

2.1.1. Road PFs

Road PFs include the PF of road boundary and the PF of target lane. Since the potential
field-based path planning is likely to fall into the local minima, especially in an unknown
environment [23]. To avoid the local minima problem in our proposed path planning method,
both the driving environment and the obstacles (vehicles) are assumed to be known, thus the
potential fields can be designed and established more appropriately. In real intelligent transportation
systems, these information can be obtained via the vehicle-to-vehicle and vehicle-to-infrastructure
technologies [24]. Besides, we design the attractive potential field with the center line of the target lane



Sensors 2020, 20, 7197 4 of 22

to attract the ego vehicle driving to the target lane instead of with only one target point [25,26],
which will reduce the chance to trap into the local minima by solving a series of optimization
subproblems. In this study, the attractive PF is defined as:

UTrgL = a
(
Y−YTrgL

)2 . (1)

The road boundary is designed as a repulsive PF in Equation (2), which is used for preventing the
ego vehicle driving out of the road.

URBd =


b (Y−YBr)

2 Y ≤ YBr

b (YBl −Y)2 Y ≥ YBl
0 Y ∈ (YBr, YBl)

, (2)

where a, b ∈ R, YBr < YBl and YTrgL ∈ (YBr, YBl); a and b respectively denote the shape coefficients of
the target-lane PF and the road-boundary PF, which are used to adjust the amplitude of PF; Y denotes
the lateral position of the ego vehicle; YTrgL denotes the lateral position of the center line of the target
lane; YBl and YBr denote the lateral positions of the left and right road boundaries, respectively.

Two examples of the successful applications without the local minima problem are shown in
Figure 2. In the situation without obstacle vehicles, Figure 2a shows that the ego vehicle will always
drive along the path (the central line of the target lane) with the minimum potential field when using
our proposed method. In the situation with an obstacle vehicle in the target lane, Figure 2b shows that
the planned path with minimum PF will lead the ego vehicle to overtake the obstacle vehicle and then
drive back to the target lane.

Ego vehicle

Planed path with minimum 

potential field

Ego vehicle

Planed path with minimum 

potential field

(a)

Ego vehicle

Obstacle vehicle

Planned path

Ego vehicle

Obstacle vehicle

Planned path

(b)

Figure 2. Examples without trapping into local minima: (a) scenario without obstacle vehicle;
(b) scenario with an obstacle vehicle.

2.1.2. Obstacle Potential Field

The obstacle potential field (OPF) function is defined to construct the repulsive PF according to the
longitudinal and lateral safe distances. The calculations of the safe distances are based on the relative
speed (between the ego vehicle and the obstacle) and the maximum longitudinal/lateral deceleration
of the ego vehicle [12], which means the velocities of the ego vehicle and the obstacle are required.
The longitudinal and lateral safe distances (Xs(t), Ys(t)) are calculated as :

Xs(t) = Xo
2 +

(Vx(t)−Vobs,x(t))
2

2ax,max(t)

Ys(t) = Yo
2 +

(Vy(t)−Vobs,y(t))
2

2ay,max(t)

, (3)

where ax,max(t) 6= 0 and ay,max(t) 6= 0 are the maximum longitudinal and lateral decelerations of the
ego vehicle; Xo and Yo are the length and width of the obstacle, respectively; Vobs,x(t) and Vobs,y(t)
represent the longitudinal and lateral velocities of the obstacle, respectively; Vx(t) and Vy(t) are the
longitudinal and lateral velocities of the ego vehicle, respectively.
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The OPF can be decomposed along the longitudinal and lateral directions of the road coordinate
system, and the definition domains of the two directions are usually independent and different [18].
Considering the above characteristics, a two-dimensional (2D) joint probability density distribution
function is used as the basic function to define the OPF as:

UOPF (`, µ, Σ) =
asta

2π
√
|Σ|

e
(
− 1

2 (`−µ)TΣ−1(`−µ)
)

, (4)

where

µ = (Xobs(t), Yobs(t))
T , Σ =

[
Xs

2(t) 0
0 Ys

2(t)

