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Abstract: Although biometrics systems using an electrocardiogram (ECG) have been actively
researched, there is a characteristic that the morphological features of the ECG signal are measured
differently depending on the measurement environment. In general, post-exercise ECG is not matched
with the morphological features of the pre-exercise ECG because of the temporary tachycardia.
This can degrade the user recognition performance. Although normalization studies have been
conducted to match the post- and pre-exercise ECG, limitations related to the distortion of the P wave,
QRS complexes, and T wave, which are morphological features, often arise. In this paper, we propose
a method for matching pre- and post-exercise ECG cycles based on time and frequency fusion
normalization in consideration of morphological features and classifying users with high performance
by an optimized system. One cycle of post-exercise ECG is expanded by linear interpolation
and filtered with an optimized frequency through the fusion normalization method. The fusion
normalization method aims to match one post-exercise ECG cycle to one pre-exercise ECG cycle.
The experimental results show that the average similarity between the pre- and post-exercise states
improves by 25.6% after normalization, for 30 ECG cycles. Additionally, the normalization algorithm
improves the maximum user recognition performance from 96.4 to 98%.

Keywords: biometrics; user identification; post-exercise ECG; normalization; P wave; T wave;
linear interpolation

1. Introduction

Recently, security technology is evolving along with artificial intelligence technology. From physical
security to security using software, and by recognizing bio-information, it is moving toward simple
and personalized security without risk of loss [1–3]. External environment security technology using
bio-information gradually requires personal identification in a non-face to face method, and internal
environment security technology carried by users is being carried out in portable smart devices and
body-wearing wearable devices [4–6]. Biometrics technology that authenticates individuals using
bio-information was initially mainly used in the access control area, but as it was applied to service and
solution authentication, it was applied to electronic finance, information communication, medical care,
social welfare, administration, immigration, and entertainment. It is being used in various fields [7–9].

Biometrics is a technology for registering and recognizing individual physical and behavioral
characteristics through real-time analysis [10]. Physical characteristics include external information
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of the body such as fingerprint, face, iris, voice, and veins of the back of the hand, and behavioral
characteristics include external signals of the body such as voice, gait, handwriting, keyboarding,
signature, and internal signals of the body such as the electrocardiogram (ECG), electromyography
(EMG), and the electroencephalogram (EEG), etc. Biometrics using external signals has a problem in
that a high error rate occurs due to lower recognition performance than in bio-information when a user
authenticates it [11]. Biometrics technology using bio-information based on physical characteristics
is analyzed with high recognition performance but has been a social issue due to forgery and
alteration events and accidents [12,13]. For example, in a financial incident in South Korea, fake silicon
fingerprints were fabricated using a 3D printer. Fake fingerprints were used in an e-passport incident
at an international airport in Japan. In a hacking incident, a German hacker group duplicated the iris
of the Russian President using his picture. All these incidents reveal the negative aspects of biometrics,
which have become social issues. Accordingly, major developed regions such as the United States,
Europe, and Japan, have been researching and developing biometric systems using bio-signals that
exist within the body [14–18].

The ECG, a representative bio-signal inside the body, is unique to each individual, owing to the
electrophysiological factors of the heart, as well as its location, size, and physical condition. However,
because it is an electrical signal, it is affected by behavioral features and varies according to the
measurement environment [19]. Particularly, post- and pre-exercise ECGs do not coincide, because of
the temporary tachycardia, which can degrade the user recognition performance. Although studies on
normalization have been conducted to match post- and pre-exercise ECGs, they experience problems
such as distortions of the P wave, QRS complexes, and T wave, which are morphological features as
well as unique biometric information.

The post-exercise ECG cycle is a problem that is not matched with the pre-exercise ECG cycle,
and the recognition performance is degraded. In this paper, we propose a method that combines
the time and frequency normalization method, and recognition system using an optimized classifier
Long Short Term Memory (LSTM) based on grid search. We aimed for a fusion method to match
the post-exercise ECG cycle with the pre-exercise ECG cycle in consideration of the morphological
features of the ECG cycle. The time normalization method extends the P and T wave sections of the
post-exercise ECG cycle by data linear interpolation and is consistent with the pre-exercise ECG cycle [1].
The frequency normalization methods find a matching optimal band in the frequency spectrum and
match it to one pre-exercise ECG cycle using a bandpass filter [20]. After time normalizing the
post-exercise ECG using the normalization algorithm, the average similarity is improved by 23.5% for
30 ECG cycles. By fusion normalization, the average similarity was confirmed to be 25.6% excellent
performance. The proposed system was analyzed better than other classifiers by an average of 5%
(SVM), 7% (K-NN), and 9% (Auto-encoder). The maximum user recognition performance of the
frequency normalization algorithm, based on LSTM is 94.8%, whereas that of the time normalization
algorithm is increased to 96.4%. Besides, the fusion normalization algorithm is increased to 98%.
In this paper, related studies are introduced in Section 2, and the time normalization method and
user recognition system are presented in Section 3. The experimental method, experiment results,
and future research directions are discussed in Section 4, and the conclusions are drawn in Section 5,
stressing the originality of this study.

