
sensors

Article

A Secure and Lightweight Three-Factor-Based
Authentication Scheme for Smart
Healthcare Systems †

Jihyeon Ryu 1 , Dongwoo Kang 2, Hakjun Lee 2 , Hyoungshick Kim 3 and Dongho Won 3,*
1 Department of Software, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si 16419,

Gyeonggi-do, Korea; jhryu@security.re.kr
2 Department of Electrical and Computer Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu,

Suwon-si 16419, Gyeonggi-do, Korea; dwkang@security.re.kr (D.K.); hjlee@security.re.kr (H.L.)
3 Department of Computer Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu,

Suwon-si 16419, Gyeonggi-do, Korea; hyoung@skku.edu
* Correspondence: dhwon@security.re.kr; Tel.: +82-31-290-7107
† This paper is an extended version of our paper published in Jihyeon, R.; Youngsook, L.; Dongho, W.

Cryptoanalysis of Lightweight and anonymous three-factor authentication and access control protocol for
real-time applications in wireless sensor networks. In Proceedings of the 6th ICCST 2019, Kota Kinabalu,
Malaysia, 29–30 August 2019.

Received: 18 November 2020; Accepted: 9 December 2020; Published: 12 December 2020 ����������
�������

Abstract: Internet of Things (IoT) technology has recently been integrated with various healthcare
devices to monitor patients’ health status and share it with their healthcare practitioners.
Since healthcare data often contain personal and sensitive information, healthcare systems must
provide a secure user authentication scheme. Recently, Adavoudi-Jolfaei et al. and Sharma and
Kalra proposed a lightweight protocol using hash function encryption only for user authentication
on wireless sensor systems. In this paper, we found some weaknesses in target schemes. We propose
a novel three-factor lightweight user authentication scheme that addresses these weaknesses
and verifies the security of the proposed scheme using a formal verification tool called ProVerif.
In addition, our proposed scheme outperforms other proposed symmetric encryption-based schemes
or elliptic curve-based schemes.

Keywords: authentication; WSN; healthcare; IoT

1. Introduction

Digital healthcare services have recently received a considerable amount of attention as
various Internet-enabled wearable devices have been deployed. Digital services can also be used to
continuously monitor patients and share information with their healthcare practitioners. According to
a Spyglass Consulting Group’s report [1], with 100 interviewees working in medical informatics
and healthcare IT technology areas, about 88% of hospitals and healthcare systems have considered
adopting remote patient monitoring (RPM) as their primary business model in the future.

RPM technology is increasingly used by hospitals and medical systems [1]. We believe that
continuous monitoring and fast response times are necessary for high-risk patients with chronic
diseases. For example, practitioners can use a monitoring device to collect ECG signals from patients
with heart-related conditions and quickly identify any suspicious changes [2–5]. Because such data
(e.g., raw ECG signals) are often highly personal and sensitive, any data that have been collected
in healthcare systems should be securely protected and accessible only to authorized users such as

Sensors 2020, 20, 7136; doi:10.3390/s20247136 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-8124-3853
https://orcid.org/0000-0002-5777-4256
https://orcid.org/0000-0002-1605-3866
http://dx.doi.org/10.3390/s20247136
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/24/7136?type=check_update&version=3

Sensors 2020, 20, 7136 2 of 25

primary care physicians. Furthermore, the scheme to monitor and analyze processes should not only
be safe, but also be completed in real-time because patients might otherwise be at risk.

If there is a problem with the certification of these RPM technologies, the following damage
can occur. First, if hospitals do not provide fast enough authentication using a heavy enough
operation, quick feedback is impossible when monitoring the patient’s condition. In such cases,
in a situation where urgent patients with fatal internal injuries require immediate treatment due to
rapid changes, the treatment may be delayed due to the late certification speed. In the worst-case
scenario, the treatment of patients can be difficult. Second, if there is a security flaw in the certification,
privacy infringement of patients and medical personnel may occur. For example, if a session key is
released, all medical information of the patient can be disclosed to the hacker. Therefore, in order
to avoid such damage, a certification protocol is shown in Figure 1 that satisfies both high speed
(i.e., lightweight computation) and safety should be used.

Medical Professional

Gateway Node

Sensor Node Patient's Body

Figure 1. The Architecture of User Authentication for Digital Healthcare Services.

Many security protocols (e.g., [6–9]) have been developed to satisfy these security and performance
requirements. Among those protocols, Sharma and Kalra’s scheme [6] is specifically designed to
improve the protocol’s efficiency. Unlike existing protocols that require expensive cryptographic
operations or three authentication factors [7,9,10], Sharma and Kalra’s scheme [6] uses hash functions
with only two authentication factors. Similarly, Adavoudi-Jolfaei et al. [11] also proposed a protocol
using hash functions only. Sharma and Kala’s scheme [6] and Adavoudi-Jolfei et al.’s scheme [11] are
the most recently written lightweight authentication protocols that can keep high speed and safety,
the conditions required by the healthcare system.

In this paper, we confirmed that Adavoudi-Jolfaei et al.’s scheme [11] has a severe vulnerability.
We also demonstrate that Sharma and Kalra’s scheme [6] has a serious design error. Therefore, we propose
a new scheme to fix the weaknesses of these target schemes. We formally verify the security of the new
protocol using ProVerif, an automatic cryptographic protocol verifier. In summary, this paper presents the
following contribution:

• We demonstrate that Sharma and Kalra’s scheme [6] has a serious design error: mutual authentication
between a practitioner and a sensor cannot be ensured in their original protocol.

• We confirm that Adavoudi-Jolfaei et al.’s scheme [11] and Sharma and Kalra’s scheme have a severe
vulnerability. We find that Adavoudi-Jolfaei et al.’s scheme [11] is vulnerable to user impersonation
attack and session key attack. We also find that Sharma and Kalra’s scheme [6] is vulnerable to
password guessing attack, stealing the session key and sensor impersonation attack.

Sensors 2020, 20, 7136 3 of 25

• We propose a scheme for smart healthcare systems. Our new scheme resists privileged insider
attack, outsider attack, offline ID guessing attack, online id guessing attack, session key
disclosure attack, practitioner impersonation attack, and sensor impersonation attack. We provide
security proofs.

• We formally verify the security of the new protocol using ProVerif, an automatic cryptographic
protocol verifier.

• We show the performance analysis of the proposed scheme. We compared the proposed scheme
with that of Chen et al. [12], Renuka et al. [13], and Li et al. [14] to show how efficient our proposed
scheme is.

The remainder of this paper is arranged as follows: Section 2 describes related work. Section 3
introduces the preliminary knowledge necessary to understand the scheme by Sharma and Kalra
and Adavoudi-Jolfaei et al. The target schemes are briefly described in Section 4. Section 5 discusses
several weaknesses of the target schemes. We propose our improved scheme in Section 6 and show the
security analysis of the proposed scheme in Section 7. In Section 8, we show the performance analysis
of the proposed scheme. Finally, Section 9 concludes the paper.

2. Related Work

Various user authentication schemes have been proposed for smart healthcare applications.
Hu et al. [15] proposed a real-time hardware and software-based healthcare monitoring

system for cardiac patients in 2007. The proposed scheme focuses on efficiency improvements
but lacks adequate security protection. Malasri et al. [16] proposed an authentication scheme
for wireless mote-based medical sensor networks using an ECC (elliptic curve cryptography)
system in 2009. However, the scheme cannot withstand denial-of-service and relay nodes attacks.
Furthermore, ECC may be too expensive for embedded devices in the medical domain.

In 2012, Kumar et al. [17] proposed a two-factor user authentication scheme for wireless medical
sensors to monitor patients’ health status. However, Khan and Kumari [18] found that Kumar et al.’s
scheme is vulnerable to security attacks. The scheme included the use of a smart card to enhance
the security of the protocol, but the user information stored on the smart card can end up leaked if
the smart card is stolen. Khan and Kumari proposed an improved scheme to fix the security flaws
of the previous scheme in 2014. Li et al. [19] and Wu et al. [20] each analyzed the scheme presented
by Khan and Kumari [18]. They discovered that Khan and Kumari’s scheme is not secure against
offline password guessing attacks, as it does not identify invalid input and user impersonation attacks.
Li et al. [19] and Wu et al. [20] proposed their respective improved schemes, which employ a smart card
to overcome the security flaws of Khan and Kumari [18]. Hossain et al. [21] proposed an IoT-based
ECG health monitoring service framework in the cloud. They presented a framework for secure
transmission of patients data from different sensors to the cloud in a wireless environment.

Recently, Sharma and Kalra [6] proposed an authentication scheme for cloud-IoT-based remote
patient healthcare monitoring services. It is efficient because only the hash function is used for system
encryption. Several papers briefly addressed security flaws of Sharma and Karla’s scheme [22,23].
However, they only mentioned briefly that privileged insider attacks are possible. However, we have
pinpointed the structural problems of Sharma and Kalra’s scheme, and showed that password guessing
attack, stealing the session key attack, and sensor impersonation attack are possible in the case of
privileged insider attack.

In 2016, Gope et al. [24] proposed a novel two-factor lightweight anonymous authentication
protocol in WSNs (wireless sensor networks) that uses a database to overcome prior vulnerabilities.
However, Adavoudi-Jolfaei et al. [11] argue that protocol is vulnerable to side-channel attacks because
of the use of 2-factors, and that the session keys are also vulnerable. To overcome these drawbacks,
in 2019, Adavoudi-Jolfaei et al. [11]. proposed a new 3-factor authentication protocol in WSN.
Unfortunately, Shin and Kwon found user collusion attacks, desynchronization attack and no sensor

Sensors 2020, 20, 7136 4 of 25

node anonymity. In addition, through our prior research, we found more weaknesses that user
impersonation attack and session key attack are able to take advantage of.

3. Preliminaries

This section introduces the hash function, fuzzy extractor and threat model used in this paper.

3.1. Hash Function

Data convert an arbitrary value to a fixed-length value through a hash function. This is useful for
fast and safe search functions. The hash function has the following properties [25].

• Preimage-resistance It is computationally impossible to use the output of any hash value to
find the input that results in this value, i.e., to find any preimage a

′
such that h(a

′
) = b when

given any b for which a corresponding input is not known.
• 2nd-preimage-resistance For any input, when there is an output for the hash function,

it is computationally impossible to find another input value with this output, i.e., to find a
2nd-preimage a

′ 6= a such that h(a) = h(a
′
).

