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Abstract: It is of great significance to obtain soil texture information quickly for the realization of
farmland management. Soil with good particle condition can well regulate the needs of plants
for water, nutrients, air, and temperature during crop growth, thereby promoting high crop yields.
The existing methods of measuring soil texture cannot meet the requirements of time and spatial
resolution. For this reason, a vehicle-mounted soil texture detector was designed and developed
based on machine vision and soil electrical conductivity devices. The detector does not require
pretreatment such as air-drying and screening of the soil, and completely uses the original information
of the farmland. The whole process can obtain the soil texture information in real time, omitting the
complicated chemical process, and saving manpower and material resources. The vehicle-mounted
detector is divided into a mechanical part, a control part, and a display part. The mechanical part
provides measurement support for the acquisition of soil texture information; the control part collects
and processes signals and images; the measurement results can be intuitively observed and recorded
on the display, and can be operated through the mobile phone. The vehicle-mounted detector obtains
soil conductivity through 4 disc electrodes, while the vehicle-mounted industrial camera captures the
soil surface image, and extracts texture parameters through image processing, takes EC and texture
parameters as input, and the embedded SVM model of the instrument was used to perform soil
texture prediction. In order to verify the measurement accuracy of the detector, farmland verification
experiments were carried out on farmland loam in Tongzhou District and Haidian District of Beijing.
The R2 of the correlation between the measured value of soil EC and the actual value was 0.75, and the
accuracy of soil texture prediction was 84.86%. It shows that the developed vehicle-mounted soil
texture detector can meet the requirements for rapid acquisition of farmland texture information.
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1. Introduction

Soil texture is one of the important physical properties of soil. It represents the percentage
combination of soil particles of different diameters in soil weight. Soil texture has an important impact
on soil fertility, quality, and sustainable use of soil. Soil with good texture can well regulate the
needs of plants for water, nutrients, air, and temperature during crop growth, thereby promoting high
crop yields [1]. The soil texture is mainly divided into three categories: Sandy soil, loam, amd clay.
Among them, loam has the advantages of sand and clay which is an ideal soil texture type, suitable for
planting crops, especially peanuts, tobacco leaves, and vegetables.

The standard method for obtaining soil texture is the straw method. Although this method has
high accuracy, it takes a lot of time, and requires heating and using H2O2 and Na3PO4. The whole
process requires manual operation to ensure accuracy and safety. The measurement accuracy depends
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on experimental conditions and the proficiency level of the operator [2]. For the acquisition of soil
texture information, some new methods have been developed in recent years, such as: Gamma ray
method, sieve analysis method, laser diffraction method, and scanning electron microscopy method.
These methods require specific expensive instruments, and most of them also need soil pretreatment.
And the preprocessing cannot achieve real real-time fast measurement [3–5]. In addition, there are
many novel researches for the acquisition of soil texture information. For example, Vos [6] pointed
out that manual identification based on experience can replace laboratory analysis. This method only
relies on hand feeling and completely depends on the experience of the operator and is not universal.
Hobley [7] used vis-NIR technology to estimate texture, and B. Jović [8] used Diffuse Reflaxions
Infrared Fourier Transformations Spectroscopy (DRIFT) to obtain spectra and determined the spectral
characteristics of five typical soil types in a certain area. However, both of these methods require
specific expensive equipment. Wu [9] used remote sensing technology to identify soil types, and the
results showed that the model with NDVI plus topography and stratum performed best with overall
accuracy, kappa statistic, and area under the curve of 0.975, 0.918, and 0.907. Many scholars have used
multi-spectral and hyperspectral satellite data to classify regions with different soil textures [10–13].
Wu and Castaldi used BJ-1 [14] and Advanced Land Imager (ALI) satellite imager [15] to quantitatively
estimate the content of sand and clay in the soil, and they performed well. However, the current
research has time lag in the acquisition of soil texture, and the spatial resolution is also difficult to meet
the demand, and most of them require expensive experimental equipment. In summary, there is an
urgent need for a low-cost, real-time, and high-accuracy soil texture information acquisition method
and detector.