2. User Recognition Technique Using Normalized ECG

The technical organization of a user recognition system that uses ECG includes the creation of a
database (DB) using the measured ECG, signal processing (preprocessing) to remove noise from the
original ECG signal, segmentation based on the fiducial and non-fiducial points, feature extraction
and reduction of feature vector dimensions in the segmented areas, and recognition of users using
classification results predicted by classifiers. Figure 1 shows ECG cycles in which noise has been
removed, and the P wave, QRS complexes, and T wave have been divided into morphological features
in the normal and post-exercise states for normalization during preprocessing. The tachycardia ECG
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cycle that temporarily occurs in the post-exercise state, and not in the relaxed state, does not coincide
with the ECG cycle in the pre-exercise state, which degrades the recognition performance. To improve
the recognition performance, normalization is performed to match the post- and pre-exercise ECG.
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2.1. Normalized ECG in Normal State

ECG in the normal state is used in existing user recognition systems that incorporate ECG.
The recognition performances using the normalization methods proposed in various preprocessing
activities are presented in Table 1.

Table 1. Preprocessing in the normal state for normalization.

ECG DB (Normal) Noise Reduction Segmentation Normalization Reference

Personal Bandpass filter Fiducial Cross correlation [21]
PTB MIT-BIH Wavelet Fiducial Resampling [22]

Personal Bandpass filter Fiducial Resampling [23]
Personal Bandpass filter Fiducial Non [24]
Personal Cascading filter Fiducial Non [25]
MIT-BIH High-pass filter Fiducial Non [26]

A normalization method that excludes the ECG cycles that do not match the enrolled ideal
ECG, through cross-correlation analysis is proposed in [21]. A normalization method for resampling
the data of each section of the P wave, QRS complexes, and T wave of one ECG cycle is proposed
in [22]. A correction process using the valley of the P wave and peak of the R wave, a process of
normalizing the data of each section of the P wave, QRS complexes, and T wave of the ECG signal,
and a normalizing method with one cycle that is passed by similarity with the enrollment data in
each section are proposed in [23]. Normalization through segmentation by setting one ECG cycle
is conducted in [24]. Normalization that segments the P and T sections, based on the R wave is
conducted in [25]. Normalization is performed with 360 data samples based on the R wave, in [26].
The ECG normalization method in the normal state considers only noise removal and morphological
features. It does not consider normalization for tachycardia ECG that may generally occur in the
post-exercise state.

2.2. Normalized ECG in Post-Exercise State

ECG signals are characterized by behavioral features and are measured differently depending on
the subject’s condition. Therefore, they are measured in the relaxed state as well as in other states and
are analyzed by the user recognition systems after normalization. A method of measuring ECG while
the subject was lying, sitting, crouching, or standing, followed by normalizing the ECG cycle for each
state using a discrete wavelet transform (DWT) was proposed in [19]. Particularly, studies that apply
normalization methods to each region of the ECG measured during the tachycardia, which temporarily
occurs after exercise, and analyze the recognition performance have been conducted, as shown in
Table 2. The ECG measured in the post-exercise state after performing jumping jacks and push-ups
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was normalized based on the R wave [27]. For the ECG measured in the post-exercise state after
the stepper exercise, the fiducial point-based QRS complexes were normalized [28]. An optimized
bandpass filter (OBPF) method was proposed for normalizing the ECG measured when the subject
was in the post-exercise state after raising a foot, using a bandpass filter after selecting the optimal
frequency band [20]. A method of normalizing the ECG measured, in the phase domain, when the
subject was in the post-exercise state after the upright magnetic bike exercise was proposed in [29].

Table 2. Preprocessing in the post-exercise state for normalization.