]
, ` = (X(t), Y(t))T ,

where µ and Σ denote the mean and covariance matrix; (Xobs(t), Yobs(t)) and (X(t), Y(t)) denote the
positions of the obstacle and the ego vehicle at time t, respectively; asta ∈ R is the shape coefficient
used to adjust the amplitude of OPF; Xs(t) and Ys(t) are the calculated safe distances along the
longitudinal and lateral directions of the road coordinate system at time t, respectively. Figure 3
is shown to illustrate that the OPF is adaptive to the safe distance, i.e., the OPF will vary with the
velocities of the ego vehicle and the obstacles.

Figure 3. Potential fields with different longitudinal and lateral safe distances.

2.2. Collision-Free Path Generation

The idea behind PFBM is to generate a collision-free path occupied the minimum PF along the
driving direction. The related attractive and repulsive PFs can be constructed and integrated according
to the parameters described in Table 1.
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Table 1. Parameters for PF construction.

Parameter Value Parameter Value Parameter Value

X (m) 0∼200 YTrgL (m) 1.75 Yobs (m) 1.5
Y (m) 0∼7 YBl (m) 6 Xs (m) 20

a 0.5 YBr (m) 1 Ys (m) 1.5
b 100 Xobs (m) 50 asta 1 ×104

The fused PF is shown in Figure 4. Based on this, the minimum PF path is obtained along the
longitudinal direction of the road coordinate (X direction). Obviously, the generated collision-free
path (the blue trajectory) is optimal subject to the defined PFs.

Figure 4. PFBM path planning for collision avoidance.

However, the path obtained using PFBM is not always smooth and expected, especially in these
driving scenarios with multiple closely distributed obstacles. The blue path in Figure 5 shows the
trajectory planned using PFBM [27] in a driving scenario with two closely distributed obstacles.
Although the planned path is collision-free, it involves undesired driving maneuvering, which will
affect the efficiency of obstacle avoidance and the tracking performance. An expected trajectory to
mimic the real driver (e.g., the red route) is required for AV path planning to ensure the efficiency of
the obstacle avoidance and to improve tracking performance.

Figure 5. A driving scenario with two obstacle vehicles.

The unexpected maneuvers of the planned path are more evident when the number of obstacles
increases, as shown in Figure 6. In practical applications, the AVs would result in frequent unnecessary
steering maneuvers when tracking this unexpected path. The planned paths in Figures 5 and 6
indicate that the PFBMs are disadvantaged to be applied in the driving scenarios with multiple closely
distributed obstacles. Therefore, a novel hybrid path planning method is proposed, which combines
PFs with sigmoid curves to solve the problem of generating unexpected trajectory.
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X (m)

Figure 6. A driving scenario with multivehicle.

3. A Hybrid Path Planning Method

Based on the deterministic curve models, e.g., splines [28], clothoid curves [14],
and polynomials [29], etc, the smooth candidate routes can be generated quickly and efficiently.
However, it is difficult to shape desiring driving trajectory using the B-spline, C-spline, clothoid
and even quintic polynomial models because of the strong coupling relationship among the tunable
parameters. Considering the tunable feature of the parameters in the sigmoid curve model [30],
which the amplitude, slope, and central symmetry point of the sigmoid curve can be adjusted
independently. Therefore, a hybrid path planning method is proposed by combining the PFBM
with sigmoid curves to obtain a smooth collision-free and efficient expected route.

3.1. Definition of the Sigmoid Curve

The process of obstacle avoidance is similar to that of vehicle lane change. The trajectory is tangent
to the center lines of the related lanes at the start and end points according to the standard lane change
path [31]. In this paper, the sigmoid function is introduced as an essential function for generating
obstacle avoidance paths. The definition is presented in Equation (5):

fsig(x) = Pb · sigmoid (x, Pc, Pa)

sigmoid (x, Pc, Pa) =
1

1+e−Pa(x−Pc)

, (5)

where Pa, Pb and Pc are the related parameters to shape the sigmoid curve. The parameter Pa represents
the maximum slope, Pb is the amplitude coefficient, Pc denotes the centrosymmetric point and the
point of maximum slope. These parameters can be used to determine a sigmoid curve uniquely.