• Collision resistance It is computationally infeasible to find two different inputs with the
same hashing result, i.e., any two distinct inputs a, a

′
, which hash to the same output, such that

h(a) = h(a
′
).

3.2. Fuzzy Extractor

Biometric information should be treated as sensitive. Since biometric information is unique to the
user, it is convenient to use, but difficult to handle. In general, biometrics cannot be recognized equally
each time. Therefore, a fuzzy extractor is used to recognize varied biometric information within a
certain tolerance range. The fuzzy extractor can obtain a unique string using error tolerance. The fuzzy
extractor operates through two procedures (Gen, Rep), as follows [26,27]:

Gen (B)→ 〈α, β〉 (1)

Rep (B∗, β) = α (2)

Gen and Rep are a probabilistic generation function and a deterministic reproduction function,
respectively. Gen returns a factored out string α ∈ {0, 1}k for the input biometrics B and a co-adjutant
string β ∈ {0, 1}∗. Rep is a function that restores β to α, and any vector B∗ close to B.

3.3. Threat Model

Based on the work of Dolev and Yao [28] and other previous research [10,29], we employ a threat
model with the following assumptions.

• An attacker can steal a smart device with the user’s identity.
• An attacker can eavesdrop on a public channel. An attacker can steal the message between the

user and the gateway node or between the gateway node and the sensor node.
• An attacker can extract the information stored in the smart device as a side-channel attack.

4. Review of Target Protocols

This section describes the target protocols.

4.1. Review of Adavoudi-Jolfaei et al.’s Protocol

This section describes the protocol developed by Adavoudi-Jolfaei et al. [11]. The scheme consists
of four phases: registration, login, authentication, and password change. The notation for the target
paper [11] is shown in Table 1.

Sensors 2020, 20, 7136 5 of 25

Table 1. Notations.

Notations Description

U The user
P The practitioner who is a medical professional

GWN Gateway node
SN Sensor node
Uid U’s identity

Upsw U’s password
Ub U’s biometric information

AUid U’s disposable identity
SUid U’s shadow identity
APM Set of access rights mask for U

G Group identity set of U
Bp Biometric information of the practitioner P

IDp Identity of the practitioner P
PWp Password of the practitioner P

Mask(PWp) Masked password of the user P
GWNid GWN’s identity

w GWN’s private key
KEMug The secret emergency key between U and GWN

Skug The secret key between U and GWN
SNid SN’s identity
Skgs The secret key between GWN and SN
SK The session key between U and SN
SC Smart card or smart device
DB Database
Tsug Timestamp sequence

Mask(PWp) Masked password of the user P
K Secret key of GWN

h(·) One-way hash function
Tx The xth timestamp
Tc Current timestamp

Gen A probabilistic generation function
Rep A deterministic reproduction function
∆T Maximum transmission delay
⊕ XOR operation
‖ Concatenation operation

4.1.1. Registration Phase

In the registration phase, U and GWN in the private channel exchange secret information about
SC. When the user authenticates, this allows confidential information to be stored in the database used
by SC and GWN.

1. User U chooses his/her identity Uid and sends the registration request Uid and personal credential
to the gateway node GWN in the secure channel.

2. The gateway node GWN generates a random number ng, a unique random number used to
identify a particular access group Gj, a random number user access privilege mask APMj and
random sequence number Tsug. Then, the created variables are grouped as G = {G1, G2,
...}, APM = {APM1, APM2, ...}. After obtaining the registration request from user U, GWN
calculates as follows:

Skug = h (Uid ‖ ng)⊕GWid
sidj = h(Uid ‖ rj ‖ Skug)
SUid = {sid1, sid2, ...}
KEMugj = h (Uid ‖ sidj ‖ r′j)
G = {G1, G2, ...}
APM = {APM1, APM2, ...}

Sensors 2020, 20, 7136 6 of 25

U#
id = Uid ⊕ h (GWNid ‖ w ‖ Tsug)

Sk#
ug = Skug ⊕ h (GWNid ‖ Uid ‖ w)

G#
j = Gj ⊕ h (GWNid ‖ Uid ‖ w)

APM#
j = APMj ⊕ h (GWNid ‖ Uid ‖ w)

Sk#
gs = Skgs ⊕ h (GWNid ‖ w ‖ SNid)

KEM#
ug = KEMug ⊕ h (GWNid ‖ Uid ‖ w) using its secret key w.

The data are saved 〈Tsug, (SUid, KEM#
ug), Sk#

ug, Sk#
gs, U#

id, G#, APM#〉 in DB.GWN sends
〈Skug, (SUid, KEMug), Tsug, GU , h (·)〉 to user U in SC.

3. After user U takes SC from the GWN, chooses his/her Uid, password Upsw, imprints the biometric
Ub and then computes as follows:

Gen(Ub) = (RSU , PU)

Sk∗ug = Skug ⊕ h (h (Uid)⊕ h (Upsw)⊕ h (RSU))

KEM∗ug = KEMug ⊕ h (h (Uid)⊕ h (Upsw)⊕ h (RSU))

SU∗id = SUid ⊕ h (h (Uid)⊕ h (Upsw)⊕ h (RSU))

G∗ = G⊕ h (h (Uid)⊕ h (Upsw)⊕ h (RSU)), f ∗U = h (h (Skug)⊕ h (Uid)⊕ h (Upsw)⊕ h (RSU))

Moreover, save the data 〈Sk∗ug, f ∗U , (SU∗id, KEM∗ug), Tsug, G∗, PU , Gen (·), Rep (·), h (·)〉 in SC.

4.1.2. Login Phase

In the login phase, the user enters his/her confidential information into the smart card and
requests login.

1. U inserts the smart card and enters Uid, Upsw and Ub. The smart card computes RSU = Rep
(Ub, PU), Skug = Sk∗ug ⊕ h (h (Uid) ⊕ h (Upsw) ⊕ h (RSU)) and checks the condition fU = h

(h (Skug)⊕ h (Upsw)⊕ h (Uid)⊕ h (RSU))
?
= f ∗U . If it holds, the smart card ensures that the user

successfully passes the verification process. Otherwise, this phase terminates immediately.
2. After successful verification, user U generates random number Nu and the system computes

as follows:

Nx = Skug ⊕ Nu

G = G∗ ⊕ h (h (Uid)⊕ h (Upsw)⊕ h (RSU))

AUid = h (Uid ‖ Skug ‖ Nu ‖ Tsug)

G
′
j = Gj ⊕ Nu

V1 = h (AUid ‖ G
′
j ‖ Skug ‖ Nx ‖ SNid)

If there is a loss of synchronization, user U selects one of the unused pair of (sid∗j , KEM∗ugj
)

from (SU∗id, KEM∗ug) and surrenders his/her Uid, Upsw, RSU and computes sidj = sid∗j ⊕ h (h
(Uid)⊕ h (Upsw)⊕ h (RSU)), KEMug = KEM∗ug ⊕ h (h (Uid)⊕ h (Upsw)⊕ h (RSU)), AUid = sidj
and Skug = KEMugj

.

3. U sends the login request messages MA1 = {AUid, G
′
j, Nx, Tsug(i f req), SNid, V1} to GWN.

4.1.3. Authentication Phase

In the authentication phase, GWN verifies U with the login message received from U, and sends
a new message containing secret information to SN. SN and U share their keys and exchange the
secret information.

1. After receiving the login request messages MA1 from user U, GWN first checks the validity of
the transaction sequence number Tsug. GWN computes as follows:

Nu = Skug ⊕ Nx

Gj = G
′
j ⊕ Nu

Sensors 2020, 20, 7136 7 of 25

h (GWNid ‖ Uid ‖ w) = G#
j ⊕ Gj

APMj = APM#
j ⊕ h (GWNid ‖ Uid ‖ w) that G#

j and APM#
j are in DB.

Then, GWN calculates AUid = h (Uid ‖ Skug ‖ NU ‖ Tsug), V1 = h (AUid ‖ G
′
j ‖ Skug ‖ Nx ‖

SNid) and checks if AUid and V1 are valid. If the verification of AUid is successful, then calculation
continues. Otherwise, GWN terminates the session. GWN generates a session key SK and time
stamp T and calculates as follows:

SK
′
= h (Skgs)⊕ SK, APM

′
j = h Skgs ⊕ APMj and

V2 = h (AUid ‖ APM
′
j ‖ SK

′ ‖ T ‖ Skgs)

Finally, GWN sends the messages MA2 = {AUid, APM
′
j, SK

′
, T, V2} to the sensor node SN.

2. Upon receiving the message MA2 , SN assess the validity of T. If it is not valid, SN disconnects

the session. If it is valid, SN also verifies V2
?
=h (AUid ‖ APM

′
j ‖ SK

′ ‖ T ‖ Skgs). If this condition
is not satisfied, SN disconnects the session. If it is satisfied, SN computes as follows:

APMj = APM
′
j ⊕ h (Skgs) and generates a new time stamp T

′
.

SK = h (Skgs)⊕ SK
′
, V3 = h (SK ‖ Skgs ‖ SNid ‖ T

′
)

Kgsnew
= h (Skgs ‖ SNid) and

Skgs = Kgsnew

Finally, SN transmits MA3 = {T′ , SNid, V3} to GWN.

3. The gateway node GWN checks that the time stamp T′ and V3
?
=h (SK ‖ Skgs ‖ SNid ‖ T

′
). If not,

it terminates the connection. GWN generates a random number Tsugnew
and calculates as follows:

Ts = h (Skug ‖ Uid ‖ NU)
SK” = h (Skug ‖ Uid ‖ NU)⊕ SK
V4 = h (SK” ‖ NU ‖ Ts ‖ Skug)

Kugnew
= h (Skug ‖ Uid ‖ Tsugnew

)

Skug = Kugnew

Kgsnew
= h(Skgs ‖ SNid)

GWN updates Skug = Kugnew
and Skgs = Kgsnew

. If GWN cannot find Tsug in MA1 , GWN generates
a random number Kugnew

and calculates x = h (Uid ‖ KEMugj
)⊕ Kugnew

. Then, GWN updates

Skug = Kugnew
and then sends the messages MA4 = {SK”, Ts, V4, x} to the user U.

