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Abstract: Home Automation Systems (HAS) attracted much attention during the last decade due
to the developments in new wireless technologies, such as Bluetooth 4.0, 5G, WiFi 6, etc. In order
to enable automation as a service in smart homes, a number of challenges must be addressed, such
as fulfilling the electrical energy demands, scheduling the operational time of appliances, applying
machine learning models in real-time, optimal human appliances interaction, etc. In order to address
the aforementioned challenges and control the wastage of energy due to the lifestyle of the home
users, we propose a system for automatically controlling the energy consumption by employing
machine and deep learning techniques to smart home networks. The proposed system works in
three phases, (1) feature extraction and classification based on 1-dimensional Deep Convolutional
Neural Network (1D-DCNN) which extract important energy patterns from the historic energy data,
(2) a load forecasting system based on Long-short Term Memory (LSTM) is proposed to forecast the
load based on the extracted features in phase 1 and (3) a scheduling algorithm based on the forecasted
data obtained from phase 2 is designed to schedule the operational time of smart home appliances.
The proposed scheme efficiently automates the smart home appliances to consume less energy while
adapting to the lifestyle of smart home users. The validation of the proposed scheme is tested with a
number of simulation scenarios incorporating datasets from authentic data sources. The simulation
results show that the proposed smart home automation system can be a game-changer in fulfilling
the energy demands of the home users without installing renewable and other energy sources in
the future.
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1. Introduction

The future of autonomous smart homes mainly depends on the efficient processing and data
analysis of energy and load data. Recently, we have witnessed an increase in energy demand for smart
homes and cities. According to the current literature, every year an excessive amount of energy is
consumed in the residential sector as shown in Figure 1 [1]. A huge peak can be seen in the winter
season as the home users consume much energy for heating systems. Among this energy consumption,
a huge amount of energy is wasted in the residential sector due to the inefficient human interaction
with the electronic appliances of a smart home. Similarly, the lack of processing energy and other
relevant data leads to poor performance in handling the energy crisis. The IoT can play a major role
in generating data for detecting patterns that can be used to design efficient systems for tackling
the energy crisis in the future smart homes, smart buildings, etc. Similarly, the current smart home
meters play an important role in collecting energy data from smart home appliances and could be
interrogated for future use. Similarly, the introduction of cloud and edge computing makes it easier
for researchers to process data in real-time with powerful machine learning algorithms, quantum,

Sensors 2020, 20, 7187; doi:10.3390/s20247187 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-9905-8904
http://www.mdpi.com/1424-8220/20/24/7187?type=check_update&version=1
http://dx.doi.org/10.3390/s20247187
http://www.mdpi.com/journal/sensors


Sensors 2020, 20, 7187 2 of 18

and super-computing. In addition, the introduction of 5G networking technology makes it easier
for transferring huge amounts of data with high speed and bandwidth. Similarly, the recognition of
patterns of a particular purpose also needs powerful feature extraction and segmentation techniques.
The research in the fields of implementing sensor networks within smart homes, smart cities, etc., can
produce data that leads to Human Activity Recognition (HAR) techniques. The HAR lays down a
platform for researchers to build predictive methods that can help in eradicating the excessive usage of
energy and other relevant energy issues that exist in a smart home environment. Besides, the data from
various activities such as the interaction of a smart home user with an appliance in different times
of day, etc., can be stored and processed in offline time for various purposes such as scheduling the
home appliances, notifying the home user if the energy of a smart home exceeds a limit, etc. Such
processing of data can be further used for the well-being of humans in various sectors such as building
construction with efficient energy usage, smart parking with electric charging facilities, identifying gas
leakage, etc.
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To design an efficient and real-time energy management system, the data obtained from smart
home appliances are further classified into different groups. This classification helps in reducing
computation time in preprocessing steps and applying machine learning models to the data. However,
a number of challenges present in the classification of data such as identifying the sensors attached to
high-priority appliances, real-time analysis of data, grouping similar types of home appliances together,
and so on. Similarly, traditional methods are mostly occupied by supervised learning such as Support
Vector Machine (SVM), Random Forest (RF), etc. [2,3]. Therefore, processing the data generated from
heterogenous HAR sources with supervised learning techniques requires a huge amount of prior
labeling of data. Later on, Deep Neural Networks (DNN) and Convolutional Neural Networks (CNN)
are widely adopted for the classification and processing of HAR data for extracting important features.
However, such techniques require labeled and annotated datasets for efficient processing. Therefore,
the researchers introduce techniques based on attention mechanisms to boost the performance of the
DNN and CNN for weakly annotated and labeled data [4,5]. The attention-based mechanisms are
mostly used for image classification and semantic segmentation. Therefore, using such mechanisms
for real-time unsupervised HAR data may result in poor classification and feature extraction. Similarly,
the classification mainly depends on the features selected for training. However, selecting the best
features for training is a challenging and computationally expensive job. A number of mechanisms
such as transform coding [6], Fourier transformation based symbolic representation [7], etc., were
recently introduced for HAR data feature extraction. However, such schemes exhibit heuristic nature
and do not provide task dependency. In addition, these schemes require high computational cost
without improving the classification performance. Besides, such schemes require multi-dimensional
data for training purposes. On the other hand, those devices which are used for collecting energy
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data such as smart meter always generate a 1-dimensional time sequence of data which also requires
further programming to classify data based on appliances usage, etc. Finally, the current research has
many limitations before applying the DNN and CNN methods for feature extraction from energy data.
However, if somehow the data is classified with the DNN method, another challenge arises in designing
autonomous smart homes is to predict the energy consumption of smart homes at a particular time of
the day. In this regard, a number of machine and deep learning algorithms based on Artificial Neural
Network (ANN) is proposed in the literature. However, the ANN always produce significant results for
short term prediction. In the case of long-term prediction such as predicting the energy consumption of
a smart home for an entire day, month, and even a year, the ANN performs inefficiently. Therefore, to
design an autonomous smart home with a long-term prediction of the energy consumption of appliances,
a machine learning method such as an LSTM algorithm is needed. The current literature consists
of a number of approaches predicting the short-term energy consumption of home appliances [8].
However, such schemes perform inefficiently in the case of long-term predictions. The long-term
prediction of energy data is widely ignored in the current literature. Therefore, the applications of
log-term predictions cannot be used for scheduling the appliances for a longer time. In this regard,
the long-term prediction models are presented for analyzing historic energy data using the LSTM
model [9,10]. However, these models have still limitations: they are used for specific scenarios, the
testing datasets were limited to a specific set of residents, etc. Therefore, it is necessary to use the full
power of the Bi-directional LSTM (BLSTM) model for forecasting with high accuracy.