Scholars at home and abroad have studied the use of other soil parameters to predict soil texture.
Some studies use soil electrical conductivity (EC) to characterize soil texture, EC has a wide range of
applications in soil research. It can be used to study the dissociation and exchange performance of
adsorbed ions in the soil, and reveal the strength of interaction between various ions and soil colloids.
Many studies have shown that EC can reflect soil texture to a certain extent [16]. Heil [17] uses soil EC
to characterize soil texture variability at highly variable locations. This study describes the soil texture
by combining point-by-point EC measurements with digital terrain model, cultivation parameters,
and the thickness of the Quaternary sediments. R2 values ranged between 0.67 and 0.76. This shows
to a certain extent that the combination of EC and other soil characteristics has a good correlation
with soil texture. There are also studies using soil surface images to predict soil texture or classify soil.
Jia [18] used hyperspectral image technology to establish a classification model by combining effective
wavelength and texture feature data to predict the soil types of red soil, paddy soil, and seashore saline
soil, with a correct rate of 90%. Although this method is only for soil type and color, it provides an idea
for using images to classify soil texture. Morais [19] used a multivariate image analysis method to
predict soil texture with a very high success rate when the soil composition is low in powder. However,
even if this method is twice as long as the standard pipette analysis method, it still takes 50 h and
cannot quickly measure soil texture. Predecessors in the same laboratory have shown that using image
methods to obtain soil characteristics and predict soil roughness can provide a reference for analyzing
soil texture. Therefore, we can try to use soil EC and soil surface images for data fusion to quickly
predict soil texture.

In fact, it can be further explained that the fusion of these two kinds of data can be used as the
basis for determining soil texture: The EC of the soil can reflect the size of the parameters such as
soil texture and porosity to varying degrees. Similarly, the texture features extracted from the soil
surface image have a strong relationship with the soil surface roughness [20–24]. Li [25] put forward a
method to interpret soil roughness by taking field photos, which can obtain soil roughness through soil
surface image. García [26] used image shading to obtain soil surface roughness in the laboratory and
on-site. The soil surface roughness is a parameter that characterizes the micro-topography of the soil.
The small spacing of soil surface particles and the unevenness of small peaks and valleys are related to
the size of the soil surface particles. The different combinations of soil particle size are soil texture.
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These two kinds of data are closely related to texture. Scholars at home and abroad have conducted
preliminary studies on the methods of using soil EC and soil surface image texture features to predict
soil texture. Therefore, this study proposes to use soil EC and soil surface image texture features for
data fusion to predict soil texture.

This research aims to develop a vehicle-mounted soil texture information acquisition instrument
that uses the original information of farmland, and to verify the instrument through field experiments.
The methods are as follows: Using disc electrode to obtain soil EC, using industrial camera to obtain
soil surface image and extracting texture parameters, and establishing model and prediction based on
support vector machine.

2. Materials and Methods

2.1. Soil Texture Prediction Method

Because soil texture is difficult to measure directly, a method for predicting soil texture using
parameters that are highly correlated with soil texture is proposed. The above analyzed the feasibility
of indirect prediction of soil texture, and finally chose the method of combining soil EC and soil surface
image to predict soil texture. First, using soil EC data and the texture feature information of the soil
surface image and soil texture to build a model, and using soil from different regions as input to make
the model more versatile. In farmland experiments, through the designed soil EC sensor and industrial
camera, the required input parameters: Soil EC and texture features extracted from the soil surface
image are obtained respectively, and then the prediction model is called to obtain the soil texture
information of the target farmland. A brief flow chart of soil texture prediction is shown in Figure 1.

Figure 1. Flow chart of soil texture prediction.

2.2. Soil EC Measurement Principle

The current-voltage four-terminal method is the most classic method for measuring soil EC.
The principle structure diagram is shown in Figure 2. A constant current source provides a constant
current between J and K, and the voltage between M and N is measured by a voltmeter. The voltage
drop at both ends is calculated, and the soil EC is calculated by this voltage drop [27].