3.2. Tunable Features of the Sigmoid Curve

Figure 7 shows the tunable features of the sigmoid curve including the maximum slop, the
amplitude and the central point. Figure 7a shows that the centrosymmetric point can be adjusted
independently using the parameter of Pc, which can be used to move the sigmoid curve in longitudinal
direction. Figure 7b shows that the amplitude can be adjusted using the parameter of Pb, which can
be applied to compress or stretch the sigmoid curve in the lateral direction. Furthermore, Figure 7c
indicates that the maximum slope is also independently tunable using the parameter of Pa, which can
be used to adjust the maximum slope of the sigmoid curve at the centrosymmetric point.



Sensors 2020, 20, 7197 8 of 22

0 10 20 30 40 50 60X (m)
0

1

2

3

4
Y

 (
m

)
Pb=3.5, Pc=25, Pa=0.4

Center Point:( X=25, Y=1.75 )

Pb=3.5, Pc=30, Pa=0.4

Center Point:( X=30, Y=1.75 )

Pb=3.5, Pc=35, Pa=0.4

Center Point:( X=35, Y=1.75 )

(a)

(b)

0 10 20 30 40 50 60X (m)
0

1

2

3

4

Y
 (

m
)

Pb=3.5, Pc=30, Pa=0.6

Pb=3.5, Pc=30, Pa=0.4

Pb=3.5, Pc=30, Pa=0.2

Center Point:( X=30, Y=1.75 )

(c)

Figure 7. Tunable features of the sigmoid curve: (a) Sigmoid curves with different central point;
(b) Sigmoid curves with different central point; (c) Sigmoid curves with different maximum slope.

3.3. Configuration of the Sigmoid Curve

3.3.1. Collision-Free Path Generation of PFBM

The potential fields are integrated according to Equation (6):

UPF(t) = UTargL(t) + URBd(t) + UOPF(t), (6)

where UPF(t) is the integrated PF, UTargL(t), URBd(t) and UOPF(t) are the corresponding target lane PF,
the road boundary PF and the obstacle PF at time t, respectively.

The PFBM collision-free path is obtained through Equation (7):

{Xmin, Ymin} = min
{xmin(t),ymin(t)}

UPF(t), (7)

where {Xmin, Ymin} represent the collision-free path with the minimum PF along the
longitudinal direction.
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The corresponding lateral positions of the obstacles mapping to the collision-free path are obtained
by interpolation through Equation (8):{

∀ : xj
obs ∈ [xi, xi+1] , j ∈ M

∃ : yj
obs = interp1

(
Xmin, Ymin, xj

obs

) ⇒ yj
obs =

yi+1 − yi
xi+1 − xi

(
xj

obs − xi

)
+ yi, (8)

where (xi, yi) ∈ {Xmin, Ymin} and (xi+1, yi+1) ∈ {Xmin, Ymin} are two known waypoints in the
collision-free path; interp1 denotes the one-dimensional linear interpolation function for calculating the
corresponding lateral coordinates to the collision-free path; i and j denote the index of the waypoints
and the index of the obstacles, respectively; M is the amount of the obstacle; xj

obs and yj
obs are the

longitudinal and lateral coordinates corresponding to the PFBM path, respectively.
The planned collision-free path is composed of several sigmoid curves, and the definition

domains are varying with the positions of obstacles. The definition domains of the sigmoid curves are
determined using Equation (9):

Ωx,i =


[xstart, xi

obs] i = 1[
xi−1

obs , xi
obs

]
i ∈ (1, n)[

xi−1
obs , xend

]
i = n

, (9)

where Ωx,i denotes the definition domain of the ith sigmoid curve, xstart and xend indicate the start
and end points of the planning horizon, n = M + 1 represents the amount of sigmoid curves.
Considering the detection ranges of on-board sensors [32], the planning horizon is limited to 200 m.