In this research work, we proposed an architecture of an autonomous smart home system based
on deep learning models for feature extraction and classification, prediction, and scheduling of home
appliances. A 1D-DCNN is first used to analyze the smart home data and extract important features of
energy consumption at various times of the day. Based on the extracted energy values, a BLSTM model
is used to predict the energy consumption for the next month. Though the data is available in the
time-series sequence, and it is difficult to model it via ANN, the BLSTM shows significant improvement
in long-term predictions. The predicted energy consumption is further optimized for as minimum
as possible energy consumption using the proposed scheduling technique based on Reinforcement
Learning (RL). The RL performs the scheduling of agents attached to each appliance of a smart home.
The agents of RL communicate with each other whenever a user performs an action of switching ON
and OFF an appliance. For instance, if switching on an appliance increases the energy consumption of
a smart home from a defined threshold, then the agent of the respective appliance communicates with
the rest of the agents in the smart home to perform an action of either switching off or lowering the
power level of an electronic appliance. Finally, an extensive set of simulations is performed to check
the accuracy and performance of the proposed scheme with authentic datasets. The proposed achieve
high accuracy in the case of predicting the activities. Similarly, the scheduling of operational time of
appliances is presented to the smart home user to perform and operate the appliances in a schedule
that consumes as much as less energy.

2. Related Works

Every year an excessive amount of energy gets wasted due to the improper use of electronic
appliances in smart homes and buildings. In this regard, the literature consists of a number of literature
to handle the improper use of electricity in smart homes and cities with the scheduling of operational
time of appliances, etc. However, such schemes either focused on specific scenarios or target one
particular aspect of smart homes or cities. In addition, a generic system dealing with all parameters
involved in the energy consumption of smart homes is rarely addressed in the literature. The interaction
of smart home users with electronic appliances requires attention by implementing machine deep
learning models over the historic data. However, the machine and deep learning models always
require extensive computation and show inefficient performance in real-time computing. Furthermore,
human nature is extremely dynamic, and modeling human behavior towards appliances’ interaction
requires a large number of parameters to be tuned with great precision and care. The Wireless Sensor
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Network (WSN) can play a vital role in scheduling the appliances with programmed human behavior.
For instance, a sensor can be programmed to switch off and on an electronic appliance upon the
interaction of a home user. In this regard, the literature consisted of a number of schemes to handle the
interaction of home users in smart homes using WSN technology [11–13].