ECG DB (Exercise) Noise Reduction Segmentation Normalization Reference

Personal (Jumping jacks and pushups) Bandpass filter Fiducial Non [27]
Personal (Stepper) Bandpass filter Fiducial QRS complexes [28]

Personal (Raising a foot) Bandpass filter Fiducial OBPF [20]
Personal (Upright magnetic bike) Non Non-fiducial Phase reconstruction [29]

In terms of the user recognition performance when using post-exercise ECG, all methods except
for the OBPF normalization method exhibited performance lower than that of the methods using the
ECG obtained in the relaxed state. The OBPF normalization method that exhibited high recognition
performance was analyzed using a few subjects. Both the OBPF normalization and phase domain
normalization methods distort the morphological features of one ECG cycle. The time-domain
normalization methods use only the QRS complexes, which are not affected in the post-exercise
tachycardia ECG, instead of the morphological features of the P and T waves, and thus, can distort
information unique to individuals.

This study proposes a time-domain normalization method that matches the post-exercise
ECG to the pre-exercise P wave, QRS complexes, and T wave, and maintains the morphological
features, similar to the ECG obtained in the relaxed state that exhibits high recognition performance.
The normalization method uses the OBPF frequency normalization method, which has one of the highest
recognition performances among the existing normalization methods. The recognition performances
were compared and analyzed.

3. User Recognition System Using Normalized ECG Based on P and T Wave Linear
Data Interpolation

Figure 2 shows a flow chart of the user recognition system that uses pre-exercise and post-exercise
ECG as enrollment and recognition data, respectively. The system includes the ECG lead-I acquisition
process, signal preprocessing process, one cycle segmentation process, normalization process using the
linear data interpolation of the P and T-wave sections, and the user recognition process.

3.1. User Recognition System

The ECG lead-I is measured from the subject using a measuring instrument, based on the standard
12-lead electrocardiography. The enrollment and recognition data are created by acquiring the ECG
from the subject before and after exercise. Noise in the measured ECG is removed through the frequency
filtering process, R wave peak detection process, and a median process excluding the QRS complexes.
Noise in the ECG is removed by applying the Butterworth bandpass frequency filter. The R wave
peak of the ECG that passes through the bandpass filter is detected using the threshold value of the
Pan&Tompkins (1985) algorithm [30]. The detected R wave peak is used to set the QRS complexes for
the application of the median filter. The QRS complexes are excluded from the median filter section
because they contain biometric information unique to each individual.

Although the noise is removed using frequency filtering and the median filter, the baseline drift
caused by the subject’s breathing is not removed. To remove this baseline drift, zero-point adjustment
is performed using continuous first order regression analysis, for minimizing morphological feature
distortion [31]. For the ECG, a periodic signal, the domain used for user recognition must be
segmented. ECG’s segmentation is classified into the fiducial point and non-fiducial point segmentation.
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Fiducial point segmentation, which uses the morphological features of the ECG, exhibits higher
recognition performance than non-fiducial point segmentation [32]. In this study, to segment one
cycle based on non-fiducial point segmentation, a cycle is set from 0.2 s to the left of the R wave peak
detected by the Pan&Tomkins algorithm, which corresponds to the P wave section, to 0.4 s to its right,
which corresponds to the T wave section. The normalization process performs resegmentation of
the segmented cycle, based on the P and T waves, and extends the P and T wave sections reduced
by tachycardia by performing linear interpolation for empty data [1]. For feature extraction using
the normalized ECG, all the data of one ECG cycle are selected as the morphological features.
The classification for the final user recognition is performed using classifiers.
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3.2. Linear Interpolation Based Normalization of P and T Wave Section Data in Post-Exercise ECG

Post-exercise ECG has more heartbeats than pre-exercise ECG for the same period because of
the temporary tachycardia. For post-exercise, the P and T wave sections are contracted because the
periodic P wave, QRS complexes, and T wave occur relatively sooner than in the pre-exercise ECG.
The QRS complexes are identical before and after exercise and are unaffected by tachycardia.

Figure 3 shows the ECG signal graphs before and after exercise. The ECG cycle before exercise
occurs four times in three seconds, as shown in Figure 3a, whereas the ECG cycle after exercise occurs
six times in three seconds, as shown in Figure 3b. This verifies that post-exercise ECG has more
cycles than pre-exercise ECG, because of the temporary tachycardia. Figure 4 shows the ECG cycles,
before and after exercise, segmented based on the R wave peak. As the number of ECG cycles in
a period increases after exercise, segmentation was based on the R wave peak results in contracted
P and T waves, compared to that of the pre-exercise ECG, and the detection of the next R wave.
The segmented tachycardia ECG cycles after exercise do not coincide with the ECG cycles before
exercise, because of the detection of the contracted P and T waves and next R wave.
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To match the post-exercise and pre-exercise ECG cycles, the normalization method performs
linear data interpolation for the split P and T waves, as shown in Figure 5. The normalization process
consists of the P and T wave peak detection, P and T wave-based cycle resegmentation, wave splitting,
linear data interpolation for the P and T wave sections contracted by tachycardia, and normalization
by combining the split waves.