Figure 2. Schematic diagram of current-voltage four-terminal method.
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When a conductor has a regular shape, its EC value is a function of cross-sectional area and length.
However, soil is composed of various granular minerals, organic matter, moisture, air, microorganisms,
etc., which is a very irregular and complex substance. It is a porous dispersion medium composed of
countless soil particles arranged in layers, so the cross-sectional area and length cannot be measured,
so there is a soil EC calculation formula for the structure of the soil [28]:

σMN =

1
dJM
−

1
dJN
−

(
1

dKM
−

1
dKN

)
2π

I
VMN

= K
I

VMN
, (1)

σMN—Calculated soil EC (µS/cm)
dJM, dJN, dKM, dKN—The distance between the probes (cm)
I—Constant current source current (A)
VMN—Voltage between M and N probes (V)

When the output of the steady amplitude Alternating Current source is constant, the soil EC is in
inverse proportion to the voltage drop at the voltage terminal.

In particular, a constant current source using a direct current excitation method is prone to
polarization, so alternating current is usually used. Moreover, the constant current source cannot
always be kept constant in the actual experiment. It will fluctuate due to the change of the load. Since the
ground is irregular and its load changes all the time, the four-terminal method is usually improved
as shown in Figure 3: An ammeter is connected in series with the constant current source circuit to
obtain the actual value of the constant current source to ensure the accuracy of the current-voltage
four-terminal method [29].

Figure 3. Improved current-voltage four-terminal method schematic diagram.

2.3. Principles of Soil Surface Image Analysis

The method of extracting soil surface texture features is gray level co-occurrence matrix method
(GLCM). GLCM [30–33] is a classic second-order statistical algorithm. In 1973, Haralick proposed
the use of a GLCM to describe texture features. This is because the texture is formed by the grey
distribution repeatedly and alternately in the spatial position, so there must be a certain distance
between two pixels in the image space. A certain grey level relationship is called the spatial correlation
characteristics of grey levels in an image. The texture is described by studying the spatial correlation of
grey levels. This is the ideological basis of the GLCM. It is composed of the joint probability density
of gray levels. It can reflect the comprehensive information about the direction, adjacent interval,
and change range of the image gray level. It is the basis for analyzing the local patterns of images
and their arrangement rules. Based on the matrix, a variety of statistics can be calculated: Energy,
entropy, contrast, uniformity, correlation, variance, sum average, etc. The most used parameters are as
follows [34]:

Correlation: Correlation refers to the degree of correlation between related pixels and their
neighboring pixels, which reflects the local gray-scale correlation in the image.

Cor =
∑

i

∑
j

P(i, j)

1 + (i− j)2 , (2)
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P—Image
(i,j)—Pixel coordinates

Energy: Energy measures the uniformity of the texture of an image and represents the repetitive
information of pixel pairs.

Eng =
∑

i

∑
j
P(i, j)2, (3)

P—Image
(i,j)—Pixel coordinates

Entropy: The meaning of entropy in physics is the degree of regularity of an object. The more
orderly, the smaller the entropy, and the more disorderly, the greater the entropy. It represents the
randomness and complexity of texture feature distribution.

Ent =
∑

i

∑
j
P(i, j) log P(i, j), (4)

P—Image
(i,j)—Pixel coordinates

In actual use, the required texture parameters are selected for extraction according to the situation,
but in most cases, the above parameters are directly used. After the research of predecessors in the
laboratory, energy, homogeneity, entropy, energy, and moment of inertia have a high correlation with
soil roughness, soil bulk density, root mean square height, and correlation length. By comparing the
correlation between the root–mean–square height and the correlation length that characterize the soil
surface roughness and the 12 texture feature parameters, the 4 texture features used in this article have
the highest R2. The R2 of the root–mean–square height and the correlation length with the four texture
parameters are as follows: The R2 of energy is 0.66 and 0.52; the R2 of entropy is 0.72 and 0.63; the R2

of momentum of inertia is 0.71 and 0.68; the R2 of correlation is 0.7 and 0.62. Therefore, this study uses
four image parameters: Energy, entropy, moment of inertia, and correlation to predict soil texture [35].