Building an autonomous smart home requires a huge amount of changes to the current
infrastructure of smart homes [14–16]. The proposed scheme in [14] presented an infrastructure
of controlling the things inside a smart home by dividing the things into two groups, i.e., active and
passive. These things are control with the help of agents attached to each appliance. The proposed
system is specifically designed for elderly people. Thus, using such a system for young and adults
may require extra care because their frequency of using things is relatively high for elderly people.
The system is tested for accuracy of detecting things; however, some other important parameters,
such as classification of activities in a day and nighttime and human appliances interaction are not
considered for a completely autonomous system. Similarly, a system presented in [16], where the
energy requirements of the smart homes are fulfilled with renewable energy sources. The smart
homes communicating with the smart grid for energy demand and the smart grid continuously
provides/supplies the energy from energy storage systems or renewable energy systems. The energy
supply from a renewable energy system always suffers from uncertainties if the weather condition
is not favorable. Therefore, a machine learning technique is required to control the uncertainties of
renewable energy sources in such a scenario, which is missing in the proposed work. Autonomous
smart homes require a system consisting of multiple phases from classifying human activities to the
scheduling of home appliances. Although in the literature there exist a number of mechanisms based
on machine learning to improve the working of classifying multidimensional activities’ data. However,
everything inside a smart home cannot be automated because it would require a huge amount of
changes to the existing smart home infrastructure. For instance, to make an air-conditioning system
automatic is easy compared to a chair or any other mechanical thing. Therefore, researchers need to
work on those things which could give maximum benefits to society, such as automation. In this regard,
a Home Energy Management System (HEMS) is proposed to handle the excessive cost of electricity
consumption using optimization methods based on genetic algorithm in [17]. The proposed scheme is
tested with distributed power systems and an electric vehicle. In both the objective function presented
in the said work, the authors skipped the user comfort level dependency on the proposed system.
In such an environment, where a home user sets a demand for electricity from a smart grid, and if
somehow the smart grid is unable to fulfill the demand, the user discomfort level rises. Therefore,
incentive-based schemes are widely presented in the current literature to reduce the discomfort level of
the user in smart home networks [18,19]. In [18], the authors presented the home user with incentives
based on shifting and scheduling the appliances from peak hours to non-peak hours. The electricity
firms share the compensation in the form of financial rewards in the monthly billing with those home
users who successfully schedule many of the task-based appliances in the non-peak hours. However,
user behavior is always dynamic, and it may not be possible for every home user to schedule the
appliances in the non-peak hours. Similarly, if there are multi-users available in a smart home, the
performance efficiency greatly reduced. Similarly, in the case of [19], the authors suggested offering
incentives to those home users who participated in the scheduling of appliances pattern offered by
the electricity generation firm. However, the user needs to share the load pattern and other relevant
details with the firm to better decide the scheduling pattern. Furthermore, it is recommended by the
firms to the consumers to use photovoltaic power generation and batteries. In addition, such systems
increasing the cost of obtaining the required hardware and maintenance.

The data generated by an electronic appliance is normally available in the form of a single
dimension (1D), i.e., time-series data. The classification of time series data is extensively studied
in the existing literature [20,21]. However, these schemes mainly classify the data for short-term
forecasting purposes. For instance, the authors proposed a system for Demand Response (DR) based on
reinforcement learning and artificial neural network in [21]. The authors proposed an hour-ahead DR
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algorithm based on forecasting of energy prices. The proposed system efficiently solves the problem
of energy demand in advance; however, the input to the system is taken from the energy supply
companies which is a challenging job in real-time. A similar scheme is presented in [22], where the
authors proposed to forecast the electric load of a feeder, substations, or transformers based on DL
methods. The proposed DL based forecasting incorporates a number of environmental and load
parameters for feature selection. After the selection of important features, the DL method is tested in a
number of scenarios with various energy datasets. The proposed method successfully classified the
features. However, the results are not tested for energy consumption after and before applying the
scheduling of operational time of the smart home appliances.

Short-term electric load prediction is widely studied in the current literature [23,24]. These
schemes mainly employing machine learning techniques, such as ANN, DNN, Support Vector Machine
(SVM), K-means, Wavelet Neural Network (WNN), etc. Similarly, these models predict and forecast
the electric load of a smart home, smart grid, smart building, etc. with high accuracy and precision [23].
The scheme presented in [23], forecast the short-term load based on a hierarchical structure. The child
nodes, such as end-user customers are further divided into regular and irregular customers. Both
the regular and irregular customers’ energy patterns are forecasted separately to reduce the burden
on the entire network. However, these schemes require a huge amount of data for training and also
expensive frequent computation. As human behavior is dynamic and every human being’s interaction
with electronic appliances is different from each other. Therefore, relying on short-term forecasting is
always better for one particular home user data, however, cannot be transferred to another home user.
Similarly, if there exists more than one home user, then even predicting short-term load in the form of
regular and irregular child nodes could result in poor performance. In this regard, the long-term load
prediction and forecasting models are employed to overcome the challenges present in the short-term
forecasting models [25,26]. In many of these research works; the LSTM model is widely adopted for
forecasting long-term load. The LSTM model operates using three different gates, i.e., input, output,
and forget gate as discussed in Section 3.4 for processing the data. However, the LSTM model always
performs better if trained with a huge amount of data as discussed in [25]. Furthermore, there is
a need for extensive tuning of hyper-parameters. Therefore, the LSTM model is computationally
costly and may still result inefficient if trained on less amount of data. In the case of the scheme
proposed in [26], the authors forecast the energy data with LSTM for hour-ahead scenarios. LSTM
is used for forecasting which has certain limitations of controlling error once the data is outputted.
Therefore, it is necessary to use other variations of LSTM or ANN and DNN for forecasting of time
series data. Similarly, if the LSTM model is employed to data that is already pre-processed or refined
with another machine learning algorithm then it might work well. Thus, in the current literature,
the LSTM model is used in concatenation with other machine learning models to produce better
results [27,28]. In this regard, a hybrid LSTM and CNN model is presented to forecast the photovoltaic
power consumption in [28]. The proposed approach extracts two types of features from the data,
i.e., LSTM and CNN are used to extract the temporal and spatial feature information, respectively.
As the hybrid model extracts rich information resulting in high accuracy in terms of detection and
significantly less amount of error loss. However, to design an autonomous smart home it is necessary
to classify the features and later on used it for forecasting loads. The current literature consisting of
such hybrid models that could help in achieving partial autonomy; however, the challenge of creating
an autonomous home remains undiscovered. The forecasted load can help in scheduling the home
appliances in advance. In order to achieve less energy consumption, the literature consists of a number
of schemes for scheduling operational time of home appliances [29,30]. For instance, in [30] a grey
wolf and crow search optimization technique is used to schedule the home appliances. The proposed
scheme incorporates a real-time price signal for electricity cost reduction, minimizing user discomfort
level, and reduces the peak to average ratio. The scheduling of appliances significantly reduces the
energy consumption; however, if the scheduling algorithm is applied to forecasted data, the results
would be better. The forecasted energy consumption can better help in scheduling the operational
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time of appliances in advance. The scheduling of operational time of home appliances in real-time
is a challenging job. Therefore, the researchers tried to overcome this issue by implementing online
scheduling mechanisms, such as mixed-integer linear programming, game-theoretic models, binary
backtracking search algorithm, etc. [31,32]. However, deciding the scheduling of appliances always
depends on the historical data which is rarely discussed in these schemes. Furthermore, such schemes
can perform better in a specific environment and therefore cannot be employed in generic environments.
Finally, the schemes used in the related work section are summaries in the following Table 1.