The P wave generated by the depolarization of the atria is the section to the left of the R wave
peak, and the maximum value of the P wave is detected as the maximum value in the P wave region.
The T wave generated by the depolarization of the ventricles is the section to the right of the R-wave
peak, and the maximum value of the T wave is detected as the maximum value in the T wave region.
One cycle resegmentation is set from Pls, which is on the left side of the P wave peak, to Trs, which is
on the right side of the T wave peak. From the P wave, QRS complexes, and T wave, each wave section
is split into subsections. The P wave section is set from Pls, which is on the left side of the P wave peak,
to Rls, which is on the left side of the R wave peak. The QRS complexes are set from Rls, which is on
the left side of the R wave peak, to Rrs, which is on its right side. The T wave section is set from Rrs,
which is on the right side of the R wave peak, to Trs, which is on the right side of the T wave peak.
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The linear data interpolation of the P and T waves is performed using interpolation count, position,
and amplitude calculations, as shown in Figure 6. The interpolation count Ni is calculated as the
difference between the normalized data of the P and T waves dn and actual data dr using (1).

dn = rs × tndr = rs × tr Ni = dn − dr (1)
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The normalized section data dn are calculated as the products of the duration of each of the P and
T waves normalized based on the morphological features, tn, and the data sampling rate, rs. The actual
data dr are calculated as the products of the duration of each of the actual P and T waves tr and the
data sampling rate rs.

x = Int
(

dr

Ni + 1

)
× i + 1, i = 1, . . . , Ni (2)

The interpolation position, x, is calculated as an integer, using the interpolation count Ni and the
actual number of data dr, as shown in Equation (2). x is generated after shifting by +1 because it is
generated at a new position xi.

v =
v j(xi) + v j+1(xi+1)

2
(3)
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The interpolation amplitude, v, is calculated as the average of the magnitudes of the voltage data
on the left and right sides of the interpolation position x, using (3). In the frequency normalization
method, the ECG pre- and post-exercise in the frequency spectrum is equally performed with an
optimal bandpass filter. The optimal frequency band is analyzed equally from 10 Hz to 80 Hz as a
result of analyzing ECG signals pre- and post-exercise in the frequency spectrum. Therefore, the ECG
signal pre- and post-exercise is normalized by a bandpass filter from 10 Hz to 80 Hz. In the fusion
method, the pre-exercise ECG signal is only normalized as the frequency method, and the post-exercise
ECG is normalized as time method and then normalized as frequency to match the pre-exercise ECG.

Figure 7 shows the post-exercise ECG cycle that coincides with the pre-exercise ECG cycle,
generated through the combination of the time, frequency normalization. Unlike the case in Figure 4
before normalization, the ECG cycles pre- and post-exercise coincide in the normalization method.
The fusion normalization method produces the P wave, QRS complexes, and T wave with the same
cycles as the ECG in the normal state, which exhibits high recognition performance while maintaining
the morphological features.
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4. Experiment Results

An experiment to analyze the normalization method and its user recognition performance was
performed using Matlab R2019a running on a personal PC with an Intel Core i7 processor. The number
of subjects that participated in the ECG measurement for the experiment was 100–64 males and
36 females, of ages ranging from 23 to 34; all of them were associated with the Chosun University.
The ECG measurement protocol is presented in Table 3.

Table 3. Electrocardiogram measurement protocol.

Times
Situation

Sit at Rest Exercise (Stepper) Sit at Rest

1 60 s 180 s 180 s

2–3 days break

2 60 s 180 s 180 s

2–3 days break

3 60 s 180 s 180 s

The ECG measurement was performed three times for each subject at 2–3 day intervals. It was
measured for 60 s before exercise and 180 s after exercise in a comfortable sitting posture as shown
in Figure 8. To measure the post-exercise ECG, the subject exercised with a stepper for 180 s with
attached electrodes. The post-exercise ECG was measured immediately after the exercise, in a sitting
posture. The ECG obtained from the measuring instrument MP160 was lead-I ECG, which could be
acquired from both wrists using wet electrodes at a sampling rate of 2000 Hz based on the international
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standard 12-lead electrocardiography. An experiment for evaluating the normalization method using
the measured ECG data was conducted to analyze the average similarity from the ECG

Sensors 2020, 20, x FOR PEER REVIEW 9 of 16 

 

