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Abstract: In this paper, an output-feedback fuzzy adaptive dynamic surface controller (FADSC) based
on fuzzy adaptive extended state observer (FAESO) is proposed for autonomous underwater vehicle
(AUV) systems in the presence of external disturbances, parameter uncertainties, measurement noises
and actuator faults. The fuzzy logic system is incorporated into both the observers and controllers
to improve the adaptability of the entire system. The dynamics of the AUV system is established
first, considering the external disturbances and parameter uncertainties. Based on the dynamic
models, the ESO, combined with a fuzzy logic system tuning the observer bandwidth, is developed
to not only adaptively estimate both system states and the lumped disturbances for the controller,
but also reduce the impact of measurement noises. Then, the DSC, together with fuzzy logic system
tuning the time constant of the low-pass filter, is designed using estimations from the FAESO for the
AUV system. The asymptotic stability of the entire system is analyzed through Lyapunov’s direct
method in the time domain. Comparative simulations are implemented to verify the effectiveness
and advantages of the proposed method compared with other observers and controllers considering
external disturbances, parameter uncertainties and measurement noises and even the actuator faults
that are not considered in the design process. The results show that the proposed method outperforms
others in terms of tracking accuracy, robustness and energy consumption.

Keywords: autonomous underwater vehicles; dynamic surface control; disturbance attenuation;
extended state observer; fuzzy logic

1. Introduction

In worldwide, the use of underwater robots to replace human beings in the complex underwater
environment is the future development trend of the epicontinental sea natural aquaculture in a wide
range of applications, including fishing, seabed mapping, environmental monitoring and so on [1–3].
Trajectory tracking of autonomous underwater vehicles (AUVs) is the basis of many underwater
operations, which is a tough problem in the presence of both internal and external disturbances.
In most of the practical applications, the AUV dynamics are always coupled and highly nonlinear.
The effect of external disturbances such as waves, wind and ocean current cannot be neglected.
Parameter uncertainties and measurement noises should also be considered. All these factors make
the designs of the control laws for AUVs trajectory tracking problem more difficult and challenging [4].
Therefore, the designs of antidisturbance trajectory tracking controllers with high precision and high
robustness have attracted the extensive attention of many scholars.
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During the last several decades, various control methods have been widely researched
for trajectory tracking control problem of AUVs, such as the proportional-derivative (PD) control [5],
the proportional integral derivative (PID) control [6], backstepping control (BSC) [7], sliding mode
control (SMC) [8], fuzzy logic control (FLC) [9], neural-network-based control (NNC) [10],
predictive control [11], adaptive control [12] and active disturbance rejection control (ADRC) [13].
Among them, the PD control and the PID control are the most used methods in practice due to
their design simplicity and fine performance. However, the PID control performance is degraded
to some extent when the plant is highly nonlinear and suffers from disturbances and measurement
noises. The parameters chosen for the PID controller or PD controller are sensitive to parameter
uncertainties of the plant. For these reasons, more robust controllers are required for the AUV
trajectory tracking problem.

The robustness and effectiveness of the sliding mode control to plants under external disturbances
and parameter uncertainties have been verified. In [8], an integral sliding mode controller (ISMC)
was proposed to stabilize an AUV subject to unknown external disturbance and modeling errors.
In [14], a super-twisting sliding mode controller (STSMC) is introduced to saved energy consumption.
The switching function is the key part of SMC for its strong antidisturbance ability, but it also causes
the chattering phenomenon that will decrease the performance in real applications. In addition,
the chattering phenomenon in the SMC cannot be totally eliminated [15]. Replacing the signum
function with other smooth functions may contribute to chattering attenuation but degrade the
robustness to some extent. Moreover, some recent researches are focused on the adaptive methods to
improve the sliding mode controller or observer [16–18]. The introduction of adaptive methods can
certainly improve the performance of the original super-twisting algorithm. However, these methods
consume more energy to maintain robustness compared with our proposed method, as can be seen in
the simulation section.