3.3.2. Parameter Configuration

Some key way-points of the collision-free path can be obtained using Equations (7) and (8). Since
the amplitude of sigmoid curve is related to the lateral coordinates of the target lane (YTrgL) and the
key waypoints (yobs), the amplitude of the curve is determined in Equation (10):

Pb,i =


yi

obs −YTrgL i = 1
yi

obs − yi−1
obs i ∈ (1, n)

YTrgL − yi−1
obs i = n

. (10)

The slope parameter can be determined using Equation (11):

Pa,i = k1,i · sign (Pb,i) , (11)

where k1,i denotes the maximum slope at the centrosymmetric point and sign is the sign function.
The centrosymmetric point of the sigmoid curve is defined in Equation (12):

Pc,i =


xi

obs − k2,iXs i = 1

xi−1
obs +

k2,i(xi
obs−xi−1

obs )
2 i ∈ (1, n)

xi−1
obs + k2,iXs i = n

, (12)

where k2,i ≥ 1 is a tunable coefficient.
When the above three parameters and the bias have been obtained in the definition domain Ωx,i,

the sigmoid curve can be determined uniquely using Equation (13):

fsig,i = Pb,i · sigmoid(x, Pc,i, Pa,i) + bi , (13)

x ∈ Ωx,i, bi =

{
YTrgL i = 1
yi−1

obs i 6= 1
,
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where fsig,i denotes the ith sigmoid curve function, bi is the corresponding bias. Figure 8 shows the
parameters that shape the sigmoid curve in detail.
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P

b,i

b
i

P
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Maximum  slope = P
a,i

x
i
 = [ 0, 100 ]

Figure 8. The parameters of sigmoid curve.

3.4. Trajectory Optimization with Sigmoid Curves

Since the coefficients of k1,i and k2,i are not determined yet, a series of sigmoid curves can be
generated by the above configurations. An optimization objective function is designed to obtain the
shortest path subject to the constraints of the lateral acceleration and the yaw rate to ensure collision
avoidance and to improve the vehicle stability of the autonomous driving. The distance of sigmoid
curve is calculated according to Equation (14):

Ssig,i =
∫ xi

end

xi
start

√
1 + ḟ 2

sig,i(x)dx. (14)

3.4.1. Collision Avoidance Constraint

The planned path generated by PFBM is collision-free, which can be used as the constraints of
collision avoidance to assist configuring the collision-free sigmoid curves. The collision-free feature
can be determined if the sigmoid curves are always farther to the obstacle than that of the collision-free
path of PFBM. As Figure 9a indicates, the collision feature cannot be deduced directly and an additional
check is required. Therefore, the constraints of collision avoidance should be considered to ensure the
collision-free feature of the candidate sigmoid curves.

Instead of combining the geometric information of obstacles [33], the collision avoidance can be
ensured by comparing the lateral positions of the candidate paths to that of the PFBM. As illustrated
in Figure 9b, collision avoidance is ensured when the red line is completely above the blue line under
this situation.

The constraints to ensure collision avoidance based on the path of PFBM are shown in
Equation (15):

KCons
Ineq,i(1) :=

{
fsig,i (xi) ≥ Ymin, yi

obs ≥ Yobs
fsig,i (xi) ≤ Ymin, yi

obs < Yobs
, (15)

where xi ∈ Ωx,i denotes the longitudinal range of the road, and KCons
Ineq,i denotes the inequality constraints

of k1,i and k2,i.
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(a)

(b)
Figure 9. Collision-free checking: (a) Collision avoidance is not ensured; (b) Collision avoidance
is ensured.

3.4.2. The Constraints of Vehicle Dynamics

The constraints of vehicle dynamics should also be considered in path planning module to
improve the vehicle stability [34,35] during path tracking. The vehicle stability and ride comfort can
be well evaluated based on the lateral acceleration and yaw rate during the path tracking. Assuming
that the target velocity is invariant during path tracking, the yaw rate is considered as shown in
Equation (16): {

ωv,i = ρiV
|ωv,i|≤ ωs

, (16)

where ωv,i (rad/s) is the yaw rate of the ith curve at a speed of V (m/s), ρi is the curvature of the ith
curve and ωs (rad/s) denotes the yaw rate constraint to ensure path tracking stability.