2 60 s 180 s 180 s 

2–3 days break 

3 60 s 180 s 180 s 

The ECG measurement was performed three times for each subject at 2–3 day intervals. It was 

measured for 60 s before exercise and 180 s after exercise in a comfortable sitting posture as shown 

in Figure 8. To measure the post-exercise ECG, the subject exercised with a stepper for 180 s with 

attached electrodes. The post-exercise ECG was measured immediately after the exercise, in a sitting 

posture. The ECG obtained from the measuring instrument MP160 was lead-I ECG, which could be 

acquired from both wrists using wet electrodes at a sampling rate of 2000 Hz based on the 

international standard 12-lead electrocardiography. An experiment for evaluating the normalization 

method using the measured ECG data was conducted to analyze the average similarity from the ECG 

 

Figure 8. Conditions for pre- and post-exercise ECG measurement and the morphological features of 

the measured ECG one cycle. The cycles before and after exercise and compare the user recognition 

performances before and after normalization. 

For the similarity evaluation, the average similarity with and without normalization in the pre-

exercise state was analyzed. The average similarity with and without normalization in the pre- and 

post-exercise states was also analyzed. The number of cycles used in the similarity analysis was 

increased to 30, in five cycles for each subject. To evaluate one ECG cycle similarity before and after 

exercise, the Euclidean distance was calculated using Equation (4). 

𝑑(𝑝, 𝑞) =  √∑(𝑞𝑖 − 𝑝𝑖)
2

𝑛

𝑖=1

 (4) 

To compare and analyze the average similarity performances, the OBPF was applied using the 

existing normalization method, as shown in Figure 9b, by the time normalization method, as shown 

in Figure 9c, and by a fusion method that combined the time and existing methods, as shown in 

Figure 9d. The existing method analyzed the ECG cycles before and after exercise using the frequency 

spectrum and normalized them by finding the matching band and applying it in the same manner. 

Figure 8. Conditions for pre- and post-exercise ECG measurement and the morphological features of
the measured ECG one cycle. The cycles before and after exercise and compare the user recognition
performances before and after normalization.

For the similarity evaluation, the average similarity with and without normalization in the
pre-exercise state was analyzed. The average similarity with and without normalization in the pre-
and post-exercise states was also analyzed. The number of cycles used in the similarity analysis was
increased to 30, in five cycles for each subject. To evaluate one ECG cycle similarity before and after
exercise, the Euclidean distance was calculated using Equation (4).

d(p, q) =

√√ n∑
i=1

(qi − pi)
2 (4)

To compare and analyze the average similarity performances, the OBPF was applied using the
existing normalization method, as shown in Figure 9b, by the time normalization method, as shown in
Figure 9c, and by a fusion method that combined the time and existing methods, as shown in Figure 9d.
The existing method analyzed the ECG cycles before and after exercise using the frequency spectrum
and normalized them by finding the matching band and applying it in the same manner.

When all the data from one cycle were used for comparing and analyzing the average similarity
according to the number of ECG cycles for each subject, the average similarity of the subjects was
obtained as presented in Table 4. The application of the normalization method to 20 subjects improved
the average similarity by 1.2% and 23.5% in the pre-exercise and post-exercise states, respectively.
The application of the existing OBPF normalization method improved the average similarity by 0.92%
and 13.9% in the pre-exercise and post-exercise states, respectively. The application of the fusion
method improved the average similarity by 1.6% and 25.6% in the pre-exercise and post-exercise states,
respectively. Regardless of the state, the average similarity increased gradually as the number of ECG
cycles increased, both before and after normalization. The average similarity increase rates in the pre-
and post-exercise states after normalization were significantly higher than those in the pre-exercise
state. Particularly, the time normalization method exhibited a higher average similarity increase rate
than the existing method, and the fusion method exhibited the highest average similarity increase
rate. This is because the post-exercise ECG signals were more consistent with the pre-exercise ECG
cycles because the time normalization method performed normalization in the time domain following
which the existing method performed normalization in the frequency domain. The time normalization
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method increased the average similarity of the existing method and solved the problem of low average
similarity between ECG cycles in the pre- and post-exercise states.

Sensors 2020, 20, x FOR PEER REVIEW 4 of 4 

 

 

Figure 9d. The existing method analyzed the ECG cycles before and after exercise using the 

frequency spectrum and normalized them by finding the matching band and applying it in the same 

manner. 

 
Figure 9. (a) ECG cycles before and after exercise (b) ECG cycles before and after exercise: existing 

normalization (c) ECG cycles before and after exercise: time normalization (d) ECG cycles before and 

after exercise: fusion normalization. 