2.4. Detector Design

Based on the measurement principle and method of soil EC and soil surface image, the detector is
developed. The detector structure is shown in Figure 4. The whole structure is connected to the tractor
by a rear-mounted three-point suspension. Two depth-limiting wheels on both sides can work together
with the tractor hydraulic lifter to adjust the depth of soil. The hardware detector is mainly composed
of three parts: 1. Disc electrode for measuring EC; 2. Industrial camera to obtain soil surface image;
3. Detector circuit (including constant current source generating circuit, data acquisition card, and
GPS). The physical picture of the detector is shown in Figure 5. Two equipment boxes are designed on
the beam to be placed symmetrically on both sides, one of which is placed with 12 V power supply
lithium batteries and circuit modules, and the other is placed with equipment related to industrial
cameras. The equipment is fixed in the equipment box with screws and custom-sized concave iron
sheets to alleviate the impact of vibration, effectively prevent soil dust and rain from damage to the
equipment, and increase the counterweight to make the sensor electrode fully contact the soil.

The soil EC part (1, 2, 3, 5 in Figure 4) has four disc electrodes, the diameter of the disc electrodes
is 20 cm, and they are in close contact with the soil when they enter the soil. Since the disk electrode
can roll easily, compared with the non-disk electrode, it can reduce the interference caused by soil
resistance, improve the stability of the signal, and can measure soil EC information more accurately.
When measuring the soil, adjust the depth limit wheel to ensure that 2/5 of the disk electrode is in the
soil. The entire detector follows the tractor. The four disk electrodes are inserted into the soil to roll,
and two external electrodes are used as constant current source output Electrodes, the two internal
electrodes send the measured electrical signals to the system circuit through the brushes on both sides
of the electrodes, and display them on the industrial flat panel after processing and calculation.



Sensors 2020, 20, 7175 6 of 16

Figure 4. Detector structure diagram. 1 Industrial tablet computer; 2 Data acquisition card; 3 Circuit 1;
4 Circuit 2; 5 Disc electrode; 6 Deep loose plough; 7 Industrial camera; 8 GPS locator; 9 Mobile phone;
10 Centerline.

Figure 5. Physical image of detector.

An industrial camera was used to get the image of soil surface (1, 7 in Figure 4). The industrial
camera is detachable, and the position can be adjusted according to the actual farmland conditions.
It has 10 million pixels (3664 × 2748) and a frame rate of 8. The aforementioned industrial camera
is used to take an image of the soil surface and perform image processing to extract GLCM texture
features in the whole system. According to the height and depth limit of wheel and the tractor, the
image area is generally 20 cm × 20 cm. The centerline position of the four side-by-side disk electrodes
is regarded as the EC measurement position, and the industrial camera is installed above the centerline.

These two parameters are input into the embedded model to predict the soil texture of the
target plot.

The collected soil information can be browsed through industrial tablets or viewed through
mobile phones. The mobile phone display interface is shown in Figure 6, which can view, manage,
and analyze soil data.

The principle diagram of the detector is shown in Figure 7. The most important part of the
whole detector is the data collection of two kinds of sensing devices: Disc type EC electrode and
industrial camera. Four disc electrodes were used for measuring soil EC. Industrial camera was
used for acquiring soil surface images. Among them, the industrial camera and the industrial tablet
computer are directly connected through a USB cable. In order to achieve real-time and rapid data
measurement, a high-speed data acquisition card is selected to ensure the flow and accuracy of the
data, and a GPS receiver is also installed and used to record position information
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Figure 6. Mobile phone interface.

Figure 7. Schematic diagram of detector.