Table 1. Summary of the main schemes discussed in the literature.

Reference Algorithm Energy
Consumption

User
Comfort Advantages Disadvantages

[14] Multi-Agent No Yes
• Efficient automatic control of things

for elderly people
• Multi-agent architecture

• Inefficient Real-time performance
• Data analytics needed

[16] Demand-
Response Yes No

• Optimal coordination among
energy systems

• Reduces energy consumption cost

• Renewable energy sources are used
without considering the
climate variation

[17] Genetic
Methods Yes Partially

satisfied

• A two-stage optimization achieved
• The cost of electricity is

significantly reduced

• The environmental parameters are
not considered

• User dissatisfaction increases
electricity demands does not satisfied

[18] Demand-
Response Yes No

• Efficiently shifting task-based
appliances to non-peak hours

• Electricity cost is
significantly reduced

• A comparison with the ToU method is
not enough

• The dissatisfaction increases with
reducing electricity consumption

[21] ANN + RL Yes Partially
satisfied

• The appliances are categorized into
various groups

• Forecasting of electricity price
• Efficient decision making using the

RL AI model

• Reducing the electricity cost increases
the complexity of the system by
switching appliances into
non-peak hours

• User discomfort may increase if the
demand changes with
environmental conditions

[23] WNN Yes No
• The load is forecasted at

different levels
• Efficient short-term load forecasting

• May suffer from
long-term dependencies

• User satisfaction at different levels is
not addressed

[26] LSTM + RNN Yes No
• Long-term load forecasting
• Computation time reduces for

offline training

• The limitation of using LSTM
is ignored

• User dissatisfaction may arise if the
energy demand is not fulfilled by
the grid

[28] LSTM + CNN No Partially
satisfied

• Efficient photovoltaic
power prediction

• A hybrid model is used to enhance
the prediction accuracy

• The model does not explain the
uncertainties caused due to
environmental conditions

• User satisfaction is not explained if
the prediction goes wrong

[30] GWCSO Yes Yes
• The cost of electricity is

significantly reduced
• Scheduling of appliances

• The scheduling is only tested with the
air-conditioning system load

• The scheduling is also tested with
non-shiftable appliances which may
increase user dissatisfaction

[Proposed
Scheme]

1D-DCNN +
BLSTM + RL Yes Yes

• The energy consumption is
significantly reduced

• The user discomfort is reduced
• The cost of electricity is reduced

with the reduction in
energy consumption

• The Q-learning is used which incur its
heuristic limitation of slow
convergence due to a high number
of samples

3. Proposed System

3.1. Problem Statement

The future autonomous smart homes require a number of machine learning methods running in
parallel to perform different tasks such as feature extraction from the historic data, classification of
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data, and forecasting the load for scheduling and other relevant purposes. However, merging and
concatenating all these steps logically is a difficult and challenging job due to the following reasons.

• The energy demand is increasing rapidly and in the future, the energy demands can be fulfilled by
installing new energy-generating technologies such as nuclear plants and greenhouses. However,
installing nuclear plants generate radiations, and the greenhouses result in extreme carbon dioxide
emission which results in affecting the community.

• The projected energy consumption demands may increase in the future. A huge difference
between energy demand and supply may result in increasing the cost of energy.

• Apart from generating energy by installing new energy technologies there exists other methods
and guidelines of using and interacting with appliances. However, such techniques exhibit
many issues, such as improper scheduling, modeling human behavior, and interaction towards
appliances, difficulty in modeling human behavior, etc.

• Limitations of the machine and deep learning techniques in processing energy data for prediction
and forecasting. Furthermore, the current research work mainly focuses on short-term forecasting
of energy consumption and cost; however, long-term forecasting is mainly ignored due to the
limitations of using ANN and similar learning models.

• The CNN and other relevant models are effective in modeling high dimension, i.e., two or more
dimensional and uses huge data for feature extraction; however, this is less effective in the case of
feature extraction in 1-Dimensional (1-D) times series data.

• The current home appliances are not intelligent and there is a lack of communication
among appliances.

Keeping in mind the above challenges, we designed an autonomous smart home based on the
historic data of the energy consumption of the appliances. The proposed scheme extracts and classifies
important features from the data using the CNN model. The data values are then fed into a BLSTM
model which forecasts the energy consumption values for the next month. Finally, the forecasted
energy consumption is used to schedule the operational time of the home appliances using the QL
model to consume as less as possible energy.