Backstepping control (BSC) is another popular technique that is widely used in the control field,
including in AUVs [7,12,19]. The advantage of BSC lies in its design flexibility to avoid cancellations
of useful nonlinearities. However, there are two drawbacks of traditional backstepping control. One is
the “explosion of terms” problem due to the repeated differentiation of the nonlinear function, and the
other is the lack of robustness to external disturbances and parameter uncertainties [20]. To solve the
first problem, dynamic surface control (DSC) is introduced using a first-order filter at each step of
the backstepping design. In [21], a dynamic surface fault tolerant control is proposed for underwater
remotely operated vehicles (ROV). It is also mentioned that the filters in DSC can contribute to filter
high frequency noise, make the state changes more smoothly and avoid the effect of sudden bumps.
For the second limit, a backstepping control is combined with SMC for AUVs 3D trajectory tracking to
improve the robustness in [22]. However, as mentioned above, there should be a balance between the
chattering attenuation and robust performance.

More advanced robust controllers are investigated in some research. In the work of [23], an attitude
control system based on state feedback linearization (FL) is proposed for a prototype spherical
underwater vehicle. The experiments show that their controller outperforms the traditional PID
controller under disturbances. However, their method is not adaptive to parameter uncertainties.
The author of [24] proposed a novel robust adaptive trajectory tracking control scheme with prescribed
performance for underactuated autonomous underwater vehicles (AUVs) subject to unknown dynamic
parameters and disturbances. However, measurement noises are not considered in the simulation.
In [10], an adaptive NNC is proposed for a fully actuated AUV in the presence of external disturbances,
control input nonlinearities and model uncertainties. Nevertheless, NNC usually requires high
computational costs and cannot guarantee its stability in some situations. In [11], a robust nonlinear
model predictive control (NMPC) scheme is presented for underactuated AUVs considering model
dynamic uncertainties and the presence of external disturbances. However, solving the optimal
problem also requires high computing power. The velocities are assumed to be measurable in the
simulation, which is not suitable for those situations without velocity sensors.
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Fuzzy logic is also a way to make the controller more intelligent and robust. In [9], a broad class of
FLC methods for the application of guidance and control in robotic fields are reviewed. Comparative
results show that incorporating fuzzy logic system into conventional controllers, such as PID and
SMC, can yield better performance. In [25], an adaptive fuzzy-based DSC scheme is proposed for AUV
to achieve superior tracking performance in the presence of model uncertainties and time-varying
disturbances. The author uses a fuzzy approximator as a disturbance observer to estimate the lumped
disturbance. However, the estimated disturbance is limited since the fuzzy output is bounded. In [26],
the fuzzy logic theory is used to approximate the unknown nonlinear function to solve the problems
of nonlinearity, uncertainties and external disturbances in the path following of underactuated AUV.
In [27], a fuzzy extended-state-observer-based sliding mode controller is proposed to control chaos in
the permanent magnet synchronous motor (PMSM). In [28], fuzzy logic rules have been used in the
super-twisting extended state observer (STESO) for the quadrotor UAV manipulator attitude system.

The above-mentioned control methods are usually recognized as passive antidisturbance control
(PADC) methods, which reject disturbances by feedback control rather than feedforward compensation
control [29]. An alternative solution to disturbance attenuation is active disturbance rejection control
(ADRC) [30], which attracts more and more interests in recent years. The key idea of ADRC is the
extended state observer (ESO), which can estimate both the lumped disturbances together with the
system states and offer compensation to the controller to reject the disturbances [31]. In [32], a nonlinear
extended state observer is designed for the AUV yaw model. In [33], a linear-extended-state-observer
(LESO-based backstepping controller is introduced for depth tracking of the underactuated AUV.
In [34], a fuzzy PID (FPID) control system based on the extended state observer (ESO) is proposed for
AUV. However, only fixed observer bandwidth is considered in the above-mentioned research studies.
In the presence of measurement noises, high observer bandwidth can track disturbance more precisely
but will amplify the noise signal, while low bandwidth is not quite sensitive to noise but sacrifices the
strong antidisturbance ability [35]. Thus, adaptive observer bandwidth is required for the unknown
complicated underwater environment.