The lateral acceleration is considered as follows in Equation (17):{
ay,i = Vcosθiωv,i
|ay,i)|≤ as

, (17)

where V (m/s) denotes the target speed for path tracking, as (m/s2) denotes the constraints of lateral
acceleration in path planning module, ay,i is the lateral acceleration of the ith curve.
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The constraints of vehicle dynamics can be transformed into a constraint of path curvature in
Equation (18):

KCons
Ineq,i(2) :=


ρi =

| f̈sig,i(x)|

(1+ ḟsig,i(x)2)
3/2

|ρi|≤ ρcos

ρcos = min( as
V2 , ws

V )

, (18)

where ρcos denotes the curvature constraint of planned path considering the ride comfort and vehicle
stability in path planning module.

3.4.3. Geometric Constraints

The geometric constraints include amplitude, start point, endpoint and central symmetric point
constraints. The end point constraint is defined as:

KCons
Eq,i (1) :=



xend
i = Ωx,i(end)

yend
i = interp1

(
Xmin, Ymin, xend

i

)
fsig,i

(
xend

i

)
= yend

i

0 < ḟsig,i |xend
i
≤ ε

, (19)

where ε denotes the infinitesimal value, and KCons
Eq,i denotes the equality constraints of k1,i and k2,i.

The start point constraint is defined as:

KCons
Eq,i (2) :=


xstart

i = Ωx,i(start)
yend

i − fsig,i
(
xstart

i
)
= Pb,i

0 < ḟsig,i |xstart
i
≤ ε

. (20)

The constraint of the centrosymmetric point Pc,i is defined as:

KCons
Ineq,i(3) :=

{
xend

i − Pc,i ≥ Xs

xstart
i < Pc,i < xend

i
. (21)

The inequality constraints are thus summarized as:

Ki
Ineq =

{
KCons

Ineq,i(1), KCons
Ineq,i(2), KCons

Ineq,i(3)
}

, (22)

where Ki
Ineq refers to the inequality constraints of the ith curve, including the constraints of the collision

avoidance , the constraints of the lateral acceleration, the constraints of the yaw rate and the constraints
of the geometric.

The constrained nonlinear optimization problem is formulated as:

min
{k1,i ,k2,i}

∫ xi
end

xi
start

√
1 + ḟ 2

sig,i(x)dx (23)
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s.t.
xend

i = Ωx,i(end)
yend

i = interp1
(

Xmin, Ymin, xend
i

)
fsig,i

(
xend

i

)
= yend

i

xstart
i = Ωx,i(start)

yend
i − fsig,i

(
xstart

i
)
= Pb,i

0 < ḟsig,i |xend
i
≤ ε

0 < ḟsig,i |xstart
i
≤ ε, ε > 0

{k1,i, k2,i} ∈ Ki
Ineq

A driving scenario with one static obstacle is proposed to analyze the planned path of HPFSM.
The relevant parameters for realizing HPFSM are described in Table 2. Figure 10 shows that there are
several trajectories satisfying the collision-free constraints, e.g., the blue solid and dotted curves. With a
target speed of 20 m/s, the optimal trajectory among the candidate curves is the shortest trajectory
(composed with the red and black curves) satisfying the constraints of vehicle dynamics, which require
the yaw rate and lateral acceleration are within 25 deg/s and 2 m/s2, respectively.

Table 2. Initialization parameters.

Parameter Value Parameter Value Parameter Value

µ (75, 1.5) b1 0 x2 [75, 150]
Σ diag([10, 1.5]) Pc,1 [0, 75] b2 3.5

Pb,1 3.5 Pa,1 [0, 1] Pc,2 [75, 150]
x1 [0, 75] Pb,2 -3.5 Pa,2 [−1, 0]
V 20 (m/s) as 2 (m/s2) ωs 25 (deg/s)

Distance = 75.32 m

Pa=0.24, Pc=38

Distance = 75.32 m

Pa= -0.24, Pc=112

Figure 10. The optimal trajectory with sigmoid curves in a static scenario.