3.2. Contribution of the Proposed Scheme

In this section, we highlighted the main contributions of the system as follows:

• A classification of the energy data into different groups based on the time of a day is carried out.
This would reduce the processing of the data in later stages.

• The energy data is time-series data with a single dimension, we, therefore incorporate and
proposed an approach based on BLSTM. The later approaches mainly used ANN and other deep
learning techniques which require a huge amount of data for training.

• The scheduling of home appliances is carried out using the Q-learning reinforcement algorithm on
the forecasted data. This enables a home user to decide the future scheduling of home appliances
based on the results of the proposed scheduling.

• The energy of the home appliances is significantly reduced and an autonomous home system is
achieved incorporating various deep learning and artificial intelligence models.

3.3. Overview of the Proposed System

The architecture of the proposed system is shown in Figure 2. The proposed system consisted
of three main steps, i.e., (1) feature extraction and classification of energy data using 1D-DCNN, (2)
forecasting of energy data using BLSTM, and (3) scheduling of operational time of electronic appliances
using QL model as shown in Figure 2. As a human interacts with various electronic appliances
during the entire course of the day, resulting in generating a sequence of energy consumption values.
The energy consumption values do not contain enough information apart from the energy load of the
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entire home. Thus, it is important to extract important features and classify them according to the load
consumption at various times of the day. The electric load values are then passed to a BLSTM model to
forecast the load for the next day (24 h) and month. The reason for forecasting based on the classified
data is the actual data does not contain important information and, thus, it will affect the forecasting
process. In the forecasting of electric load for the next day process, the BLSTM inputs a number
of parameters from the feature classification phase as well as temperature information of the same
location from where the dataset is collected. The reason for processing the temperature information is
that it directly affects the energy consumption of the homes as shown in Figure 1. After forecasting the
electric load for the next day, we proposed a scheduling process based on the QL model to schedule the
electronic appliances with minimum energy consumption and high user comfort. Finally, we visualize
the results of various phases to better show the strength of the proposed scheme.

Sensors 2020, 20, x FOR PEER REVIEW 9 of 19 

 

appliances using QL model as shown in Figure 2. As a human interacts with various electronic 
appliances during the entire course of the day, resulting in generating a sequence of energy 
consumption values. The energy consumption values do not contain enough information apart from 
the energy load of the entire home. Thus, it is important to extract important features and classify 
them according to the load consumption at various times of the day. The electric load values are then 
passed to a BLSTM model to forecast the load for the next day (24 h) and month. The reason for 
forecasting based on the classified data is the actual data does not contain important information and, 
thus, it will affect the forecasting process. In the forecasting of electric load for the next day process, 
the BLSTM inputs a number of parameters from the feature classification phase as well as 
temperature information of the same location from where the dataset is collected. The reason for 
processing the temperature information is that it directly affects the energy consumption of the 
homes as shown in Figure 1. After forecasting the electric load for the next day, we proposed a 
scheduling process based on the QL model to schedule the electronic appliances with minimum 
energy consumption and high user comfort. Finally, we visualize the results of various phases to 
better show the strength of the proposed scheme. 

 
Figure 2. The architecture of the proposed scheme. 

3.4. Preprocessing Phase 

As we know that the smart meter collects energy consumption data from the sensors attached 
to various home appliances. Thus, there are possibilities that the data contain ambiguities and 
erroneous data due to climate change, faulty meter problems, etc. In order to remove the noise and 
erroneous data from the datasets, a smoothing filter technique presented in [33] is adopted in this 
research work. The proposed smoothing filtering technique is widely used for filtering and refining 
the time series data. After performing the smoothing process, we labeled the data in order to fit it to 
the CNN based feature extraction process. The classes of the labels are designed based on the energy 
data generated by a smart meter at a particular time of the day. As our final goal is to predict the 
future energy consumption values and schedule the operational time of the electronic appliances 
based on them, therefore, it is important to extract the most relevant features in the feature extraction 
phase. However, extracting features from time-series data is a challenging job; therefore, it is 
necessary to label the data with great care. The labels used in our proposed feature extraction and 
classification are shown in Table 2. Initially, we have tested the model with a smaller number of labels 
and later increases to check for the best number of labels for 1D-DCNN. 

Table 2. Class labels generated for 1D-DCNN. 

Time Daytime Label Class 
09:00:00 PM–5:00:00 AM Night 1 

05:00:00 AM–11:00:00 AM Morning 2 
12:00:00 PM–3:00:00 PM Afternoon 3 
3:00:00 PM–08:00:00 PM Evening 4 

Figure 2. The architecture of the proposed scheme.

3.4. Preprocessing Phase

As we know that the smart meter collects energy consumption data from the sensors attached to
various home appliances. Thus, there are possibilities that the data contain ambiguities and erroneous
data due to climate change, faulty meter problems, etc. In order to remove the noise and erroneous
data from the datasets, a smoothing filter technique presented in [33] is adopted in this research work.
The proposed smoothing filtering technique is widely used for filtering and refining the time series
data. After performing the smoothing process, we labeled the data in order to fit it to the CNN based
feature extraction process. The classes of the labels are designed based on the energy data generated
by a smart meter at a particular time of the day. As our final goal is to predict the future energy
consumption values and schedule the operational time of the electronic appliances based on them,
therefore, it is important to extract the most relevant features in the feature extraction phase. However,
extracting features from time-series data is a challenging job; therefore, it is necessary to label the data
with great care. The labels used in our proposed feature extraction and classification are shown in
Table 2. Initially, we have tested the model with a smaller number of labels and later increases to check
for the best number of labels for 1D-DCNN.