4. When user U obtains the message V4 = h (SK” ‖ NU ‖ Ts ‖ Skug), the protocol checks its
validity. If there is no abnormality, the system proceeds to the next step or ends the session.
Furthermore, U computes SK = h Skug ‖ Uid ‖ NU)⊕ SK”, Tsugnew

= h (Skug ‖ Uid ‖ NU)⊕ Ts,
Kugnew

= h (Skug ‖ Uid ‖ Tsugnew
and then updates Skug = Kugnew

and Tsug = Tsugnew
.

5. U and SN have successfully shared SK. SN responds to user U’s query according to APMj stored
for user U using session key SK. Finally, at the end of this phase, SN removes APMj from storage
for security reasons.

4.1.4. Password and Biometrics Change Phase

The protocol uses the following steps to change the user’s password:

1. U puts his/her smart card into the terminal and inserts Uid, previous password Upsw and previous
biometric Ub. U then inputs the new password U∗psw and new biometric U∗b .

2. The smart card computes RSU = Rep (Ub, PU) and retrieves Skug, KEMug, SUid, G and fU .
The smart card continues to compute as follows:

Skug = Sk∗ug ⊕ h (h (Uid)⊕ h (Upsw)⊕ h (RSU))

KMug = KEM∗ug ⊕ h (h (Uid)⊕ h (Upsw)⊕ h (RSU))

Sensors 2020, 20, 7136 8 of 25

SUid = SU∗id ⊕ h (h (Uid)⊕ h (Upsw)⊕ h (RSU))

G = G∗ ⊕ h (h (Uid)⊕ h (Upsw)⊕ h (RSU))

fU = f ∗U ⊕ h (h (Skug)⊕ h (Upsw)⊕ h (Uid)⊕ h (RSU))

3. The smart card computes Gen (U∗b), Sk∗∗ug, SU∗∗id , KEM∗∗ug, G∗∗ and f ∗∗U , as shown below.

Gen (U∗b) = (RS∗U , P∗U)
Sk∗∗ug = Skug ⊕ h (h (Uid)⊕ h (U∗psw)⊕ h (RS∗U))
SU∗∗id = SUid ⊕ h (h (Uid)⊕ h (U∗psw)⊕ h (RS∗U))
KEM∗∗ug = KEMug ⊕ h (h (Uid)⊕ h (U∗psw)⊕ h (RS∗U))
G∗∗ = G⊕ h (h (Uid)⊕ h (U∗psw)⊕ h (RS∗U))
f ∗∗U = h (h (Skug)⊕ h (U∗psw)⊕ h (Uid)⊕ h (RS∗U))

4. Finally, the smart card replaces Sk∗ug with Sk∗∗ug, SU∗id with SU∗∗id , KEM∗ug with KEM∗∗ug, G∗ with
G∗∗, f ∗U with f ∗∗U and PU with P∗U .

4.2. Review of Sharma and Kalra’s Scheme

This section briefly describes Sharma and Kalra’s scheme. The notation of the scheme is
summarized in Table 1. Sharma and Kalra’s scheme consists of five different phases:

1. Setup Phase: The registration center sets up the parameters.
2. Registration Phase: The practitioner registers with his/her identity and password.
3. Login Phase: The practitioner logs in with his/her identity, password and smart device.
4. Authentication Phase: The practitioner and sensor node mutually authenticate.
5. Password Change Phase: The practitioner inputs identity, password and smart device, and changes

his/her old password to the new password.

4.2.1. Setup Phase

The gateway node GWN obtains its secret key K from the registration center. The center also
computes and gives Skgs = h(SNid ‖ K) to the sensor node SN. Skgs and K are stored in GWN and SN.

4.2.2. Registration Phase

The practitioner creates his/her identity and password. He/she registers through the gateway
node to receive a smart device. The detailed process is as follows:

1. Practitioner P chooses his/her IDp and PWp and generates random number R, computes the
masked password Mask(PWp) = h(PWp ‖ R). Finally, he/she sends the registration message
{Mask(PWp), IDp} to the gateway node GWN.

2. After the gateway node GWN receives the message from the practitioner, it computes variables
a = h(Mask(PWp) ‖ IDp), b = h(IDp ‖ K), c = h(K) ⊕ h(Mask(PWp) ‖ b) and d = b ⊕
h(Mask(PWp) ‖ a). After calculation, GWN sends the smart device SC = {a, c, d} to P.

3. P stores {a, c, d, R} in SC.

4.2.3. Login Phase

When the practitioner enters his/her identity and password, the smart device checks that the
practitioner is an authorized party. The procedure for doing so is as follows:

1. P inputs his/her identity IDp and password PWp in his/her smart device.
2. SC computes Mask(PWp) = h(PWp ‖ R), a

′
= h(Mask(PWp) ‖ IDp) and compares a to a

′
. If the

two are not the same, P fails to login.

Sensors 2020, 20, 7136 9 of 25

4.2.4. Authentication Phase

We describe the mutual authentication of the practitioner’s login information and the sensor node.
The procedure is as follows:

1. If P successfully logs in, SC computes b = d⊕ h(Mask(PWp) ‖ a), h(K) = c⊕ h(Mask(PWp) ‖ b),
V1 = IDp ⊕ h(h(K) ‖ T1). SC selects a random nonce N, and calculates V2 = N ⊕ h(b ‖ T1),
V3 = h(V1 ‖ V2 ‖ N ‖ T1). Finally, SC posts the message M1 = {V1, V2, V3, T1, SNid} to GWN.

2. GWN checks that the timestamp |T1 − Tc| < ∆T. ∆T means maximum transmission delay. If it is
in range, GWN chooses a random nonce M and computes:

MSNid = SNid ⊕ h(h(K) ‖ T2)

V4 = h(Skgs ‖ T1 ‖ T2)⊕M
V5 = h(SNid ‖ V4 ‖ T1 ‖ T2 ‖ M)

Finally, GWN sends the message M2 = {V1, V2, V3, V4, V5, T1, T2, MSNid} to the sensor node SN.
3. SN checks the validity of |T2 − Tc| < ∆T. If it is valid, SN continues as follows:

MSN
′
id = MSNid ⊕ h(h(K) ‖ T2), Sk

′
gs = h(SNid)

M
′
= V4 ⊕ h(Sk

′
gs ‖ T1 ‖ T2)

V
′
5 = h(SNid ‖ V4 ‖ T1 ‖ T2 ‖ M

′
)

ID
′
p = V1 ⊕ h(h(K) ‖ T1), b

′
= h(ID

′
p ‖ K)

N
′
= V2 ⊕ h(b

′ ‖ T1)

V
′
3 = h(V1 ‖ V2 ‖ N

′ ‖ T1), V6 = M
′ ⊕ h(b

′ ‖ T3)

V7 = N
′ ⊕ h(Sk

′
gs ‖ T3)

V8 = h(V6 ‖ b
′ ‖ T3)

V9 = h(V7 ‖ Sk
′
gs ‖ T3)

Finally, SN posts the message M3 = {V6, V7, V8, V9, T3} to GWN.
4. GWN checks the timestamp |T3 − Tc| < ∆T, and if it is valid, computes as follows:

V
′
9 = h(V7 ‖ Skgs ‖ T3)

N
′
= V7 ⊕ h(Skgs ‖ T3)

SKGWN = h(N
′ ⊕M)

V10 = h(SKGWN ‖ V6 ‖ V8 ‖ T3 ‖ T4)

At the end of the computation, GWN sends the message M4 = {V6, V8, V10, T3, T4} to P.
5. P checks the timestamp |T4 − Tc| < ∆T. If it is in range, P computes V

′
8 = h(V6 ‖ b ‖ T3). It also

computes M
′
= V6 ⊕ h(b ‖ T3), SKp = h(N ⊕M

′
) and V

′
10 = h(SKp ‖ V6 ‖ V8 ‖ T3 ‖ T4).

4.2.5. Password Change Phase

The practitioner should be able to change his/her password if he/she wants to do so
(e.g., for security reasons or because of a lost password). The procedure is as follows:

1. P inputs his/her IDp and PWp to SC.
2. SC computes Mask(PWp) = h(PWp ‖ R), a∗ = h(Mask(PWp) ‖ IDp). SC verifies that a∗ = a:

if so, it computes b = d⊕ h(Mask(PWp) ‖ a), h(K) = h(Mask(PWp) ‖ b)⊕ c. Finally, SC sends
the message {Enter new password} to P.

3. P inputs his/her new password PWnew
p to SC.

4. SC computes Mask(PWp)
′

= h(R ‖ PWnew
p), a

′
= h(Mask(PWp)

′ ‖ IDp), d
′

= b ⊕
h(Mask(PWp)

′ ‖ a
′
), c

′
= h(K) ⊕ h(Mask(PWp)

′ ‖ b
′
). Finally, SC replaces {a, c, d} with

{a′ , c
′
, d
′}.

Sensors 2020, 20, 7136 10 of 25

5. Analysis of Target Schemes

5.1. Analysis of Adavoudi-Jolfaei et al.’s Scheme

In this section, we prove that the scheme put forth by Adavoudi-Jolfaei et al. [11] has some
security vulnerabilities. The details are as follow.

5.1.1. Loss of Smart Card Information

Attacker A can easily decrypt the information on the SC in the following two cases. The first
case is an insider attack in the registration phase, while the second case is loss of synchronization in
the login phase. Insider attack is the stronger of the two: it should be considered when there is no
apparent loss of synchronization.

Insider Attack

In the registration phase, Attacker A extracts the smart card SC when GWN sends information to
U. He/she can then read the information stored on the SC {Skug, SUid, KEMug, Tsug, G, h (·)} that is
not encrypted.

Loss of Synchronization

1. An attacker A steals U’s smart card SC, which contains sensitive information 〈Sk∗ug, f ∗u , (SU∗id,
KEM∗ug), Tsug, G∗, PU , Gen (·), Rep (·), h (·)〉.

2. In the loss of synchronization case, A can thus see the user’s login message MA1 = {AUid, G
′
j,

Nx, Tsug(i f req), SNid, V1}. A computes as follows:

h (h (Uid)⊕ h (Upsw)⊕ h (RSU)) = AUid ⊕ SU∗id
Skug = Sk∗ug ⊕ h (h (Uid)⊕ h (Upsw)⊕ h (RSU))

KEMug = KEM∗ug ⊕ h (h (Uid)⊕ h (Upsw)⊕ h (RSU))

G = G∗ ⊕ h (h (Uid)⊕ h (Upsw)⊕ h (RSU))

5.1.2. User Impersonation Attack

Attacker A can carry out a user impersonation attack (the victim is assumed to be U). The details
are as follows.