Figure 11a shows the curvature of the optimal trajectory generated using HPFSM. It shows the
curvature is continuous, which means the optimal trajectory is drivable. Figure 11b shows the yaw
rate and lateral acceleration calculated under the target tracking speed of 20 m/s. It indicates that both
the constraints of the lateral acceleration and the yaw rate are effectiveness during the path planning.
The results of Figure 11 illustrate that the trajectory can be optimized to satisfy the constraints of
vehicle dynamics with the parameters optimization of sigmoid curves.
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Figure 11. HPFSM path planning with constraints: (a) curvature of the planned trajectory; (b) yaw rate
and lateral acceleration.

4. Verification and Discussion

To further examine and evaluate the proposed approach, a static and a dynamic driving scenario
are designed for simulation, respectively. The parked vehicles are considered as the obstacles in
the static scenario, and vehicles with short intervals are introduced as the overtaking objects in the
dynamic scenario.

4.1. Driving Scenarios for Simulation and Evaluation

A static scenario is with three cars parked on the roadsides as shown in Figure 12. There are two
parked cars located in the target lane, while the ego vehicle is approaching to the parked car with
a speed of 20 m/s. The positions of the three parked vehicles are (Xobs,1 = 80 m, Yobs,1 = 1.5 m ),
(Xobs,2 = 180 m, Yobs,2 = 6.2 m) and (Xobs,3 = 280 m, Yobs,3 = 1.5 m), respectively. The constraints of
the lateral acceleration and yaw rate are designed within 2 m/s2 and 25 deg/s, respectively.

Ego vehicle Obs1 Obs3

Obs2

Figure 12. A static driving scenario with three vehicles parked on roadsides.
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A dynamic overtaking scenario is designed with three leading vehicles located with short
distances, as shown in Figure 13. The red dotted line denotes the target lateral position, i.e., the center
line of the target lane. Three leading vehicles are driving with a constant speed (Vobs,1 = Vobs,2 =

Vobs,3 = 15 m/s) from different initial positions (Xobs,1 = 50 m, Xobs,2 = 70 m, Xobs,3 = 85 m).
The initial position and speed of the ego vehicle are set as Xego = 0 m and Vego = 15 m/s, respectively.
The target speed and lateral position of the ego vehicle are set as 20 m/s and 1.75 m, respectively.
Meanwhile, the constraints of yaw rate and lateral acceleration are designed within 2 m/s2 and
25 deg/s, respectively.
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Vobs1 Vobs2 Vobs3

Figure 13. Leading vehicles driving with short interval distance.

4.2. Path Tracking Controller for Validation

Since the main purpose of path planning is to provide an expected reference trajectory for path
tracking, it is more meaningful to evaluate the proposed path planning method with the combination
of a path tracking controller. Based on these, a linear time-varying model predictive tracking controller
(LTV-MPC) [20] is used to evaluate the HPFSM by comparing with PFBM. The 3-DOF bicycle model,
including the longitudinal, lateral and yaw directions, is used as the prediction model of the LTV-MPC.

The dynamics equations of the 3-DOF dynamics model are presented in Equation (24):
m
(
v̇x −ωvy

)
= Fx cos δ

m
(
v̇y + ωvx

)
= Fy,r + Fy,f cos δ

Izω̇ = Fy,fLf cos δ− Fy,rLr

. (24)

The motion equations of the vehicle are shown in Equation (25):{
Ẋ = vx cos ϕ− vy sin ϕ

Ẏ = vx sin ϕ + vy cos ϕ
, (25)

where vx, vy and ω are the longitudinal velocity, lateral velocity and yaw rate of the vehicle, respectively;
X, Y and ϕ denote the vehicle longitudinal, lateral position and the heading angle; m and Fx represent
the vehicle mass and longitudinal force of the front-driving tire; Fy,f and Fy,r denote the lateral force of
front and rear tires; Lf, Lr and Iz represent the front, rear wheelbase and the vehicle inertia around
vertical axis, respectively; δ is the steering angle of the front wheel. The relevant vehicle parameters
are the same as Table I in [17]. The configuration parameters of the LTV-MPC are presented in Table 3.
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Table 3. Parameters of the MPC Controller.