Table 2. Class labels generated for 1D-DCNN.

Time Daytime Label Class

09:00:00 PM–5:00:00 AM Night 1
05:00:00 AM–11:00:00 AM Morning 2
12:00:00 PM–3:00:00 PM Afternoon 3
3:00:00 PM–08:00:00 PM Evening 4

After performing the labeling process, the data segmented using a Fixed Sliding Time Window
(FSTW) technique. The proposed FSTW technique shifts the sliding window with a fixed length of
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time to generate various segments. These segments are then isolated for further processing in the
feature extraction phase. The FSTW technique operates using two parameters, i.e., a shift and window
size parameter represented with s and w, respectively, as shown in Figure 3. As shown in Figure 3, the
data from a smart meter is divided into various segments employing the FSTW technique to efficiently
feed into the feature extraction algorithm.
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3.5. Feature Extraction and Classification Phase

Feature extraction is a challenging job in the case of times series data. However, due to the
proposed segmentation and preprocessing of data with important labels, it is now easy to extract
important features. The features from each time sliding window are extracted using the 1D-DCNN. In
order to define the 1D-DCNN, we start with the preparation of input data which is a 1D matrix with
the window size w and m as a dimension of the sensor reading. The actual representation of the sensor
reading is represented with the dimension vector as shown in the following equation [34].

ST
1 = {x1, x2, x3, · · · , xT−1, xT} (1)

where x is the load value from a sensor at time t.
Further, each segment is passed to a 1D-DCNN as shown in Figure 2. A 1D-DCNN is used to extract

various features from the preprocessed energy data. An instance of input x data R further consisting
of a timestamp value and a feature set P. The input instance x is passed to a 1D-DCNN with a filter
represented with f. A feature map is constructed at each layer of CNN using the following equation.

xi
k = bi

k +

Ni−1∑
m=1

conv1D
(

f i
mk, oi−1

m

)
(2)

where xi
k is an input to a neuron of CNN, bi

k represents the bias of the kth neuron at layer i, and oi−1
m is

the output of the i− 1 neuron. The weight matrix fmk represents the kernel from the previous neuron,
i.e., i− 1 to the current neuron i. The conv1D represents the convolution function which operates over
input data using a filter of variable size.

After performing the convolution operation at each neuron, the result is passed to the Rectified
Linear Unit (ReLU) activation function and Maximum Pooling (MP). The ReLU represented with σ
outputs the input value directly if it is positive or changes it to positive in the case of the proposed
scheme if it is negative. The ReLU is used because many of the values of energy data may be recorded
zero whenever none of the appliances is operating at home. The output of the ReLU is computed
bypassing the output represented with COi from the convolution layer to the ReLU as shown in the
following equation.

OReLUi = σ(COi) (3)

After the ReLU operation, the feature map is passed to the Batch Normalization (BN) to standardize
the input to a layer. Inside a convolution function, the BN is used in the first part and the MP layer is
added in the second part to downsample the feature maps. A flatten layer is applied to create a single
long feature vector to pass it to a Fully Connected (FC) layer. A DropOut (DO) mechanism is applied
to avoid overfitting in the final output. Finally, the classification of the data is performed with the help
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of a SoftMax activation function represented with SMi on the output of the dropout layer as shown in
the following equation.

SMi =
eODO

i∑N
z=1 eODO

z
(4)

3.6. Load Forecasting Using LSTM

The ANN is widely used for forecasting short-term loads; however, employing ANN for a
long-term load is considered inappropriate. Due to this weakness of using ANN for long-term load
predictions, we employed the BLSTM to predict and forecast the long-term load based on the output
obtained during the feature extraction phase. However, forecasting does not depend only on the
energy consumption values obtained at different times of the day. Therefore, we integrate a number
of parameters to optimizes the forecasting of the data. It is worth mentioning that selecting inputs
for the LSTM algorithm is a tedious and challenging job. Therefore, in this research, we give great
attention to selecting the best inputs based on the correlations of input to the output [35,36]. Apart
from the guidelines mentioned in the aforementioned sources, we also tuned the values of the input
parameters during the simulation process. The input parameters used in the proposed approach are
given in Table 3. These parameters are obtained from the datasets discussed in Section 4.1. The BLSTM
model is trained with 80% of the data from the datasets and 20% is used for testing purposes. However,
the data are composed of instances of electricity consumption for approximately two years; therefore,
there is a possibility that the results generated for a particular time may incorporate wrong instances.
Thus, we split the data based on the date of the data generated into two main seasons, i.e., (1) hot and
(2) cold. Then the average results of both seasons were presented in Section 4.2.2.

Table 3. Input parameters to the BLSTM model.