1. A generates random numbers NA and computes:

NxA = Skug ⊕ NA
G
′
jA = Gj ⊕ NA

AIDA = h (Uid ‖ Skug ‖ NA ‖ Tsug)

V1A = h (AUid ‖ GjA ‖ Skug ‖ NA ‖ SNid)

NxA, G
′
jA, AIDA and V1A from Skug and Gj obtained from the stolen smart card attack.

2. A transmits the login request MA1 = {AIDA, G
′
jA, NxA, Tsug, SNid, V1A} to the gateway

node GWN.
3. After GWN obtains the login request from A, first, it verifies Tsug and calculates:

NA = Skug ⊕ NxA
Gj = G

′
jA ⊕ NA

h (GWNid ‖ Uid ‖ w) = G#
j ⊕ Gj

APMj = APM#
j ⊕ h (GWNid ‖ Uid ‖ w)

AIDA = h (Uid ‖ Skug ‖ NA ‖ Tsug)

V1A = h (AUid ‖ G
′
jA ‖ Skug ‖ NA ‖ SNid)

Sensors 2020, 20, 7136 11 of 25

GWN checks if AIDA and V1 is valid. GWN does not detect the presence of the attacker.
Unfortunately, GWN still believes it is in communication with U.

As a result, attacker A will be verified as GWN by user U. Therefore, the user impersonation
attack is successful.

5.1.3. Session Key Attack

Assume that Attacker A has access to the DB. At this time, Attacker A can extract the session key
SK of user U and sensor node SN as follows.

1. Assume that attacker A can access the database DB = 〈Tsug, (SUid, KEM#
ug), Sk#

ug, Sk#
gs, U#

id, G#,
APM#〉. He/she will use the data Sk#

ug.

2. Attacker A extracts the message MA2 = {AUid, APM
′
j, SK

′
, T, V2} and calculates:

h (GWid ‖ Uid ‖ w) = Skug ⊕ Sk#
ug

APMj = APM#
j ⊕ h (GWid ‖ Uid ‖ w)

h (Skgs) = APM
′
j ⊕ APMj

SK = h(Skgs)⊕ SK
′

Thus, attacker A has successfully seized the session key SK.

This result shows that Adavoudi-Jolfaei et al.’s scheme does not satisfy the requirement of
key security.

5.2. Analysis of Sharma and Kalra’s Scheme

5.2.1. Design Error in Sharma and Kalra’s Scheme

There is a fatal error in Sharma and Kalra’s paper. The design of their scheme is wrong. During the
authentication phase of their scheme, the session keys computed by SC and GWN are not identical.
If the session key is not the same, when authentication is finished and the message is transmitted,
there is a problem, because encryption is not properly performed. That is, mutual authentication
would be processed incorrectly. We describe this problem in detail.

SKp is the session key that the practitioner generates. SKGWN is the session key that GWN
calculates. When sending and receiving messages later, this session key is encrypted.

SKp = h(N ⊕M
′
)

= h(N ⊕ (V4 ⊕ h(Sk
′
gs ‖ T1 ‖ T2)))

= h(N ⊕ h(Skgs ‖ T1 ‖ T2)⊕M⊕ h(Sk
′
gs ‖ T1 ‖ T2))

= h(N ⊕M⊕ h(Skgs ‖ T1 ‖ T2)⊕ h(Sk
′
gs ‖ T1 ‖ T2))

SKGWN = h(N
′ ⊕M)

= h((V2 ⊕ h(b
′ ‖ T1))⊕M)

= h(N ⊕ h(b ‖ T1)⊕ h(b
′ ‖ T1)⊕M)

= h(N ⊕ h(h(IDp ‖ K) ‖ T1)⊕ h(h(ID
′
p ‖ K) ‖ T1)⊕M)

= h(N ⊕M⊕ h(h(IDp ‖ K) ‖ T1)⊕ h(h(V1 ⊕ h(h(K) ‖ T1) ‖ K) ‖ T1))

= h(N ⊕M⊕ h(h(IDp ‖ K) ‖ T1)⊕ h(h(IDp ⊕ h(h(K) ‖ T1)⊕ h(h(K) ‖ T1) ‖ K)
= h(N ⊕M⊕ h(h(IDp ‖ K) ‖ T1)⊕ h(h(IDp ‖ K) ‖ T1))

= h(N ⊕M)

In this phase, Skgs = h(SNid ‖ K), but Skgs = h(SNid). Therefore, the session keys computed by
SC and GWN are not the same. Therefore, the authentication phase should be changed as follows.

Sensors 2020, 20, 7136 12 of 25

1. If P logs in successfully, SC computes b = d⊕ h(Mask(PWp) ‖ a), h(K) = c⊕ h(Mask(PWp) ‖ b),
V1 = IDp ⊕ h(h(K) ‖ T1). SC selects a random nonce N and calculates V2 = N ⊕ h(b ‖ T1),
V3 = h(V1 ‖ V2 ‖ N ‖ T1). Finally, SC posts the message M1 = {V1, V2, V3, T1, SNid} to GWN.

2. GWN checks the timestamp |T1 − Tc| < ∆T. If it is in range, GWN computes MSNid = SNid ⊕
h(h(K) ‖ T2) and chooses a random nonce M. GWN continues to calculate V4 = h(Skgs ‖ T1 ‖
T2)⊕M and V5 = h(SNid ‖ V4 ‖ T1 ‖ T2 ‖ M). Finally, GWN sends the message M2 = {V1, V2,
V3, V4, V5, T1, T2, MSNid} to the sensor node SN.

3. SN checks the validity of |T2 − Tc| < ∆T. If it is valid, SN continues the operation SN
′
id =

MSNid ⊕ h(h(K) ‖ T2) and checks that SNid
?
= SN

′
id. SN keep calculating as follows:

M
′
= V4 ⊕ h(Skgs ‖ T1 ‖ T2)

V
′
5 = h(SNid ‖ V4 ‖ T1 ‖ T2 ‖ M

′
)

ID
′
p = V1 ⊕ h(h(K) ‖ T1)

b
′
= h(ID

′
p ‖ K)

N
′
= V2 ⊕ h(b

′ ‖ T1)

V
′
3 = h(V1 ‖ V2 ‖ N

′ ‖ T1)

V6 = M
′ ⊕ h(b

′ ‖ T3)

V7 = N
′ ⊕ h(Skgs ‖ T3)

V8 = h(V6 ‖ b
′ ‖ T3)

V9 = h(V7 ‖ Skgs ‖ T3)

Finally, SN sends the message M3 = {V6, V7, V8, V9, T3} to GWN.
4. GWN checks the timestamp |T3 − Tc| < ∆T and if it is valid, computes as follows:

V
′
9 = h(V7 ‖ Skgs ‖ T3)

N
′
= V7 ⊕ h(Skgs ‖ T3)

SKGWN = h(N
′ ⊕M)

V10 = h(SKGWN ‖ V6 ‖ V8 ‖ T3 ‖ T4)

At the end of the computation, GWN sends the message M4 = {V6, V8, V10, T3, T4} to P.
5. P checks the timestamp |T4 − Tc| < ∆T. If it is in range, it computes V

′
8 = h(V6 ‖ b ‖ T3). It also

computes M
′
= V6 ⊕ h(b ‖ T3), SKp = h(N ⊕M

′
) and V

′
10 = h(SKp ‖ V6 ‖ V8 ‖ T3 ‖ T4).

In addition to pointing out the correctness problem in Sharma and Kalra’s scheme, as discussed
in Section 5.2.1, we demonstrate several attack methods that are fatal to the scheme. We describe the
methods in detail as follows:

5.2.2. Password Guessing Attack

In the registration phase, if Attacker Amasquerades as GWN, then he/she can easily obtain P’s
PWp. PWp is hashed only once in Mask(PWp) with R. We assume that R can be extracted from the
smart device, and the attacker knows the target user’s identity. Moreover, then, Attacker A knows
the practitioner P’s IDp, and he/she can extract the information in SC using reverse engineering or a
side-channel attack.

1. Attacker A extracts a and R from P’s smart device SC.
2. A compares a and h(h(PWp ‖ R) ‖ IDp), so that he/she can guess the password in a brute

force attack.

Easily guessing a password implies knowing the practitioner’s identity and likely, passwords,
and having access to his/her smart device, so it is virtually the same as a practitioner. This process
can also be used to pretend to be a medical professional and directly engage with the patient’s
healthcare-related information.

In order to make passwords difficult to guess, the authentication process should involve more
robust data encryption.

Sensors 2020, 20, 7136 13 of 25

5.2.3. Stealing the Session Key

We found that the session key SKGWN can be extracted if attacker A used attacks Section 5.2.2.
The details are as follows.

1. A computes Mask(PWp) = h(PWp ‖ R), b = d⊕ h(Mask(PWp) ‖ a).
2. A steals the message M1 and extracts V2, T1. Then, he/she calculates N = V2 ⊕ h(b ‖ T1).
3. A also steals V6 and T3 in M3 and computes M = V6 ⊕ h(b ‖ T3).
4. Finally, he/she finds the session key SKGWN = h(N ⊕M).

A now has the session key to use in future messages. This session key allows attackers to check
the messages. This process is a serious breach of confidentiality.

5.2.4. Sensor Impersonation Attack

A sensor impersonation attack is also possible. Since GWN only assesses the validity of the
timestamp to check the sensor separately, the attacker can impersonate the sensor by sending just the
timestamp. This attack generates meaningless data and wastes time.

6. Proposed Scheme

To address the problems of Sharma and Kalra’s scheme and Adavoudi-Jolfaei et al.’s scheme,
we propose a three-factor-based authentication scheme. We specifically introduce a new factor that is
based on the practitioner’s biometrics data. In addition, our scheme contains a procedure to validate
both GWN and the sensor. The flow of the entire scheme is shown in the Algorithm 1.