2.5. Soil Samples and Experimental Preparation

The geographical coordinates of Beijing are 115.7~117.4◦ East longitude, 39.4~41.6◦ N latitude,
with an area of 16,410 km2, an annual average temperature of 11.5 ◦C, and a precipitation of about
540.7 mm. The soil is mostly gray loess and brown gray soil. The soil is fertile and moderate in texture.
The main soil texture is loam. The experiment site was in two districts of Beijing: Tongzhou and
Haidian, and the soil texture is loam.

The distribution of experimental plots, paths and sampling plots is shown in Figure 8. The two
farmlands are both 2500 m3 corn fields, and the sampling plot is 2.5 m × 2.5 m. Limited by the height
of the camera, the shooting area is smaller than the area of the sampling cell and the conductivity
measurement area, so shooting at the center of the sampling cell approximately represents the entire cell.
The experiment content includes data collection and soil sample collection. A total of 185 soil samples
were collected on the experimental path, including 100 in Tongzhou and 85 in Haidian, which were
matched with measured values through GPS data. Each soil sample is 1 kg and the sampling depth is
10 cm. Each soil sample is divided equally by the 4-point method to measure the standard value of EC
and soil texture.

Each soil sample is used to measure EC. The laboratory measurement method [36] is: Place the
soil sample in the tray to air dry and pass through a 1 mm sample sieve. Weigh 10 g of the soil sample
in a shaker bottle and add 50 mL of deionized water at 20 ◦C. Cover the bottle cap and place it on
a reciprocating horizontal constant temperature oscillator to oscillate for 30 min. After oscillating,
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let it stand at 20 ◦C for 24 h. Take an appropriate amount of clear solution and measure it with a EC
instrument. Record the data as the standard EC value of the soil sample.

Figure 8. Experimental plots, paths, sampling plots.

Three soil texture types were measured, namely sandy loam (63 samples), light loam (97 samples)
and medium loam (25 samples). The measurement method is: Using a laser particle size analyzer
(NKT5200-H, Shandong Nikeite Analytical Instrument Co., Ltd., China) to perform wet measurement
on the air-dried and sieved soil sample. After obtaining the analysis report, the soil samples are
divided into sandy loam soil, light loam soil, and medium loam soil according to the Kaczynski soil
classification standar [37] in Table 1.

Table 1. Kaczynski’s standard for classification of soil texture.

Soil
Texture

Physical Clay (<0.01 mm) Content Physical Clay (>0.01 mm) Content

Podzol
Grassland Soil,
Red and Yellow

Soil

Columnar
Alkaline Soil,

Strong Alkaline
Soil

Podzol
Grassland Soil,
Red and Yellow

Soil

Columnar
Alkaline Soil,

Strong
Alkaline Soil

Sand
Loose sand 0–5 0–5 0–5 100–95 100–95 100–90
Tight sand 5–10 5–10 5–10 95–90 95–90 95–90

Loam

Sandy loam 10–20 10–20 10–15 90–80 90–80 90–85
Light loam 20–30 20–30 15–20 80–70 80–70 85–80

Middle loam 30–40 30–45 20–30 70–60 70–55 80–70
Heavy loam 40–50 45–60 30–40 60–50 55–40 70–60

Clay
Light clay 50–65 60–75 40–50 50–30 40–25 60–50

Medium clay 65–80 75–85 50–65 35–20 25–15 50–35
Heavy clay >80 >85 >65 <20 <15 <35

In fact, the three texture types are relatively similar in particle size composition ratio. When the
particle size of less than 0.01 mm is in the range of 10% to 20%, it is sandy loam, 20% to 30% is light
loam, and 30% to 40% is medium loam. Therefore, it is difficult to distinguish the three kinds of soil
texture manually through experience, and it is necessary to use a detector to measure.
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3. Results

3.1. Electrical Conductivity and Texture Features

The descriptive statistics of the samples of sandy loam, light loam, and medium loam are shown
in Table 2, including GLCM texture parameters and EC. The average EC values of sandy loam, light
loam and medium loam were 271 µs/cm, 225 µs/cm, and 218 µs/cm respectively. As the percentage
of soil physical clay particles (<0.01 mm) increased, EC showed a decreasing trend. Except for the
EC data, the standard deviations are small, indicating that the data except for the EC are closer to
the average and the data is relatively stable. Among them, the Correlation of sandy loam soil and
light loam soil and the energy of sandy loam soil have larger absolute values of kurtosis, which are
quite different from the normal distribution, except that they are basically in line with the normal
distribution. The absolute value of skewness is small, indicating that the left and right sides of the
dispersion are relatively even.