Figure 9. (a) ECG cycles before and after exercise (b) ECG cycles before and after exercise:
existing normalization (c) ECG cycles before and after exercise: time normalization (d) ECG cycles
before and after exercise: fusion normalization.

Table 4. Analysis of similarity for application of no normalization, existing normalization,
time normalization, and fusion normalization for pre- and post-exercise cases.

Subject 20

State Pre-Exercise Pre- and Post-Exercise

Nor. Non Fre. [20] Time [1] Fusion Non Fre. [20] Time [1] Fusion

E
C
G

5 0.3777 0.3485 0.3292 0.3280 0.8827 0.6125 0.5496 0.5489
10 0.2435 0.2451 0.2388 0.2374 0.7167 0.5953 0.5023 0.5015
15 0.2529 0.2274 0.2252 0.2244 0.6612 0.5717 0.4731 0.4724
20 0.2249 0.2197 0.2189 0.2179 0.5924 0.5384 0.4381 0.4360
25 0.2263 0.2159 0.2150 0.2142 0.5437 0.4995 0.4185 0.4175
30 0.2057 0.2038 0.2032 0.2024 0.5247 0.4517 0.4014 0.3903

Average rate of
similarity change

0.92%
increase

1.2%
increase

1.6%
increase

13.9%
increase

23.5%
increase

25.6%
increase

The user recognition performance was measured using an accuracy calculation method.
The accuracy is a measure that represents the degree of prediction and matching of the recognized
subject class from the total enrolled subject class. The precision, recall, F1 score, accuracy is calculated
using true positive (TP), true negative (TN), false positive (FP), and false-negative (FN) values, which are
predicted by 1:N matching, as follows:

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1 Score = 2×
Precision×Recall
Precision + Recall

(7)
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Accuracy =
TP + TN

TP + FN + FP + TN
(8)

The ECG data acquired in the pre-exercise state were used as enrollment data and those acquired in
the post-exercise state were used as recognition data. The classification performance of the recognition
data from the enrollment data was subjected to dimensionality reduction by discriminant analysis
before and after normalization and was analyzed according to the ECG cycle using various classifiers.

In this paper, to compare and analyze the performances of various classifiers used in the
time normalization method, the recognition performance was analyzed using the K-NN classifier,
support vector machine (SVM, among machine learning), and auto-encoder and LSTM, which are
deep learning technologies. K-NN is a method of classifying recognition data using the k the closest
enrollment data in a feature space. SVM is a method of modeling learning data by finding nonlinear
boundaries in a mapped space by various kernels and classifying recognition data. The auto-encoder
is a neural network that performs a dimensional reduction of the input data using a non-supervised
learning method and restores them as the output. LSTM is a learning technology that protects and
controls long time series data with gates and cells added in a recurrent neural network structure that
repeats and maintains previous data. Table 5 shows information that parameters were set by the grid
search based heuristic method.

Table 5. Hyperparameter set according to each classifier.

SVM K-NN Auto-Encoder LSTM

Kernel rbf - - -

Gamma 100 - - -

C 10 - - -

K - 1 - -

1-layer - - 100 × 8 n

2-layer - - 100 × 4 n/2

3-layer - - 100 × 2 n/3

Fully connected layer1, Drop out - - - 400, 0.5

Fully connected layer2, Drop out - - - 200, 0.5

Softmax - - 100 100

Especially, the structure of deep learning consists of three layers of LSTM, two fully connected
layers (active function: ReLU), and one output layer (active function: softmax). In the case of the
fully connected layer, a dropout is applied that ignores 50% of nodes in order to prevent overfitting in
which the classification algorithm is adapted to registration data. For the optimization of each network,
the learning rate rmsprop was 0.001, and the registration data was evaluated by the network adjusted
with 100 epochs. Figure 10 shows the user recognition performances obtained using the post-exercise
ECG data measured thrice. After time normalization, the recognition performance of each classifier
was compared and analyzed according to the ECG cycle. All classifiers exhibited improved recognition
performances after normalization, compared to the performance before normalization. The recognition
performances of the classifiers before and after normalization were generally higher when the ECG
cycle number was five, compared to other ECG cycle numbers.



Sensors 2020, 20, 7130 12 of 16

Sensors 2020, 20, x FOR PEER REVIEW 12 of 16 

 

network, the learning rate rmsprop was 0.001, and the registration data was evaluated by the network 

adjusted with 100 epochs. Figure 10 shows the user recognition performances obtained using the 

post-exercise ECG data measured thrice. After time normalization, the recognition performance of 

each classifier was compared and analyzed according to the ECG cycle. All classifiers exhibited 

improved recognition performances after normalization, compared to the performance before 

normalization. The recognition performances of the classifiers before and after normalization were 

generally higher when the ECG cycle number was five, compared to other ECG cycle numbers. 