Algorithm 1 Proposed Scheme (Overall Algorithm Flow)

1: Mask(PWp), IDp ← RegistrationP(IDp, PWp, Bp) . registration phase
2: a, c, d← RegistrationGWN(Mask(PWp), IDp)
3: a, c, d, R, Pbp, Gen, Rep, h← RegistrationP2(a, c, d) . stores in SC
4: if LoginP(IDp, PWp, B′p) then . login phase
5: V1, V2, V3, T1, SNid ← AuthenticationP(IDp, PWp, B′p) . authentication phase
6: V1, V2, V3, V4, V5, T1, T2, MSNid ← AuthenticationGWN(V1, V2, V3, T1, SNid)
7: V6, V7, V10, T3 ← AuthenticationSN(V1, V2, V3, V4, V5, T1, T2, MSNid)
8: V6, V8, V11, T3, T4 ← AuthenticationGWN2(V6, V7, V10, T3)
9: Result← AuthenticationP2(V6, V8, V11, T3, T4)

10: if Result then
11: return Authentication successes.
12: end if
13: end if

6.1. Setup and Registration Phase

6.1.1. Setup Phase

In the setup phase, the gateway node GWN gets its secret key K from the registration center.
The center also computes Skgs = h(SNid ‖ K) and gives it to the sensor node SN. Skgs and K are stored
in GWN and SN.

6.1.2. Registration Phase

The practitioner creates his/her identity and password, and then registers them via the gateway
node to receive a smart device. This is summarized in the Algorithm 2. The detailed procedure is
as follows:

1. Practitioner P chooses his/her identity IDp, password PWp and imprints Bp over a device
for biometrics collection, and calculates a biometric information of the practitioner P like Gen

Sensors 2020, 20, 7136 14 of 25

(Bp) = (Rp, Pbp). He/she generates random number R and computes the masked password
Mask(PWp) = h(h(PWp ‖ R) ‖ Rp). Finally, he/she sends the registration message {Mask(PWp),
IDp} to the gateway node GWN.

2. After the gateway node GWN obtains the message from the practitioner, it computes as follows:

a = h(Mask(PWp) ‖ IDp)

b = h(IDp ‖ K), c = h(K)⊕ h(Mask(PWp) ‖ b)
d = b⊕ h(Mask(PWp) ‖ a)

After calculation, GWN sends the smart device SC = {a, c, d} to the practitioner P.
3. P stores {a, c, d, R, Pbp, Gen, Rep, h} in the smart device SC.

Algorithm 2 Proposed Scheme (Registration Phase)

1: procedure REGISTRATIONP(IDp, PWp, Bp) . P’s registration phase
2: (Rp, Pbp)← Gen (Bp)
3: Mask(PWp)← h(h(PWp ‖ R) ‖ Rp)
4: return Mask(PWp), IDp . message to GWN
5: end procedure
6: procedure REGISTRATIONP2(a, c, d) . P’s registration phase 2
7: return a, c, d, R, Pbp, Gen, Rep, h . stores in SC
8: end procedure
9: procedure REGISTRATIONGWN(Mask(PWp), IDp) . GWN’s registration phase

10: a← h(Mask(PWp) ‖ IDp)
11: b← h(IDp ‖ K)
12: c← h(K)⊕ h(Mask(PWp) ‖ b)
13: d← b⊕ h(Mask(PWp) ‖ a)
14: return a, c, d . message to P
15: end procedure

6.2. Login and Authentication Phase

6.2.1. Login Phase

When the practitioner enters his/her identity and password, the smart device checks whether
the practitioner is an authorized party. This phase is summarized in the Algorithm 3. The detailed
procedure is as follows:

1. P inputs his/her identity IDp, password PWp and biometric information B′p in his/her
smart device.

2. The smart device SC executes the biometric information Rp = Rep (B′p, Pbp). SC computes masked
password and the value a as follows:

Mask(PWp) = h(h(PWp ‖ R) ‖ Rp)

a
′
= h(Mask(PWp) ‖ IDp)

If a and a
′

are not the same, P fails to login.

Sensors 2020, 20, 7136 15 of 25

Algorithm 3 Proposed Scheme (Login Phase)

1: procedure LOGINP(IDp, PWp, B′p) . P’s login phase
2: Rp ← Rep (B′p, Pbp)
3: Mask(PWp)← h(h(PWp ‖ R) ‖ Rp)
4: a

′ ← h(Mask(PWp) ‖ IDp)
5: if a = a

′
then

6: return True . login successes
7: else
8: return False . login fails
9: end if

10: end procedure

6.2.2. Authentication Phase

The practitioner’s login information and the sensor node execute a mutual authentication process.
This phase is summarized in Algorithms 4–6. The procedure is as follows:

1. If P logs in successfully, SC selects a random nonce N and computes as follows:

b = d⊕ h(Mask(PWp) ‖ a)
h(K) = c⊕ h(Mask(PWp) ‖ b)
V1 = IDp ⊕ h(h(K) ‖ T1)

V2 = N ⊕ h(b ‖ T1)

V3 = h(V1 ‖ V2 ‖ N ‖ T1)

Finally, SC sends the message M1 = {V1, V2, V3, T1, SNid} to GWN.
2. GWN checks the timestamp |T1 − Tc| < ∆T. If it is in range, GWN computes as follows:

ID
′
= V1 ⊕ h(h(K) ‖ T1)

V
′
3 = h(V

′
1 ‖ V2 ‖ (V2 ⊕ h(h(ID

′ ‖ K) ‖ T1)) ‖ T1)

GWN also checks V3 = V
′
3. If it is valid, GWN chooses a random nonce M and computes

as follows:

MSNid = SNid ⊕ h(h(K) ‖ T2)

V4 = h(Skgs ‖ T1 ‖ T2)⊕M
V5 = h(SNid ‖ V4 ‖ T1 ‖ T2 ‖ M)

Finally, GWN sends the message M2 = {V1, V2, V3, V4, V5, T1, T2, MSNid} to the sensor node SN.
3. SN checks the validity of |T2 − Tc| < ∆T. If it is valid, SN continues the operation SN

′
id =

MSNid ⊕ h(h(K) ‖ T2) and checks SN
′
id

?
= SNid. SN computes as follows:

M
′
= V4 ⊕ h(Skgs ‖ T1 ‖ T2)

V
′
5 = h(SNid ‖ V4 ‖ T1 ‖ T2 ‖ M

′
)

It also checks the validity of V
′
5

?
= V5. If it is valid, SN computes:

ID
′
= V1 ⊕ h(h(K) ‖ T1)

b
′
= h(ID

′ ‖ K), N
′
= V2 ⊕ h(b

′ ‖ T1)

V6 = M
′ ⊕ h(b

′ ‖ T3), V7 = N
′ ⊕ h(Skgs ‖ T3)

V8 = h(V6 ‖ b
′ ‖ T3)

V9 = h(V7 ‖ Skgs ‖ T3)

V10 = h(V8 ‖ V9 ‖ T3)

Finally, SN sends the message M3 = {V6, V7, V10, T3} to GWN.
4. GWN checks the timestamp |T3 − Tc| < ∆T and if it is valid, GWN computes:

Sensors 2020, 20, 7136 16 of 25

V
′
8 = h(V6 ‖ b ‖ T3)

V
′
9 = h(V7 ‖ Skgs ‖ T3)

V
′
10 = h(V

′
8 ‖ V

′
9 ‖ T3)

and checks V10
?
= V

′
10. If it is also valid, GWN computes:

N
′
= V7 ⊕ h(Skgs ‖ T3)

SKGWN = h(N
′ ⊕M)

V11 = h(SKGWN ‖ V6 ‖ V8 ‖ T3 ‖ T4)

At the end of the computation, GWN sends the message M4 = {V6, V8, V11, T3, T4} to P.
5. P checks the timestamp |T4 − Tc| < ∆T. If it is in range, P computes V

′
8 = h(V6 ‖ b ‖ T3)

and checks V8
?
= V

′
8. P also computes M

′
= V6 ⊕ h(b ‖ T3), SKp = h(N ⊕ M

′
) and checks

V
′
11 = h(SKp ‖ V6 ‖ V8 ‖ T3 ‖ T4)

?
= V11.

Algorithm 4 Proposed Scheme (P’s Authentication Phase)

1: procedure AUTHENTICATIONP(IDp, PWp, B′p) . P’s authentication phase
2: Rp ← Rep (B′p, Pbp)
3: Mask(PWp)← h(h(PWp ‖ R) ‖ Rp)
4: a

′ ← h(Mask(PWp) ‖ IDp)
5: b← d⊕ h(Mask(PWp) ‖ a)
6: h(K)← c⊕ h(Mask(PWp) ‖ b)
7: V1 ← IDp ⊕ h(h(K) ‖ T1)
8: V2 ← N ⊕ h(b ‖ T1)
9: V3 ← h(V1 ‖ V2 ‖ N ‖ T1)

10: return V1, V2, V3, T1, SNid . message to GWN
11: end procedure
12: procedure AUTHENTICATIONP2(V6, V8, V11, T3, T4) . P’s authentication phase 2
13: if |T4 − Tc| >= ∆T then
14: return False . authentication fails
15: end if
16: V

′
8 ← h(V6 ‖ b ‖ T3)

17: if V8! = V
′
8 then

18: return False . authentication fails
19: end if
20: M

′ ← V6 ⊕ h(b ‖ T3)
21: SKp ← h(N ⊕M

′
)

22: V
′
11 ← h(SKp ‖ V6 ‖ V8 ‖ T3 ‖ T4)

23: if V
′
11! = V11 then

24: return False . authentication fails
25: end if
26: return True . authentication successes
27: end procedure

Sensors 2020, 20, 7136 17 of 25

Algorithm 5 Proposed Scheme (GWN’s Authentication Phase)

1: procedure AUTHENTICATIONGWN(V1, V2, V3, T1, SNid) . GWN’s authentication phase
2: if |T1 − Tc| >= ∆T then
3: return False . authentication fails
4: end if
5: ID

′ ← V1 ⊕ h(h(K) ‖ T1)
6: V

′
3 ← h(V

′
1 ‖ V2 ‖ (V2 ⊕ h(h(ID

′ ‖ K) ‖ T1)) ‖ T1)
7: if V3! = V

′
3 then

8: return False . authentication fails
9: end if

10: MSNid ← SNid ⊕ h(h(K) ‖ T2)
11: V4 ← h(Skgs ‖ T1 ‖ T2)⊕M
12: V5 ← h(SNid ‖ V4 ‖ T1 ‖ T2 ‖ M)
13: return V1, V2, V3, V4, V5, T1, T2, MSNid . message to SN
14: end procedure
15: procedure AUTHENTICATIONGWN2(V6, V7, V10, T3) . GWN’s authentication phase 2
16: if |T3 − Tc| >= ∆T then
17: return False . authentication fails
18: end if
19: V