Input Index Parameters Description

1 Energy Consumption on a time of the day (i.e., morning, evening, etc)
2 Time of the day (with 30-min gap)
3 Day of the week (1–7)
4 Holiday
5 Energy demand on Weekends (Saturday and Sunday)
6 Energy demand in last day
7 Energy demand in last week
8 Energy demand in last month
9 Average temperature of the day
10 Average temperature of the month

The information of the inputs 1–8 is extracted from the datasets during the feature extraction and
classification phase. However, the information of temperature is not available in the datasets, therefore
the information of the temperature is feed into the proposed BLSTM system from a temperature dataset
available with the same datasets [37]. Furthermore, during the research, we have noticed that using the
information of the temperature in the prediction process significantly improves the forecasting process.

This input is now passed to the BLSTM model as shown in Figure 2. The BLSTM model entirely
depends on the BLSTM cell which lieu in the heart of the BLSTM model. This cell takes the input value
xt and a hidden vector vt−1 from the previous time step and then produces an estimated output ot

along with a memory vector mt. The structure of the LSTM cell is shown in Figure 4. Furthermore, the
entire computation is represented using the following equations.

ft = σ
(
W f ·[ht−1, xt]

)
+ b f (5)

it = σ(Wi·[ht−1, xt]) + bi (6)
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ct = σ(Wc·[ht−1, xt]+)bc (7)

ot = σ(Wo·[ht−1, xt]) + bo (8)

ft = ot·tanh(ct) (9)

As the above equations presented that the state of a BLSTM cell is cleared, written, and accessed
with gates called forget (ft), input (it), and output (ot), respectively. The W and b represent the weights
and the biases that are learned during the training phase. The BLSTM architecture has consisted of
a number of layers and each layer outputs a unique predicted value. Therefore, it is important to
concatenate all the outputs in a single value. In the proposed work, the concatenation is carried out
using the feedforward neural network. The feedforward neural network maps the final output from
many BLSTM layers to a single value as shown in Figure 2. The final predicted value is generated for a
duration of 24 h with a time difference of 30 min. Furthermore, the accuracy of the predicted values is
tested with the error predicting methods discussed in the results and discussion section.Sensors 2020, 20, x FOR PEER REVIEW 12 of 19 
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3.7. Operation Time Scheduling of Home Appliances

The predicted values are passed to the proposed scheduling system designed for scheduling the
operational times of smart home appliances. The proposed scheduler is based on the RL algorithm.
The RL agents operate on the phenomenon of performing an action a on an environment and receive a
reward r. If the reward is high, the RL agents perform a similar action again and again finally reaching
the goal state g. In the proposed scheduling scheme, we attached an RL agent to each appliance to
perform a suitable action based on the predicted value. Similarly, if the action is not suitable, the
RL agent communicates with the rest of the RL agents to adjust their slots accordingly. For instance,
if performing an action leads to high energy consumption, the agents of the respective appliance
communicate with the rest of the agents to change their power levels to low consumption mode.
The communication among agents is enabled with the help of a message-passing service. Each agent
in further attached to a queue of messages. In the queue, each agent pushes a message, and the rest of
the agents are allowed to read the message to perform the necessary actions. Our aim is to enable a
home appliance to perform an action intelligently and seamlessly. The communication of agents via
message queue service is shown in Figure 5.
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4. Performance Evaluation

In this section, we provide a detailed discussion of the experimental analysis of the proposed
scheme along with a discussion on the datasets used for the experimentation.

4.1. Datasets Description

The proposed scheme is tested on the publicly available energy consumption of home appliances
datasets obtain from various smart meters installed in the London city, United Kingdom [37].
The datasets consisted of a number of smart meter data; however, we used the dataset for training
and testing obtained from the smart meters of house number MAC00050. The datasets of MAC00050
consists of a record of energy values of 23,782 instances for a period of 12/8/2011 to 4/17/2013. The dataset
presented energy values for a 30 min sampling rate over a period of around 2 years. However, in
the case of testing the proposed feature extraction and classification, we have selected the first 5000
instances. Out of those 5000 instances, 80% of the data is used for testing, and 20% for training. Further,
the energy consumption is given in a unit of kWh which is a standard unit of measuring energy
consumption. The weather information is used from the same datasets available in [37].

4.2. Performance Evaluation

In this section, we performed an extensive set of experiments to validate the performance of
the proposed scheme. Similarly, this section is further breakdown into the following subsections to
elaborate the proposed idea.

4.2.1. Analysis of 1D-CNN for Feature Extraction and Classification

The performance of the first part, i.e., feature extraction and classification based on 1D-CNN
is tested with precision, recall, F-measure, and accuracy coefficient. These metrics are mathematically
presented in the following equations.

precision =
TP

(TP + FP)
(10)

recall =
TP

(TP + FN)
(11)

F−measure = 2×
precision × recall
(precision + recall)

(12)

accuracy =
TP + TN

(TP + FP + FN + TN)
(13)

where TP, FP, TN, and FN represent the true positive, false positive, true negative, and false negative,
respectively.
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The experimentation of the feature extraction and classification process is carried out on the data
obtained from the smart meter number MAC00050. The experiments are compared with a simple
1D-CNN as shown in Table 4. The 1D-DCNN performs better when the number of samples is more in
a window. However, deep convolution outperforms the 1D-CNN by incorporating more number of
layers and fewer samples of a dataset. Furthermore, the energy datasets that are currently available
have energy consumption records per hour or a day. Therefore, we proposed 1D-DCNN to achieve
high accuracy compare to 1D-CNN.