Table 2. Sample descriptive statistics table. GLCM—gray level co-occurrence matrix method;
EC—electrical conductivity.

Texture GLCM and EC Mean Standard Error Median Standard Deviation Kurtosis Skewness

Sandy
loam

Energy 0.0221 0.0021 0.0190 0.0159 5.7348 2.3370
Entropy 4.4408 0.0602 4.5656 0.4662 2.6134 −1.6601
M of I 5.0549 0.3172 5.8599 2.4570 −0.8623 −0.4730

Correlation 0.0609 0.0039 0.0522 0.0301 28.9858 4.9598
EC 271.665 8.9177 257.000 69.0765 0.3877 0.9216

Light loam

Energy 0.0360 0.0021 0.0326 0.0202 17.2707 2.7564
Entropy 3.7861 0.0490 3.6955 0.4800 −0.0321 0.6633
M of I 1.6319 0.2023 0.7209 1.9823 2.8862 2.0293

Correlation 0.1091 0.0067 0.0966 0.0652 20.0478 3.0386
EC 225.0635 6.3721 201.500 62.4339 1.5693 1.2774

Middle
loam

Energy 0.0431 0.0029 0.0376 0.0145 −0.1002 0.7838
Entropy 3.4965 0.0556 3.5691 0.2779 −1.1965 −0.2736
M of I 0.5814 0.0411 0.5107 0.2053 −1.4442 0.3729

Correlation 0.1219 0.0096 0.1046 0.0479 1.5727 1.3814
EC 218.784 11.676 199.300 58.3801 1.3856 1.2557

The average value of GLCM texture features extracted from 185 sample points is shown in Figure 9.
The samples are divided into 3 texture types for comparison. The four pictures are respectively energy,
entropy, moment of inertia, and correlation of the four texture feature values. The abscissas in the
figure are 0◦, 45◦, 90◦, and 135◦, respectively, to extract the four feature value directions. It can be seen
that the 4 texture values of the 3 texture types have obvious differences, and the change trend is regular,
indicating that these 4 texture parameters have obvious help for texture classification. For entropy
and moment of inertia, sandy loam, light loam, and medium loam show a decreasing trend. On the
contrary, for energy and correlation, sandy loam, light loam, and medium loam show an increasing
trend. This shows that the sandy loam soil is rougher, which is consistent with the actual situation.

3.2. Analysis of Soil EC Measurement Results

EC measurement is a key part of the vehicle-mounted soil texture detector. In order to verify
the accuracy of EC measured by the detection instrument, a linear regression model of soil EC was
established by using the 185 EC values actually measured by the detector in the farmland and the
standard EC values measured by the laboratory extraction method. The result is shown in Figure 10.
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Figure 9. GLCM texture feature average map. (a) Average of Energy; (b) Average of Entropy; (c) Average
of Moment of inertia; (d) Average of Correlation.

Figure 10. Soil EC measurement results.
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It can be seen that the measured values are evenly distributed on both sides of the regression line,
and the correlation analysis result R2 is 0.75. The results show that the soil EC data obtained by the
vehicle-mounted soil texture detector has high accuracy.

3.3. Analysis of Soil Texture Measurement Results

The prediction model embedded in the vehicle-mounted soil texture detector is a support vector
machine (SVM) model. SVM has been proved to have outstanding advantages in the case of small
sample sizes, which can avoid the problem of neural network structure selection and local minimum
points, and has excellent learning performance and good robustness [38]. The kernel function used
by the built-in model of the detector is the RBF function, and the optimization results of the model
parameters are: C is 50.61 and g is 2.93.