 

Figure 10. Comparative analysis of user recognition performance before and after time normalization, 

in terms of the number of ECG cycles. 

The classification performance of the auto-encoder reached its maximum (90%) when the ECG 

cycle number was three and decreased afterward. The performances of K-NN and SVM were similar, 

and their maximum values were 92% and 93.8%, respectively, when the ECG cycle number was five. 

The classification performances of K-NN and SVM were generally higher than that of the auto-

encoder; however, they slowly decreased in the same manner when the ECG cycle number exceeded 

five. Unlike the classification performance of the other classifiers, that of LSTM reached its maximum 

(98.7%) when the ECG cycle number was as low as two. The recognition performance of LSTM 

remained similar or decreased slightly as the ECG cycle number increased. After normalization, 

LSTM exhibited the highest classification performance compared to all the classifiers. 

To evaluate the change in recognition performance according to the increase in the number of 

subjects, the ECG recognition performance was analyzed after normalization. The number of subjects 

ranged from 20 to 100, where the number increased at intervals of 20.  

The recognition performance according to the number of subjects and classifier at ECG cycle 

number four, which was excellent, is shown in Figure 11. Overall, the recognition performance of the 

auto-encoder is the poorest and decreases slightly as the number of subjects increases; the maximum 

recognition performance is 88.4% when the number of subjects is 40. The recognition performances 

of the K-NN and SVM classifiers are similar to the number of subjects increase and are generally 

higher than that of the auto-encoder but lower than that of the LSTM. The recognition performance 

of K-NN and SVM decreased with the increase in the number of subjects as was the case in the auto-

encoder. The maximum recognition performance of K-NN was 92.9% when the number of subjects 

was 40, whereas that of SVM was 93.8% when the number of subjects was 20. LSTM exhibited a better 

overall recognition performance compared to other classifiers when the number of subjects increased. 

It was least affected by the number of subjects and maintained the recognition performance. The 

maximum recognition performance of LSTM was 97.7% when the number of subjects was 60. The 

analysis results showed that LSTM exhibited the most outstanding recognition performance after 

normalization with respect to the ECG cycles before and after exercise, and with respect to the 

increasing number of subjects, compared to other classifiers. The recognition performance using 

LSTM was least affected by the cycle and number of subjects and was maintained stably. 
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The classification performance of the auto-encoder reached its maximum (90%) when the ECG
cycle number was three and decreased afterward. The performances of K-NN and SVM were similar,
and their maximum values were 92% and 93.8%, respectively, when the ECG cycle number was five.
The classification performances of K-NN and SVM were generally higher than that of the auto-encoder;
however, they slowly decreased in the same manner when the ECG cycle number exceeded five.
Unlike the classification performance of the other classifiers, that of LSTM reached its maximum (98.7%)
when the ECG cycle number was as low as two. The recognition performance of LSTM remained
similar or decreased slightly as the ECG cycle number increased. After normalization, LSTM exhibited
the highest classification performance compared to all the classifiers.

To evaluate the change in recognition performance according to the increase in the number of
subjects, the ECG recognition performance was analyzed after normalization. The number of subjects
ranged from 20 to 100, where the number increased at intervals of 20.

The recognition performance according to the number of subjects and classifier at ECG cycle
number four, which was excellent, is shown in Figure 11. Overall, the recognition performance of the
auto-encoder is the poorest and decreases slightly as the number of subjects increases; the maximum
recognition performance is 88.4% when the number of subjects is 40. The recognition performances of
the K-NN and SVM classifiers are similar to the number of subjects increase and are generally higher
than that of the auto-encoder but lower than that of the LSTM. The recognition performance of K-NN
and SVM decreased with the increase in the number of subjects as was the case in the auto-encoder.
The maximum recognition performance of K-NN was 92.9% when the number of subjects was 40,
whereas that of SVM was 93.8% when the number of subjects was 20. LSTM exhibited a better overall
recognition performance compared to other classifiers when the number of subjects increased. It was
least affected by the number of subjects and maintained the recognition performance. The maximum
recognition performance of LSTM was 97.7% when the number of subjects was 60. The analysis results
showed that LSTM exhibited the most outstanding recognition performance after normalization with
respect to the ECG cycles before and after exercise, and with respect to the increasing number of
subjects, compared to other classifiers. The recognition performance using LSTM was least affected by
the cycle and number of subjects and was maintained stably.