Motivated by the aforementioned consideration, the aim of this article is to present a robust
trajectory tracking control scheme for underactuated AUVs in the presence of external disturbances,
parameter uncertainties, measurement noises and even actuator faults with only output feedbacks.
In particular, an output-feedback fuzzy-adaptive-extended-state-observer (FAESO)-based fuzzy
adaptive dynamic surface controller (FADSC) scheme is proposed. The ESO-based DSC control
method is proved effective and superior for trajectory tracking control of unmanned arial vehicle (UAV)
system [20]. However, the parameters of the controllers and observers are fixed in [20], which is not
suitable for complicated underwater environment. To further improve the adaptability of DSC+ESO
method, the fuzzy logic system is introduced. The introduction of fuzzy method improves the
adaptability and robustness of the entire system. It is also worth mentioning that some control schemes
such as those in [36,37] are based on full-state feedback, i.e., all states must be measurable. However,
in some of the hardware situations, translational velocity information cannot be obtained by sensors or
not quite accurate because of measurement noises. Thus, only output-feedback is considered in our
control scheme. With the benefits of the ESO, the unmeasurable system states can be reconstructed,
and meanwhile, the lumped disturbance can also be estimated. The stability of the proposed method
is verified using Lyapunov’s direct method in the time domain. Lyapunov’s direct method has been
employed to analyze the stability of the FLC for chaotic systems in [38] and the stability of a hybrid
controller for the nonlinear systems in [39].

The main contributions of this paper are summarized as follows.

• An output-feedback FAESO-based FADSC is designed for trajectory tracking control of AUV
system subject to measurement noises, parameter uncertainties, external disturbances and actuator
faults. Only the output information is assumed to be obtainable, while the velocity is estimated by
FAESO. The fuzzy logic systems are designed both for bandwidth adjustment of FAESO and the
time constant tuning of a low-pass filter in FADSC to improve the adaptibility of the entire system.
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• The stability of the entire system based on the proposed control scheme is analyzed through
Lyapunov’s direct method to guarantee that the tracking error can converge to a small bounded
vicinity asymptotically.

• The effectiveness and advantages of the proposed control scheme are verified by several
comparative numerical simulations, during which comparisons between different observers
and comparisons between different controllers in the presence of measurement noise,
parameter uncertainties, external disturbances and even actuator faults are presented. The results
are compared in terms of tracking accuracy, robustness and energy consumption.

The rest of this paper is organized as follows. The AUV model dynamics is briefly described
in Section 2. In Section 3, the design procedure of FAESO and its convergence analysis are given.
The design of FAESO-based FADSC and the stability of the entire control system scheme are presented
in Section 4. Comparative simulations are carried out in Section 5. Finally, conclusions are drawn
in Section 6.

2. Model Dynamics

The AUV physical model is illustrated in Figure 1. The model is first introduced in [40] but only
includes depth dynamics. To describe the dynamics of the AUV system, two frames of reference are
introduced: the body-fixed frame (OB, XB, YB, ZB) and the Earth-fixed frame (OE, XE, YE, ZE).

Figure 1. AUV model with body-fixed frame (OB, XB, YB, ZB) and Earth-fixed frame (OE, XE, YE, ZE).

Due to the effect of the buoyancy blocks, the pitch and roll motions are assumed to be intrinsically
stable, which reduced the degree of freedom of our model to four. Similar to [36,37], using SNAME
notation and the representation in [4], our 4-DOF AUV model dynamics can be described as follows.{

η̇ = J (η) υ

Mυ̇ + C (υ) υ + D (υ) υ + g (η) = τ̄ + τ̄d
(1)

where η = [x, y, z, ψ]T represents the position and yaw angle, while υ = [u, v, w, r]T represents the
translational velocities in surge, sway and heave motions and the angular velocity in yaw motion,
respectively. M, C (υ) , D (υ) ∈ R4×4 denotes the inertia matrix (including the effects of added mass),
the Coriolis-centripetal matrix and the hydrodynamic damping matrix, respectively. g ∈ R4×1 is the
vector of forces and moments caused by gravity and buoyancy. τ̄ = [τ̄1, τ̄2, τ̄3, τ̄4]

T is the control input,
and τ̄d = [τ̄d1, τ̄d2, τ̄d3, τ̄d4]

T is the external disturbance caused by ocean currents, waves and winds.
J (η) is the transformation matrix between the body-fixed frame and Earth-fixed frame, represented in
Euler angles as

J (η) =


cos (ψ) − sin (ψ) 0 0
sin (ψ) cos (ψ) 0 0

0 0 1 0
0 0 0 1

 (2)
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To be more specific, the inertia matrix is expressed as

M = diag{m11, m22, m33, m44} (3)

where m11 = m − Xu̇, m11 = m − Xu̇,m33 = m − Zẇ and m44 = Iz − Nṙ. m is the total mass the
AUV system and Iz is the the moment of inertia about yaw rotation. X∗, Y∗, Z∗, N∗ represent the
corresponding hydrodynamic coefficients.