In order to verify that the combination of the two parameters of soil EC and GLCM texture
features extracted from soil surface images is the optimal input, the following experiments were carried
out: Soil texture is predicted only by soil EC; soil texture is predicted by using GLCM texture feature
extracted from soil surface image; soil is predicted by combining soil EC with GLCM texture feature
extracted from soil surface image Texture. The results are shown in Table 3.

Table 3. Soil texture measurement result table.

Input Predicted Soil Texture

Sandy Loam Light Loam Middle Loam Correct Rate

Actual soil texture
Sandy loam 32 31 0 50.79%

EC Light loam 25 72 0 74.23%
Middle loam 4 17 4 16%

Total correct rate - - - - 56.21%

Actual soil texture
Sandy loam 52 10 1 82.59%

GLCM Light loam 11 85 1 87.63%
Middle loam 0 15 10 40%

Total correct rate - - - - 78.38%

Actual soil texture
Sandy loam 56 7 0 88.89%

EC and GLCM Light loam 8 85 4 87.63%
Middle loam 0 9 16 64%

Total correct rate - - - - 84.86%

The GLCM texture parameters extracted from soil surface images and soil EC are input to
the built-in SVM model of the detector. The soil texture measurement value predicted by the
vehicle-mounted soil texture detector is analyzed with the standard value measured by the laser
particle size analyzer. The correct rate of the tester’s measurement was verified, and the result is
shown in Figure 11. The correct rate is the ratio of the number of correct samples to the total number
of samples.

The x-axis in Figure 11 is the serial number of the soil sample. In order to display the measurement
results more directly in the figure, the samples were not sorted according to the number of the samples
collected during the experiment, but 185 samples were re-sorted according to the type of soil texture.
The first 63 samples are sandy loam soil, the last 25 samples are medium loam soil, and the remaining
97 samples are light loam soil.

Among them, the prediction accuracy rate of only using soil EC to predict soil texture is 56.21%
(104/185); only using GLCM texture features extracted from soil surface images to predict soil texture is
78.38% (145/185); using soil EC and soil surface The combination of GLCM texture features extracted
from the image has the highest accuracy in predicting soil texture, with a total accuracy of 84.86%
(157/185). Among them, the prediction accuracy rate of sandy loam and light loam is above 87%.
The correct rate of medium loam soil was 64%, and 9 samples were wrongly judged as light loam
soil. The reasons may be: In the Kaczynski soil texture classification standard, the content of physical
clay particles (<0.01 mm) is light loam when the content is 20~30%, and the content is medium loam
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when the content is 30~40%. The content of physical clay (<0.01 mm) is about 30.5%, which is on the
dividing line of the two textures, and the difference is small, so the judgment is wrong.

Figure 11. Soil texture measurement results.

The results show that the vehicle-mounted soil texture detector can use the original farmland
information to predict the soil texture with high accuracy, and the combination of soil EC and soil
surface image is the optimal input.

4. Discussion

First of all, the detector is designed and developed on the principle of soil EC and surface texture
characteristics. The hardware part is stable and meets the needs through observation and inspection
during the experiment. The results of field experiments show that the combination of EC and GLCM
texture is the best input, and the detector has high accuracy in soil texture measurement.