In this study, the recognition performances of existing, time, and fusion normalization methods
were compared and analyzed using LSTM, which exhibited the highest recognition performance.
The recognition performances were analyzed in terms of the number of ECG cycles when the
number of subjects was 100. Figure 12 compares the post-exercise ECG recognition performances of
each normalization method, according to the number of ECG cycles. Each normalization method
exhibited the highest recognition performance when the ECG cycle number was as low as one or two.
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The existing method generally exhibited lower recognition performance than the time and fusion
methods. The maximum recognition performance of the existing method was 94.8% when the ECG
cycle number was one. Overall, the recognition performance of the time normalization method was
higher than that of the existing method and lower than that of the fusion method. The maximum
recognition performance of the time normalization method was 96.4% when the ECG cycle number
was two.Sensors 2020, 20, x FOR PEER REVIEW 13 of 16 
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Figure 12. Comparative analysis of post-exercise ECG normalization recognition performance according
to the number of ECG cycles (existing, time, and fusion normalization methods).

The fusion method exhibited higher recognition performance than the other methods, and its
maximum recognition performance was 98% when the ECG cycle number was one or two. Table 6 shows
the performance of precision, recall, F1 score, and accuracy according to each normalization method in
ECG cycle two, which was analyzed as the best recognition performance. The fusion method of time
and frequency normalization was best analyzed in all performance indicators. Figure 13 shows the
comparison of the post-exercise ECG recognition performance according to the normalization method
with respect to the change in recognition data. The recognition performance in each normalization
method was not significantly affected by the changes in the amount of recognition data. The recognition
performance of the existing normalization method was lower than that of the other normalization
methods, with a maximum performance of 95.2% on day five of the recognition data. The recognition
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performance of the proposed method was higher than that of the existing method but lower than that
of the fusion method. The maximum recognition performance of the proposed method was 98.4%
on day five of the recognition data. Overall, the recognition performance of the fusion method was
higher than those of the other normalization methods as the number of recognition data increased.
The maximum recognition performance of the fusion method was 99.1% on day five of the recognition
data. The analysis results showed that the recognition performance of the fusion method is the highest
among all the normalization methods. The fusion method was least affected by the cycle and the
increase in the amount of recognition data, whereas the recognition performance was maintained
stably with a decreasing trend.

Table 6. Performance comparison analysis using each normalization method.

Precision Recall F1-Score Accuracy

Time nor. 0.98% 0.95% 0.97% 96.4%

Frequency nor. 0.96% 0.92% 0.94% 93.6%

Fusion nor. 0.99% 0.96% 0.98% 98%
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5. Conclusions

In this paper, in order to improve the user recognition system using post-exercise ECG, we proposed
a system that analyzes it excellently like the recognition performance of pre-exercise ECG. For user
recognition, this study employed the time normalization method to match the ECG after a stepper
exercise, to one pre-exercise ECG cycle composed of the P wave, QRS complexes, and T wave, which were
morphological features, and improved recognition performance. The user recognition system,
which used normalized ECG in the post-exercise state, consisted of the ECG lead-I acquisition process,
signal preprocessing for noise removal, one ECG cycle segmentation process, normalization process
through the linear interpolation of the P and T wave section data in one cycle, morphological
feature-based cycle feature extraction process, and classification process for user recognition.

The user recognition performance was analyzed according to the ECG cycle after exercise
in 100 subjects, using the time normalization method and the database created using the ECG
data measured before and after exercise. The maximum user recognition performance based on
LSTM was 94.8%, 96.4%, and 98% for the frequency, time normalization, and fusion methods,
respectively. Particularly, as the fusion normalization method improved the average similarity in
the pre- and post-exercise states by 25.6% when the ECG cycle was 30, the post-exercise ECG cycle
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coincided with the pre-exercise ECG cycle. As a result of analyzing the maximum recognition
performance, the frequency normalization method was 94.8%, the time normalization method was
96.4%, and the fusion normalization method was analyzed as 98%. In order to improve the user
recognition system using post-exercise ECG, we proposed a system that analyzes it excellently like the
recognition performance of pre-exercise ECG. When the ECG signal was acquired, normalization was
performed in consideration of a single state. In order to be applied in everyday life, the normalization
method is needed in complex states. In the future, the ECG will be acquired from more subjects in
dynamic situations and a database will be built for the development of user authentication technology.
Additionally, the database will be used for research on a user recognition system based on deep
learning technology.
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