Table 4. Analysis of 1D-DCNN compare to 1D-CNN.

Model Precision (%) Recall (%) F-Measures (%) Accuracy (%)

1D-CNN 75 75 74.82 75.03
1D-DCNN 91 91 90.67 90.41

4.2.2. Analysis of Forecasting Using BLSTM

The performance of the second part, i.e., load forecasting using the BLSTM model is evaluated
with the Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE),
and Mean Bias Error (MBE) as shown in Table 5. The last metrics, i.e., MAPE and MBE produce better
comparison results of actual and predicted values. Furthermore, the first three methods are widely
adopted in the case of regression models.

During the simulation, we have noticed that the performance of the BLSTM model is affected by
the hypermeters exist in the data. Therefore, those parameters are optimized and tuned using the hold
out procedure. The experiments are performed with 100 epochs on data of 5000 instances from the
dataset of the smart meter number MAC00050 as shown in Figure 6. However, during the experiments,
we have noticed that after 70 epochs the results changes with quite marginal values. As we can see
along the y-axis the prediction accuracy significantly increases.

Table 5. Analysis of BLSTM with LSTM for forecasting time series energy data.

Model MSE RMSE MAE MBE

LSTM 0.3012 0.5452 0.3122 0.03650
BLSTM 0.2822 0.5102 0.2920 0.03220
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The predicted and actual energy consumption of a one-month smart meter data from meter #
MAC00050 is shown in Figure 7. The energy consumption of predicted output is compared with the
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actual values for the 1-month duration with a sampling rate of 1-value of energy consumption for the
entire day. The reason for comparing the 1-month values is to provide a clear visual understanding of
the results. As we can see that the forecasted energy consumption is quite similar to the actual energy
consumption. In the case of the proposed scheme, the MAE and MAPE are significantly less compared
to the LSTM model. Based on these results, we can easily conclude that the BLSTM algorithm performs
better in the case of forecasting time series data. It is worth mentioning here that the performance of
BLSTM can be further improved by adding more layers. However, in that case, the cost of computation
may increases.
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Finally, the actual and forecasted energy consumption is compared with energy consumption after
applying the proposed scheduling algorithm based on QL. The scheduling is applied to the forecasted
data to test the result of the scheduling process on the forecasted data. This will help the home user to
select the best scheduling of appliances in advance. As we can see, the proposed scheme efficiently
schedules the appliances by attaching agents with each appliance of the smart home. Furthermore, the
proposed message-passing system adds intelligence to the appliances by communicating with each
other. Up to our knowledge, this is the first-ever work in which the appliances are provided with the
intelligence. This work can help the organization and firms in designing intelligent appliances in the
future. Similarly, the lifestyle of the home users can be controlled with the proposed HAS. As the
current literature shows that an excessive amount of energy-wasting every year due to the lifestyle
of the home users such as most of the time they are leaving home without turning off unnecessary
appliances, forget to turn off appliances after use, etc. As illustrated in Figure 1, the residential sector
accounts for a major portion of the total energy consumption and, therefore, is important to take care
of the wastage of energy in the residential sector. In this regard, the proposed scheduling algorithm
performs significantly better compared to actual energy usage as shown in Figure 8a–c. In the case
of Figure 8a, the energy consumption of various appliances is shown after the proposed scheduling
is applied to the smart home network. The energy consumption of the appliances is significantly
reduced as we can see most of the electronic appliances are moved from peak hours into non-peak
hours. The washing was originally scheduled in the peak hour time; however, applying the proposed
scheme the washing machine is scheduled to non-peak hours. In the case of Figure 8b, the energy
consumption per day is shown compared to actual, forecasted, and energy consumption after the
appliance operational schedule. As we can see in Figure 8b, the proposed scheme saves approximately
2.223 kWh of energy per day. Similarly, in the case of Figure 8c, the proposed scheme saves around
78.79 kWh of energy per month. This saving of energy significantly reduces the energy consumption
of smart homes. Resulting in reducing the energy cost for the entire month and a year.
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Figure 8. (a) Energy consumption of refrigerator, air-conditioning system, and washing machine,
(b) Energy Consumption comparison of actual, forecasted, and after scheduling for one day (c) Energy
Consumption comparison of actual, forecasted, and after scheduling for a period one month.
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5. Conclusions

In this article, we proposed an autonomous smart home system based on machine and
reinforcement learning. The proposed scheme works in three phases, i.e., (1) feature extraction
and classification based on 1D-DCNN, (2) electric load forecasting based on BLSTM with a number
of parameters from authentic datasets, and (3) scheduling of operational time of appliances based
on QL. The proposed scheme efficiently controlled the wastage of energy in smart homes with less
effect on the smart home user’s comfort level. Furthermore, the proposed scheme adopts the lifestyle
of the home user incorporating the power of reinforcement learning into appliances. The intelligent
appliances perform automatic actions based on the user input, i.e., switching on and off an appliance.
Similarly, the proposed scheme is tested in a number of scenarios for all three phases and the results
obtained show that energy consumption can be significantly reduced in a smart home. The proposed
system could be used by the electricity firms and companies for full filing the energy demand with new
ways of generating electricity. In the future, we are planning to test the system on real-time testbeds to
validate the experimental analysis with real-time experiments.
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