In the current research, the first-order statistical features (such as skewness and kurtosis) are only
related to the attributes of a single pixel, and cannot reflect the spatial relationship of pixels in the
image, so the gray-scale method is used to propose the second-order statistical texture feature [39].
Chen [40] used GLCM texture extracted from simulated tumor images to distinguish true progression
and false progression of glioblastoma treated with radiotherapy and temozolomide, with an accuracy
of 86.4%, and found that correlation was related to abnormal inhomogeneity, and texture characteristics
of energy and entropy were related to local homogeneity, which was consistent with the experimental
results of this study. Among them, GLCM texture is widely used in image-based classification research.
Ou [41] used GLCM to conduct in vivo skin capacitance imaging analysis. He found that because
the texture on three different skin positions became denser with the increase of the number of tape
peelings, the entropy value was at the three different skin positions. It shows an upward trend, which is
consistent with the results of this study. As the soil particle composition becomes finer, the entropy
value gradually decreases. Cho [42] studied a linear regression model for estimating clay texture
content with EC as an independent variable. This model provides a good degree of fit on the surface,
but the degree of fit decreases with depth, from 0.84 to 0.23. The study shows that EC It contributes to
the prediction of soil texture, but it cannot be explained by simple rules. This is also consistent with
the viewpoint expressed by Kelleners [43]. Mahmood [44] used EM38 to predict soil texture. In the
farmland with 37% clay content, R2 measured by EM38 and clay, loam and sand are 0.28, 0.34, and 0.39
respectively. In the farmland with very low clay content (5%), the R2 measured by EM38 and clay, loam
and sand were 0.49, 0.09, and 0.05, while in the farmland with an average clay content of 19%, the R2
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measured by EM38 and clay, loam and sand were 0.2, 0.71 and 0.72, respectively. It can be seen that EC
and texture have a certain correlation, but how they affect each other is unknown. In fact, all kinds of
soil physical parameters are interrelated and restricted each other, so it is impossible to predict soil
texture comprehensively and accurately by single parameter, when studying EC and soil texture, it is
necessary to assume uniform fertility [45], but this is not noticed in most studies, and the fertility of
collected soil samples is indeed difficult to actively select and control, so the low correlation between
EC and texture and the difficulty in summarizing the law can be attributed to this.

The detector is vehicle mounted and suitable for large-scale farmland or farmland with different
crops in each small area. In particular, most of China’s farmland is small area, but the aggregation is
dense, and the single farmland area is small, but the aggregation scale becomes larger. The farmland in
a single small area cultivates different crops, so it is more suitable to use vehicle mounted detector to
measure the soil texture, which can obtain the texture type of the region and give the most suitable
suggestions for planting a certain crop.

In addition, the detector also has limitations. Due to the unevenness and heterogeneity of the
soil, the image may be affected by weather conditions (such as rain, fog, snow, drought, and cloudy).
For example, it may have a negative impact on the camera’s focus, or white balance and exposure
issues under strong light conditions. Therefore, the experiments in this study have manually avoided
the harsh environment and selected suitable weather and experimental farmland. We plan to expand
research in the future to enhance the ability of the detector to adapt to different environments.

Finally, the detector provides a reference for measuring soil physical parameters using only the
original information of farmland. We also plan to add a deep loose plow to the detector in the future to
estimate soil bulk density and total porosity. For example, first predict the texture of the target plot,
and then predict the soil bulk density and total porosity based on the texture type to increase accuracy.

5. Conclusions

In this study, a vehicle-mounted soil texture detector was designed and developed based on soil
EC and soil surface image. Four disc electrodes are used to obtain the EC by the current-voltage
four-terminal method, and the industrial camera is used to capture the soil surface image and extract
the GLCM texture feature. The EC and GLCM are input into the embedded SVM model of the detector
to obtain the soil texture information of the target plot.

1. Based on the feasibility analysis of the texture measurement principle, the soil EC is combined
with the machine vision device, and the SVM model is used as the embedded model to obtain
and analyze the in-situ texture information of farmland soil in real time. Compare the results
obtained by this method with the standard method data. The results show that this method of
obtaining in-situ texture information of farmland soil does not require chemical reagents, long
test time, and artificial energy, and it is a new method to quickly obtain soil texture in real time.

2. The correlation analysis between the farmland measurement results of the in-situ vehicle-mounted
soil texture detector and the results obtained by the laboratory standard method is carried out,
and the correlation analysis result R2 of the soil EC measurement is 0.75. The accuracy rate of
soil texture prediction data obtained by combining EC and GLCM using the embedded model
reached 84.86%. The results show that the vehicle-mounted soil texture detector combined with
EC and GLCM can predict the soil texture of the target plot based on the original information of
the farmland, and has high accuracy.
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