The Coriolis–centripetal matrix is defined as

C (υ) =


0 0 0 − (m−Yv̇) v
0 0 0 (m− Xu̇) u
0 0 0 0

(m−Yv̇) v − (m− Xu̇) u 0 0

 (4)

The hydrodynamic damping matrix is given as

D (υ) = diag{d11, d22, d33, d44} (5)

where d11 = −Xu − X|u|u |u|, d22 = −Yu −Y|v|v |v|, d33 = −Zw − Z|w|w |w| and d44 = −Nr − N|r|r |r|.
The vector g is specified as

g =


0
0

− (P− B)
0

 (6)

where P, B is the gravity and buoyancy of the AUV system, respectively.
For the convenience of controller design, the AUV system (1) is transformed into following

expression.
Mη (η) η̈+ Cη (η̇, η) η̇+ Dη (η̇, η) η̇+ g (η) = τ + τd (7)

where
Mη = J−T M J−1 (η)

Cη (η̇, η) = J−T [C (υ)−M J−1 (η) J̇ (η)
]

J−1 (η)

Dη (η̇, η) = J−T D (υ) J−1 (η)

τ = J−T τ̄

τd = J−T τ̄d

Considering that in the practical situations, the system parameters mentioned above cannot be
measured accurately. Define that ∆M, ∆C, ∆D, ∆g are the uncertain parts for each parameter matrix
or vector. The entire system model can be rewritten as

Mη (η) η̈+ Cη (η̇, η) η̇+ Dη (η̇, η) η̇+ g (η) = τ + d (8)

where
d =τd − J−T∆M J−1 (η) η̈− J−T

[
∆C (υ)− ∆M J−1 (η) J̇ (η)

]
J−1 (η) η̇− J−T∆D (υ) J−1 (η)− ∆g (η)

Choose x1 = η, x2 = η̇ as state variable, and define x = [x1, x2]
T . The system (8) can be written in

the following form. 
ẋ1 = x2

ẋ2 = f (x) + u +
_

d
y = x1

(9)
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where
f (x) = Mx1(x1)

−1 (−Cx1 (x1, x2) x2 − Dx1 (x1, x2) x2 − g)
u = Mx1(x1)

−1τ
_

d = Mx1(x1)
−1d

The objective of this paper is to develop an antidisturbance control scheme using FAESO-based
FADSC method for the AUV system in the presence of measurement noise, parameter uncertainties,
external disturbances and even actuator faults to track the desired trajectory accurately.

3. Design of FAESO

In this section, a fuzzy adaptive linear extended state observer is designed for the estimation
of both system states and lumped disturbance. The purpose of the introduction of fuzzy logic in
the extended state observer is to keep a balance between estimation accuracy and noise reduction.
For fast changing disturbance, the observer bandwidth is expected to higher, but for slow changing
disturbance, low observer bandwidth is more suitable to avoid amplifying noise. The fuzzy logic
methods make this possible to realize. The design procedure is presented as follows.

Since the dynamics in each channel of our AUV model is different from each other, we design
FAESOs independently for each channel. The one-channel model of (9) is fomulated as

ẋ1,i = x2,i

ẋ2,i = fi (xi) + ui +
_

d i
yi = x1,i

(10)

where i = x, y, z, ψ denotes each channel.
The key idea of ESO is to treat the disturbance as an additional state variable. Thus, we define

x3,i =
_

d i as the extended state.

Assumption 1. It is assumed that the derivative of
_

d i should satisfy
∥∥∥∥_̇d i

∥∥∥∥ = ‖hi‖ < γi, where γi > 0 is a

positive constant.