′
8 ← h(V6 ‖ b ‖ T3)

20: V
′
9 ← h(V7 ‖ Skgs ‖ T3)

21: V
′
10 ← h(V

′
8 ‖ V

′
9 ‖ T3)

22: if V10! = V
′
10 then

23: return False . authentication fails
24: end if
25: N

′ ← V7 ⊕ h(Skgs ‖ T3)
26: SKGWN ← h(N

′ ⊕M)
27: V11 ← h(SKGWN ‖ V6 ‖ V8 ‖ T3 ‖ T4)
28: return V6, V8, V11, T3, T4 . message to P
29: end procedure

Algorithm 6 Proposed Scheme (SN’s Authentication Phase)

1: procedure AUTHENTICATIONSN(V1, V2, V3, V4, V5, T1, T2, MSNid) . SN’s authentication phase
2: if |T2 − Tc| >= ∆T then
3: return False . authentication fails
4: end if
5: SN

′
id ← MSNid ⊕ h(h(K) ‖ T2)

6: if SN
′
id! = SNid then

7: return False . authentication fails
8: end if
9: M

′ ← V4 ⊕ h(Skgs ‖ T1 ‖ T2)
10: V

′
5 ← h(SNid ‖ V4 ‖ T1 ‖ T2 ‖ M

′
)

11: if V
′
5! = V5 then

12: return False . authentication fails
13: end if
14: ID

′ ← V1 ⊕ h(h(K) ‖ T1)
15: b

′ ← h(ID
′ ‖ K), N

′
= V2 ⊕ h(b

′ ‖ T1)
16: V6 ← M

′ ⊕ h(b
′ ‖ T3)

17: V7 ← N
′ ⊕ h(Skgs ‖ T3)

18: V8 ← h(V6 ‖ b
′ ‖ T3)

19: V9 ← h(V7 ‖ Skgs ‖ T3)
20: V10 ← h(V8 ‖ V9 ‖ T3)
21: return V6, V7, V10, T3 . message to GWN
22: end procedure

Sensors 2020, 20, 7136 18 of 25

6.3. Password Change Phase

The practitioner can change his/her password. The procedure is as follows:

1. P inputs his/her identity IDp, password PWp and biometric information B′p in his/her
smart device.

2. The smart device SC executes Rep (B′p, Pbp) = Rp. SC computes Mask(PWp) = h(h(PWp ‖ R) ‖
Rp), a∗ = h(Mask(PWp) ‖ IDp). SC checks a∗ ?

= a. If so, it computes b = d⊕ h(Mask(PWp) ‖ a),
h(K) = h(Mask(PWp) ‖ b)⊕ c. Finally, SC sends the message {Enter new password} to P.

3. P inputs his/her new password PWnew
p to the smart device SC.

4. SC computes Mask(PWp)
′

= h(R ‖ PWnew
p), a

′
= h(Mask(PWp)

′ ‖ IDp), d
′

= b ⊕
h(Mask(PWp)

′ ‖ a
′
), c

′
= h(K) ⊕ h(Mask(PWp)

′ ‖ b
′
). Finally, SC replaces {a, c, d} with

{a′ , c
′
, d
′}.

7. Security Analysis

In this section, we analyze the security of the proposed scheme in two ways: formal security
analysis and informal security analysis. We use a formal protocol verification tool called ProVerif in
Section 7.1, to demonstrate the security of our scheme. We also provide a theoretical security analysis
of the protocol in Section 7.2. Through this verification, we have demonstrated how safe our scheme
can be in reality.

7.1. Formal Security Analysis

We use ProVerif to analyze the security and correctness of our scheme; ProVerif is widely
used to verify security protocols [7,30,31]. ProVerif is a software tool that formally verifies the
security of cryptographic protocols. We define basic cryptographic primitives such as hash function,
encryption, digital signature and bit-commitment.

We used three channels: a registration channel (cha), a practitioner–gateway node channel (chb)
and a gateway node–sensor node channel (chc). The variables, constants, secret key, functions and
events are defined in Table A1.

The “Registration” and “Login and Authentication” phases for practitioners are shown in
Table A2. The “Registration” and “Authentication” phases for gateway nodes are shown in Table A3.
The “Authentication” phase for sensor nodes is shown in Table A4. Tables 2 and 3 show a query and
the corresponding query results.

When we run the query in Table 2, we obtain the following result:

1. RESULT inj-event(EVENTA) ==> inj-event(EVENTB) is true.
2. RESULT inj-event(EVENTA) ==> inj-event(EVENTB) is false.
3. RESULT not attacker(QUERY) is true.
4. RESULT not attacker(QUERY) is false.

“RESULT inj-event (EVENTA) == > inj-event (EVENTB) is true.” means that EVENTA to EVENTB
has been authenticated. On the other hand, “RESULT inj-event (EVENTA) == > inj-event (EVENTB) is
false.” means that the authentication from EVENTA to EVENTB was not successful. “RESULT not
attacker (QUERY) is true.” means that an attacker cannot get a free name QUERY, and “RESULT not
attacker (QUERY) is false.” means that an attacker can trace a QUERY [32].

The results of the query in Table 2 are shown in Table 3. In that case, the authentication process is
correctly performed and the attacker cannot obtain IDp.

Sensors 2020, 20, 7136 19 of 25

Table 2. Query.

(*—-queries—-*)
query attacker(IDp).
query id:bitstring; inj-event(endP(id)) ==> inj-event(beginP(id)).
query id:bitstring; inj-event(endGWN(id)) ==> inj-event(beginGWN(id)).
query id:bitstring; inj-event(endS(id)) ==> inj-event(beginS(id)).
process
((!P)|(!GWN)|(!S))

Table 3. Query Results.

RESULT inj-event(endS(id)) ==> inj-event(beginS(id)) is true.
RESULT inj-event(endGWN(id_21256)) ==> inj-event(beginGWN(id_21256)) is true.
RESULT inj-event(endP(id_41657)) ==> inj-event(beginP(id_41657)) is true.
RESULT not attacker(IDp[]) is true.

7.2. Informal Security Analysis

We present a theoretical analysis of our scheme. We then briefly explain the results of the analysis.

7.2.1. Privileged Insider Attack

In the registration step, the practitioner sends his/her plaintext ID and Mask(PWp) = h(h(PWp ‖
R) ‖ Rp) to the gateway node. Since the ID is used in conjunction with secret information K without
being exposed to the outside, there is no way for an insider to know the practitioner’s personal
information. Therefore, it is secure against a privileged insider attack.

7.2.2. Outsider Attack

The SC only contains the information {a, c, d, R, Pbp, Gen, Rep, h}. We cannot infer practitioner P
in this case.

7.2.3. Offline ID Guessing Attack

The practitioner’s identity is not moved directly in the login and authentication phase after
registration. When the sensor checks the practitioner’s ID, the information V1, K, and T1 is required,
all of which cannot be obtained through SC.

7.2.4. Online ID Guessing Attack

The practitioner’s identity can only be exposed as V1, K, and T1, as mentioned in the offline ID
guessing attack. At this time, V1 and T1 can be seized through a message sent to the GWN by the
practitioner in the authentication phase, but the secret GWN key K cannot be found.

7.2.5. Session Key Disclosure Attack

As shown in Section 5.2.1, the session key consists of h(N ⊕M). N is a value generated by SC
and N = V2 ⊕ h(b ‖ T1), and M is a value generated by GWN and expressed as M = V4 ⊕ h(XGWN ‖
T1 ‖ T2). Because the attacker is not the practitioner or GWN, he/she cannot know the session key
because XGWN including b and Mask(PW) including K cannot be known.

7.2.6. Practitioner Impersonation Attack

GWN verifies the practitioner in equation V
′
3 = h(V

′
1 ‖ V2 ‖ V2 ⊕ h(h(ID

′ ‖ K) ‖ T1) ‖ T1)
?
=

V3 = h(IDp ⊕ h(h(K) ‖ T1) ‖ N ⊕ h(b ‖ T1) ‖ N ‖ T1). If an attacker pretends to be an authorized
practitioner, then he/she needs to know b = d⊕ h(Mask(PW) ‖ a), h(K) = c⊕ h(Mask(PW) ‖ b).

Sensors 2020, 20, 7136 20 of 25

However, the attacker cannot obtain Mask(PW). Therefore, the attacker cannot impersonate the
practitioner P.

7.2.7. Sensor Impersonation Attack

GWN verifies a sensor with the Equation V10 = h(V8 ‖ V9 ‖ T3) and checks V10
?
= V

′
10 that

V8 = h(V6 ‖ b ‖ T3), V9 = h(V7 ‖ Skgs ‖ T3). This means that a sensor can only prove that it is a sensor
if it knows Skgs and b.

8. Performance Analysis of the Proposed Scheme

The four symbols necessary for comparison are as follows. TRep is the time to check for a match
when recognizing the user’s (or practitioner’s) biometric Bp. Th is the time it takes to hash. Tm is
the time of the multiplicative operation used in ECC. The time taken for symmetric encryption or
decryption is denoted by Ts.These are listed in Table 4. We compared our scheme with the following
three schemes of Chen et al. [12], Renuka et al. [13] and Li et al. [14]. The four symbols necessary for
comparison are as follows, and depicted as a graph in Figure 2.

Table 4. Notations of Time Symbol.

Symbol Meaning Time (ms)

TRep time of Rep 7.3529 [33]
Th time of hash operation 0.0004 [34]
Tm time of multiplication in ECC 7.3529 [34]
Ts time of symmetric encryption or decryption 0.1303 [34]

Table 5 summarizes the total time cost for each scheme ([12–14]). The Y-axis shown in Figure 2 is
the total time cost in microseconds (ms). This is calculated based on the times shown in Table 4. Table 6
shows the computer hardware and software used to calculate the algorithm’s runtime. Li et al.’s
scheme [14] uses elliptic curve cryptography, however it has large time costs because of its slow
encryption and decryption.

Table 5. Comparison of Computation Costs.