Symbol Description Value [Units]

Np Prediction horizon 20 [unitless]
Nu Control variable’s number 2 [unitless]
Ns State variable’s number 6 [unitless]
Ts Sampling period 0.05 [s]
δw Limitation of steering wheel angle [−540, 540] [◦]

∆δw Steering wheel angle rate [−5, 5] [◦]
Fx Longitudinal tire force limitation [−2000, 2000] [N]

∆Fx Tire force rate limitation [−50, 50] [N]
Q Weights matrix of states tracking diag([1× 10−7, 1× 102, 1× 10−7, 0, 1× 10−7, 0])
R Weights matrix of control variables diag([1× 10−7, 1× 10−5])

4.3. Results and Discussion

4.3.1. Static Scenario

The comparisons of trajectories between HPFSM and PFBM are shown in Figure 14a,
respectively. The green and red trajectories are the generated paths of PFBM and HPFSM, respectively.
It shows that the optimized path by HPFSM is more feasible to be an expected driving trajectory,
because the path is smoother than that of PFBM without increasing in length (400.87 m vs. 403.88 m).
The shaded part illustrates that the red trajectory is collision-free by comparing the lateral positions of
the two paths. The comparison of the curvatures between the two trajectories is shown in Figure 14b,
which further illustrates the red path is smoother than the green one.

HPFSM Distance = 400.87m

PFBM Distance = 403.88m

(a)

0 50 100 150 200 250 300 350 400X(m)
0

0.02

0.04

0.06

0.08
Curvature: PFBM

Curvature: HPFSM

(b)

Figure 14. The path comparisons between HPFSM and PFBM in a static scenario: (a) Trajectory
comparison: HPFSM vs PFBM; (b) Curvature comparison: HPFSM vs PFBM.

The planned paths of HPFSM and PFBM are tracked by the LTV-MPC with a target speed of
20 m/s, respectively. The comparisons of the yaw rate and lateral acceleration between the two
methods are shown in Figure 15. The comparison of lateral acceleration shows that the instantaneous
and average values of HPFSM are smaller than that of PFBM in Figure 15a, which illustrates the
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ride comfort is improved with HPFSM. Meanwhile, Figure 15b shows the comparison of yaw rate,
which illustrates that the yaw rate based on PFBM does not satisfy the designed constraint of 25 deg/s;
however, the yaw rate based on HPFSM can be well constrained. This implies that the stability of the
ego vehicle is also better while tracking the path of HPFSM.
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Figure 15. Path tracking comparisons between the two methods in a static scenario: (a) LTV-MPC
tracking: Lateral acceleration comparison; (b) LTV-MPC tracking: Yaw rate comparison.

The improvements with HPFSM in the static scenario is analyzed in Table 4. It shows that the
maximum and average lateral accelerations are decreased almost 60% (6.254 m/s2 vs. 2.504 m/s2)
and 40.6% (0.475 m/s2 vs. 0.282 m/s2) comparing to PFBM, respectively. Meanwhile, the yaw rate is
also optimized in the maximum and average values, respectively. The maximum and average yaw
rates with HPFSM are improved 60.47% (44.17 deg/s vs. 17.459 deg/s) and 28.2% (3.517 deg/s vs.
2.524 deg/s), respectively.

Table 4. Results comparisons in the static scenario.