Chen et al. [12] Renuka et al. [13] Li et al. [14] Ours

User(Practitioner) P 9Th + 1TRep + 1Ts 5Th + 1TRep + 2Ts 8Th + 1TRep + 2Tm 13Th + 1TRep
GWN 3Th + 2Ts 2Th + 2Ts 7Th + 1Tm 14Th

Sensor node Sj 4Th + Ts 3Th + 2Ts 4Th + 2Tm 12Th
Total time cost 16Th + 4Ts + 1TRep 10Th + 6Ts + 1TRep 19Th + 5Tm + 1TRep 39Th + 1TRep

(ms) =7.8805 =8.1387 =44.125 =7.3685

The methods used in Chen et al.’s [12] and Renuka et al.’s [13] scheme have lower costs than
Li et al.’s [14]. They used symmetric encryption and decryption, but had a significant difference in cost
compared to ours.

Table 6. Hardware and Software Condition.

Specification

CPU Intel (R) Core(TM) 2T6570 2.1GHz
Memory 4G

OS Win7 32-bit
Software Visual C++ 2008

Sensors 2020, 20, 7136 21 of 25

Chen et al. [12] Renuka et al. [13] Li et al. [14] Ours
0

5

10

15

20

25

30

35

40

To
ta
l t
im

e
co

st
 (m

s)

Time of hash operation
Time of Rep operation
Time of multiplication in ECC operation
Time of symmetric encryption or decryption

Figure 2. Execution Time of Schemes.

9. Conclusions

Recently, several lightweight two-factor-based authentication protocols, such as Sharma and
Kalra’s protocol [6] and Adavoudi-Jolfaei et al.’s protocol [11], were proposed for IoT applications.
Those protocols have some benefits in efficiency because they are designed with light and
straightforward operations, such as hash function and XOR without complicated cryptographic
operations. However, we found that those protocols have several security weaknesses.

To address these problems, we use three factors: the practitioner’s identity, a password,
and biometric information. We propose a lightweight three-factor user authentication scheme to
fix several issues in Sharma and Kalra’s protocol [6] and Adavoudi-Jolfaei et al.’s protocol [11].
We provide the security verification of the proposed scheme using ProVerif. Furthermore, we show that
our proposed method outperforms other proposed symmetric-based or elliptic curve-based methods.

We are motivated to fix the problems of existing protocols and proposed a more efficient and secure
authentication scheme. Our scheme is designed only with the hash function and XOR, providing fast
and secure authentication. The proposed protocol can be used for various IoT applications such as
medical devices.

Our proposed scheme can be implemented with simple operations, but introduces 11 new
parameters. Furthermore, while our scheme is lighter than the symmetric-based or elliptic curve-based
methods, it is not significantly lighter than the only used XOR and hash method. Therefore, in future
work, we aim to develop a simpler authentication scheme with fewer variables. We also aim to develop
a lightweight 3-factor authentication scheme with fewer xor operations and hash functions. Our efforts
will contribute to creating a faster and more secure authentication scheme.

Author Contributions: Conceptualization, J.R. and D.K.; methodology, J.R. and H.L.; software, H.L.; validation,
J.R.; formal analysis, J.R.; writing—original draft preparation, J.R.; writing—review and editing, J.R. and H.K.;
supervision, D.W.; project administration, J.R.; All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Acknowledgments: This work was supported by an Institute of Information & Communications Technology
Planning Evaluation (IITP) grant funded by the Korean government (MSIT) (No. 2020-0-00258, Development of
On-chain-based Electronic Contract Application Platform Using Zero-Knowledge Proof).

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2020, 20, 7136 22 of 25

Appendix A. ProVerif Code

Table A1. Define Values and Functions.

(*—-channels—-*)
free cha:channel [private].
free chb:channel.
free chc:channel.
(*—-constants—-*)
free Ru:bitstring [private].
free IDp:bitstring [private].
free IDg:bitstring [private].
free IDs:bitstring.
free PWu:bitstring [private].
(*—-secret key—-*)
free K:bitstring [private].
(*—-functions—-*)
fun concat(bitstring, bitstring) : bitstring.
fun xor(bitstring, bitstring) : bitstring.
fun h(bitstring) : bitstring.
equation forall a:bitstring, b:bitstring; xor(xor(a, b), b) = a.
(*—-events—-*)
event beginP(bitstring).
event endP(bitstring).
event beginGWN(bitstring).
event endGWN(bitstring).
event beginS(bitstring).
event endS(bitstring).

Table A2. Practitioner Scheme.

(*—-P process—-*)
let P =
new R:bitstring;
let MPW = h(concat(h(concat(PWp, R)), Rp)) in
out(cha,(IDp, MPW));
in(cha,(Xa:bitstring, Xc:bitstring, Xd:bitstring));
event beginP(IDp);
new T1:bitstring;
new N:bitstring;
let ppb = xor(Xd, h(concat(MPW, Xa))) in
let hK = xor(Xc, h(concat(MPW, ppb))) in
let V1 = xor(IDp, h(concat(hK, T1))) in
let V2 = xor(N, h(concat(ppb, T1))) in
let V3 = h(concat(concat(V1, V2), concat(N, T1))) in
out(chb, (V1, V2, V3, T1, N));
in(chb, (XXV6:bitstring, XXV8:bitstring, XV11:bitstring, XXT3:bitstring, XT4:bitstring));
let pV8 = h(concat(concat(XXV6, ppb), XXT3)) in
let pM = xor(XXV6, h(concat(ppb, XXT3))) in
let SKp = h(xor(N, pM)) in
let pV11 = h(concat(concat(SKp, XXV6), concat(concat(XXV8, XXT3),XT4))) in
event endP(IDp).

Sensors 2020, 20, 7136 23 of 25

Table A3. Gateway Node Scheme.

(*—-GWN process—-*)
let GWN =
in(cha,(XIDp:bitstring, XMPW:bitstring));
let a = h(concat(XMPW, XIDp)) in
let b = h(concat(XIDp, K)) in
let c = xor(h(K), h(concat(XMPW, b))) in
let d = xor(b, h(concat(XMPW, a))) in
out(cha, (a, c, d));
in(chb, (XV1:bitstring, XV2:bitstring, XV3:bitstring, XT1:bitstring, XN:bitstring));
event beginGWN(IDg);
new T2:bitstring;
new M:bitstring;
let pIDp = xor(XV1, h(concat(h(K), XT1))) in
let pV3 = h(concat(concat(XV1, XV2), concat(XN, XT1))) in
if pV3 = XV3 then
let MID = xor(IDs, h(concat(h(K), T2))) in
let X = h(concat(IDs, K)) in
let V4 = xor(M, h(concat(concat(X, XT1), T2))) in
let V5 = h(concat(concat(IDs, V4), concat(concat(XT1, T2), M))) in
out(chc, (XV1, XV2, XV3, V4, V5, XT1, T2, MID));
in(chc, (XV6:bitstring, XV7:bitstring, XV10:bitstring, XT3:bitstring));
new T4:bitstring;
new M:bitstring;
let pV8 = h(concat(XV6, concat(b, XT3))) in
let pV9 = h(concat(XV7, concat(X, XT3))) in
let pV10 = h(concat(pV8, concat(pV9, XT3))) in
if pV10 = XV10 then
let pN = xor(XV7, h(concat(X, XT3))) in
let SKg = h(xor(pN, M)) in
let V11 = h(concat(SKg, concat(concat(XV6, pV8), concat(XT3, T4)))) in
out(chb, (XV6, pV8, V11, XT3, T4));
event endGWN(IDg).

Table A4. Sensor Scheme.

(*—-S process—-*)
let S =
in(chc, (XXV1:bitstring, XXV2:bitstring, XXV3:bitstring, XV4:bitstring, XV5:bitstring,
XXT1:bitstring, XT2:bitstring, XMID:bitstring));
event beginS(IDs);
new T3:bitstring;
let XX = h(concat(IDs, K)) in
let pM = xor(XV4, h(concat(concat(XX, XXT1), XT2))) in
let pV5 = h(concat(concat(IDs, XV4), concat(concat(XXT1, XT2), pM))) in
if pV5 = XV5 then
let pb = h(concat(IDp, K)) in
let ppN = xor(XXV2, h(concat(pb, XXT1))) in
let V6 = xor(pM, h(concat(pb, T3))) in
let V7 = xor(ppN, h(concat(XX, T3))) in
let V8 = h(concat(concat(V6, pb), T3)) in
let V9 = h(concat(concat(V7, XX), T3)) in
let V10 = h(concat(concat(V8, V9), T3)) in
out(chc, (V6, V7, V10, T3));
event endS(IDs).

Sensors 2020, 20, 7136 24 of 25

References

1. Gregg, M. Trends in Remote Patient Monitoring 2019. Spyglass Consulting Group. Available online:
http://www.spyglass-consulting.com/wp_RPM_2019.html (accessed on 12 December 2020).

2. Hu, Y.H.; Tompkins, W.J.; Urrusti, J.L.; Afonso, V.X. Applications of artificial neural networks for ECG signal
detection and classification. J. Electrocardiol. 1993, 26, 66–73. [PubMed]

3. Yeh, Y.C.; Wang, W.J. QRS complexes detection for ECG signal: The Difference Operation Method.
Comput. Methods Programs Biomed. 2008, 91, 245–254. [CrossRef] [PubMed]

4. Van Ess, D.W. ECG Signal Detection Device. US Patent 7,092,750, 15 August 2006.
5. Chung, W.Y.; Lee, Y.D.; Jung, S.J. A wireless sensor network compatible wearable u-healthcare monitoring

system using integrated ECG, accelerometer and SpO2. In Proceedings of the 2008 30th Annual
International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada,
20–25 August 2008; pp. 1529–1532.

6. Sharma, G.; Kalra, S. A Lightweight User Authentication Scheme for Cloud-IoT Based Healthcare Services.
Iran. J. Sci. Technol. Trans. Electr. Eng. 2019, 43, 619–636. [CrossRef]

7. Ryu, J.; Lee, H.; Kim, H.; Won, D. Secure and efficient three-factor protocol for wireless sensor networks.
Sensors 2018, 18, 4481. [CrossRef] [PubMed]

8. Rathore, H.; Al-Ali, A.; Mohamed, A.; Du, X.; Guizani, M. DTW based authentication for wireless medical
device security. In Proceedings of the 2018 14th International Wireless Communications & Mobile Computing
Conference (IWCMC), Limassol, Cyprus, 25–29 June 2018; pp. 476–481.

9. Ali, R.; Pal, A.K.; Kumari, S.; Sangaiah, A.K.; Li, X.; Wu, F. An enhanced three factor based
authentication protocol using wireless medical sensor networks for healthcare monitoring. J. Ambient.
Intell. Humaniz. Comput. 2018, 1–22. [CrossRef]

10. Choi, Y.; Lee, D.; Kim, J.; Jung, J.; Nam, J.; Won, D. Security enhanced user authentication protocol for
wireless sensor networks using elliptic curves cryptography. Sensors 2014, 14, 10081–10106. [CrossRef]
[PubMed]

11. Adavoudi-Jolfaei, A.; Maede, A.T.; Aghili, S.F. Lightweight and anonymous three-factor authentication and
access control scheme for real-time applications in wireless sensor networks. Peer-to-Peer Netw. Appl. 2019,
12, 43–59. [CrossRef]

12. Chen, Y.; Ge, Y.; Wang, Y.; Zeng, Z. An improved three-factor user authentication and key agreement scheme
for wireless medical sensor networks. IEEE Access 2019, 7, 85440–85451. [CrossRef]

13. Renuka, K.; Kumar, S.; Kumari, S.; Chen, C.M. Cryptanalysis and improvement of a privacy-preserving
three-factor authentication protocol for wireless sensor networks. Sensors 2019, 19, 4625. [CrossRef]

14. Li, X.; Niu, J.; Bhuiyan, M.Z.A.; Wu, F.; Karuppiah, M.; Kumari, S. A robust ECC-based provable secure
authentication protocol with privacy preserving for industrial internet of things. IEEE Trans. Ind. Inform.
2017, 14, 3599–3609. [CrossRef]

15. Hu, F.; Jiang, M.; Wagner, M.; Dong, D.C. Privacy-preserving telecardiology sensor networks: Toward a
low-cost portable wireless hardware/software codesign. IEEE Trans. Inf. Technol. Biomed. 2007, 11, 619–627.
[CrossRef] [PubMed]

16. Malasri, K.; Wang, L. Design and implementation of a securewireless mote-based medical sensor network.
Sensors 2009, 9, 6273–6297. [CrossRef] [PubMed]

17. Kumar, P.; Lee, S.G.; Lee, H.J. E-SAP: Efficient-strong authentication protocol for healthcare applications
using wireless medical sensor networks. Sensors 2012, 12, 1625–1647. [CrossRef] [PubMed]

18. Khan, M.K.; Kumari, S. An improved user authentication protocol for healthcare services via wireless
medical sensor networks. Int. J. Distrib. Sens. Netw. 2014, 10, 347169. [CrossRef]

19. Li, X.; Niu, J.; Kumari, S.; Liao, J.; Liang, W.; Khan, M.K. A new authentication protocol for healthcare
applications using wireless medical sensor networks with user anonymity. Secur. Commun. Netw. 2016,
9, 2643–2655. [CrossRef]

20. Wu, F.; Xu, L.; Kumari, S.; Li, X. An improved and anonymous two-factor authentication protocol for
health-care applications with wireless medical sensor networks. Multimed. Syst. 2017, 23, 195–205. [CrossRef]

21. Hossain, M.S.; Muhammad, G. Cloud-assisted speech and face recognition framework for health monitoring.
Mob. Netw. Appl. 2015, 20, 391–399. [CrossRef]

http://www.spyglass-consulting.com/wp_RPM_2019.html
http://www.ncbi.nlm.nih.gov/pubmed/8189150
http://dx.doi.org/10.1016/j.cmpb.2008.04.006
http://www.ncbi.nlm.nih.gov/pubmed/18547674
http://dx.doi.org/10.1007/s40998-018-0146-5
http://dx.doi.org/10.3390/s18124481
http://www.ncbi.nlm.nih.gov/pubmed/30567374
http://dx.doi.org/10.1007/s12652-018-1015-9
http://dx.doi.org/10.3390/s140610081
http://www.ncbi.nlm.nih.gov/pubmed/24919012
http://dx.doi.org/10.1007/s12083-017-0627-8
http://dx.doi.org/10.1109/ACCESS.2019.2923777
http://dx.doi.org/10.3390/s19214625
http://dx.doi.org/10.1109/TII.2017.2773666
http://dx.doi.org/10.1109/TITB.2007.894818
http://www.ncbi.nlm.nih.gov/pubmed/18046937
http://dx.doi.org/10.3390/s90806273
http://www.ncbi.nlm.nih.gov/pubmed/22454585
http://dx.doi.org/10.3390/s120201625
http://www.ncbi.nlm.nih.gov/pubmed/22438729
http://dx.doi.org/10.1155/2014/347169
http://dx.doi.org/10.1002/sec.1214
http://dx.doi.org/10.1007/s00530-015-0476-3
http://dx.doi.org/10.1007/s11036-015-0586-3

Sensors 2020, 20, 7136 25 of 25

22. Wazid, M.; Das, A.K.; Shetty, S.; Rodrigues, J.J.P.C.; Park, Y. LDAKM-EIoT: Lightweight device authentication
and key management mechanism for edge-based IoT deployment. Sensors 2019, 19, 5539. [CrossRef]

23. Tanveer, M.; Zahid, A.H.; Ahmad, M.; Baz, A.; Alhakami, H. LAKE-IoD: Lightweight Authenticated Key
Exchange Protocol for the Internet of Drone Environment. IEEE Access 2020, 8, 155645–155659. [CrossRef]

24. Gope, P.; Tzonelih, H. A realistic lightweight anonymous authentication protocol for securing real-time
application data access in wireless sensor networks. IEEE Trans. Ind. Electron. 2016, 63, 7124–7132. [CrossRef]

25. Katz, J.; Menezes, A.J.; Van Oorschot, P.C.; Vanstone, S.A. Handbook of Applied Cryptography; CRC Press:
Boca Raton, FL, USA, 1996.

26. Dodis, Y.; Katz, J.; Reyzin, L.; Smith, A. Robust fuzzy extractors and authenticated key agreement from
close secrets. In Annual International Cryptology Conference; Springer: Berlin/Heidelberg, Germany, 2006;
pp. 232–250.

27. Dodis, Y.; Reyzin, L.; Smith, A. Fuzzy extractors: How to generate strong keys from biometrics and other
noisy data. In International Conference on the Theory and Applications of Cryptographic Techniques; Springer:
Berlin/Heidelberg, Germany, 2004; pp. 523–540.

28. Dolev, D.; Yao, A. On the security of public key protocols. IEEE Trans. Inf. Theory 1983, 29, 198–208. [CrossRef]
29. Moon, J.; Lee, D.; Lee, Y.; Won, D. Improving biometric-based authentication schemes with smart card

revocation/reissue for wireless sensor networks. Sensors 2017, 17, 940. [CrossRef] [PubMed]
30. Lee, H.; Lee, D.; Moon, J.; Jung, J.; Kang, D.; Kim, H.; Won, D. An improved anonymous authentication

scheme for roaming in ubiquitous networks. PLoS ONE 2018, 13, e0193366. [CrossRef] [PubMed]
31. Wu, F.; Li, X.; Sangaiah, A.K.; Xu, L.; Kumari, S.; Wu, L.; Shen, J. A lightweight and robust two-factor

authentication scheme for personalized healthcare systems using wireless medical sensor networks.
Future Gener. Comput. Syst. 2018, 82, 727–737. [CrossRef]

32. Blanchet, B.; Smyth, B.; Cheval, V.; Sylvestre, M. ProVerif 2.00: Automatic Cryptographic Protocol Verifier,
User Manual and Tutorial. 2018; pp. 5–16. Available online: https://prosecco.gforge.inria.fr/personal/
bblanche/proverif/manual.pdf (accessed on 12 December 2020).

33. Das, A.K. A secure and robust temporal credential-based three-factor user authentication scheme for wireless
sensor networks. Peer-to-Peer Netw. Appl. 2016, 9, 223–244. [CrossRef]

34. Xu, L.; Wu, F. Cryptanalysis and improvement of a user authentication scheme preserving uniqueness and
anonymity for connected health care. J. Med. Syst. 2015, 39, 10. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/s19245539
http://dx.doi.org/10.1109/ACCESS.2020.3019367
http://dx.doi.org/10.1109/TIE.2016.2585081
http://dx.doi.org/10.1109/TIT.1983.1056650
http://dx.doi.org/10.3390/s17050940
http://www.ncbi.nlm.nih.gov/pubmed/28441331
http://dx.doi.org/10.1371/journal.pone.0193366
http://www.ncbi.nlm.nih.gov/pubmed/29505575
http://dx.doi.org/10.1016/j.future.2017.08.042
https://prosecco.gforge.inria.fr/personal/bblanche/proverif/manual.pdf
https://prosecco.gforge.inria.fr/personal/bblanche/proverif/manual.pdf
http://dx.doi.org/10.1007/s12083-014-0324-9
http://dx.doi.org/10.1007/s10916-014-0179-x
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Preliminaries
	Hash Function
	Fuzzy Extractor
	Threat Model

	Review of Target Protocols
	Review of Adavoudi-Jolfaei et al.'s Protocol
	Registration Phase
	Login Phase
	Authentication Phase
	Password and Biometrics Change Phase

	Review of Sharma and Kalra's Scheme
	Setup Phase
	Registration Phase
	Login Phase
	Authentication Phase
	Password Change Phase

	Analysis of Target Schemes
	Analysis of Adavoudi-Jolfaei et al.'s Scheme
	Loss of Smart Card Information
	User Impersonation Attack
	Session Key Attack

	Analysis of Sharma and Kalra's Scheme
	Design Error in Sharma and Kalra's Scheme
	Password Guessing Attack
	Stealing the Session Key
	Sensor Impersonation Attack

	Proposed Scheme
	Setup and Registration Phase
	Setup Phase
	Registration Phase

	Login and Authentication Phase
	Login Phase
	Authentication Phase

	Password Change Phase

	Security Analysis
	Formal Security Analysis
	Informal Security Analysis
	Privileged Insider Attack
	Outsider Attack
	Offline ID Guessing Attack
	Online ID Guessing Attack
	Session Key Disclosure Attack
	Practitioner Impersonation Attack
	Sensor Impersonation Attack

	Performance Analysis of the Proposed Scheme
	Conclusions
	ProVerif Code
	References