Symbol Description HPFSM PFBM −(%)

ay,max (m/s2) Maximum lateral acceleration 2.504 6.254 59.9
ay,mean (m/s2) Average lateral acceleration 0.282 0.475 40.6
ωmax (deg/s) Maximum yaw rate 17.459 44.170 60.47
ωmean (deg/s) Average yaw rate 2.524 3.517 28.2

4.3.2. Dynamic Scenario

The tracking velocities of HPFSM and PFBM are shown in Figure 16a to ensure a consistent speed
environment during the overtaking task. The trajectories of the two methods are shown in Figure 16b;
they show that the ego vehicle can finish the overtaking task with both of these two methods. However,
the trajectory with PFBM shows an sudden fluctuation at the position around X = 300 m, which will
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result in sharp steering maneuvers as shown in Figure 16c. These unexpected steering maneuvers will
further affect both the driving safety and stability.
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Figure 16. An overtaking scenario with multivehicle distributed in short interval distance: (a) HPFSM
vs. PFBM: Tracking velocity; (b) HPFSM vs. PFBM: Tracking trajectory; (c) HPFSM vs. PFBM: Steering
angle of front wheel.

The yaw rate and the lateral acceleration of the two methods are compared in Figure 17. The yaw
rate is constrained within 10 deg/s while tracking the path of HPFSM; however, the yaw rate is
beyond the designed constraint of 25 deg/s while tracking the path of PFBM, as shown in Figure 17a.
Meanwhile, the comparison of the lateral acceleration in Figure 17b shows the lateral acceleration
based on HPFSM is much smaller than that of PFBM during tracking. These illustrate that both the
vehicle stability and the ride comfort of the ego vehicle are improved with the proposed HPFSM
comparing to the PFBM. The improvements with HPFSM in the dynamic scenario are shown in
Table 5. This indicates that the maximum and average lateral accelerations with HPFSM are decreased
87.8% (2.4 m/s2 vs. 0.29 m/s2) and 83.9% (0.18 m/s2 vs. 0.029 m/s2), respectively. Meanwhile, the yaw
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rate is also optimized in the maximum and average values compared to the PFBM. The maximum
and average yaw rates are improved 82.8% (20.4 deg/s vs. 3.5 deg/s) and 72.2% (1.7 deg/s vs.
0.47 deg/s), respectively.
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Figure 17. The comparisons of yaw rate and lateral acceleration: (a) HPFSM vs. PFBM: Yaw rate;
(b) HPFSM vs. PFBM: Lateral acceleration.

Table 5. Results comparisons in the dynamic scenario.

Symbol Description HPFSM PFBM −(%)

ay,max (m/s2) Maximum lateral acceleration 0.293 2.410 87.8
ay,mean (m/s2) Average lateral acceleration 0.029 0.180 83.9
ωmax (deg/s) Maximum yaw rate 3.508 20.430 82.8
ωmean (deg/s) Average yaw rate 0.477 1.713 72.2

5. Conclusions

A hybrid path planning is proposed to achieve an expected path generation and to improve
the vehicle stability and the ride comfort during autonomous driving by combining the potential
field with the sigmoid curve. The collision avoidance and the vehicle dynamics are considered to
obtain the shortest collision-free trajectory composed by sigmoid curves. The multiobstacle static and
dynamic scenarios are designed to examine the effectiveness of HPFSM, respectively. To evaluate the
performance of autonomous driving with HPFSM, an LTV-MPC is used to track the planned paths of
HPFSM and PFBM, respectively. The simulation results of the static scenario show that the maximum
and average lateral accelerations are decreased 60% and 40%, and the maximum and average yaw rates
are decreased almost 60.47% and 28.2%, respectively. The results of the simulated dynamic scenario
show the same trend as the static scenario with a decrease of almost 80% in the indexes of both the
lateral acceleration and the yaw rate. However, these improvements are achieved on the basis of the
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analysis of the simulation results; the figures are likely to be more modest in the practical application.
These simulation results indicate that the vehicle stability and the ride comfort are well improved with
the proposed method during autonomous driving. How the local minima problem can be completely
or sufficiently avoided in more complex and unknown driving scenarios with more traffic participants
is still a challenging task and should be further addressed in the future work. Meanwhile, our future
work will present experimental applications of the proposed method under real driving scenarios.
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