After that, the augmented dynamics of system (10) is given as{
ẋi = Axi + B (ui + fi (xi)) + Ehi
yi = Cxi

(11)

with A =

 0 1 0
0 0 1
0 0 0

, B =
[

0 1 0
]T

, E =
[

0 0 1
]T

, and C =
[

1 0 0
]
. Then,

the FAESO for each channel is designed as

˙̂xi = Ax̂i + B (ui + f (x̂i)) + Li (yi − ŷi) (12)

where x̂i = [x̂1,i, x̂2,i, x̂3,i]
T is the estimation value of xi. Li = diag{3ωo,i, 3ω2

o,i, ω3
o,i} is the observer

gain matrix with ωo,i being the observer bandwidth of the ith channel. The estimation of
_

d i is denoted
as d̂i = x̂3,i. For the simplicity of expressions, the subscript i is omitted in the following formulations.

In the traditional LESO, the observer bandwidth ωo is fixed to constant. However, if ωo is
chosen too low, there will be a large estimation error for the disturbance. If ωo is chosen too high,
the measurement noise will be amplified and directly reflected on the estimated disturbance. Since the
estimated disturbance will be compensated to the controller, the performance of the controller will be
influenced by the chosen of the observer bandwidth. To improve the adaptability of traditional LESO,
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a fuzzy logic system is proposed to adjust ωo according to the absolute value of the output estimation
error. A simple choice for the fuzzy logic input directly may be the output estimation error. However,
since the output estimation error contains the measurement noise, directly using the absolute value
of the output estimation error as the input of fuzzy logic rule may result in undesired bandwidth
adaptation. To solve this problem, a first-order low-pass filter is adopted before entering the fuzzy
logic system, formulated as

ξ ˙̄ey + ēy = ey, ēy (0) = ey (0) (13)

where ey = y− ŷ and ēy is the filtering output estimation error. The absolute value of ēy is then treated
as the input of fuzzy logic system. The fuzzy logic system is designed as follows.

The number of the fuzzy subsets and fuzzy rules should be chosen properly to balance the
estimation performance and the computational costs. In this design, the input and output variables are
divided into five fuzzy subsets, namely VS (very small), S (small), N (normal), L (large) and VL (very
large). In particular,

∣∣ēy
∣∣ = {VS, S, N, L, VL} are the input variables and ωo = {VS, S, N, L, VL} are

the output variables, respectively. The fuzzy logic rules are defined as

Rule 1: If
∣∣ēy
∣∣ is VS, then ωo is VS.

Rule 2: If
∣∣ēy
∣∣ is S, then ωo is S.

Rule 3: If
∣∣ēy
∣∣ is N, then ωo is N.

Rule 4: If
∣∣ēy
∣∣ is L, then ωo is L.

Rule 5: If
∣∣ēy
∣∣ is VL, then ωo is VL.

The membership functions (MFs) for VS and VL should be chosen to cover maximum and
minimum values of the input and output range. In addition, the degree of the MFs corresponding to
the maximum and minimum input/output values should be 1. In practice, the range of the output
estimation error and the range of the observer bandwidth can be found through several experiments
implemented by the LESO with fixed observer bandwidth. If the initial estimation error is too large,
saturation functions can be used to limit the range. The values between the minimum and maximum
are divided into five intervals equally for each MF. Several shapes of MFs are suitable for this fuzzy
logic system, such as triangular, trapezoidal and bell-shaped functions [41]. Unified shapes of MFs
have the advantages in computational efficiency, simple memory, easy analysis, etc. Thus, the unified
triangular functions are chosen as the MFs for both input and output variables, as illustrated in
Figures 2 and 3. For system output, the centroid defuzzification method is adopted to convert the
fuzzy language into observer bandwidth [42], formulated as

ωo =

∫ ωomax
ωomin

ωoκoutdωo∫ ωomax
ωomin

κoutdωo
(14)

where κout represents the output membership value of ωo. The output bandwidth satisfies
ωomin ≤ ωo ≤ ωomax.

To analyze the stability of FAESO, define the estimation errors as x̃ = x− x̂ = [x̃1, x̃2, x̃3]
T and

ε = [ε1, ε2, ε3]
T =

[
x̃1, x̃2

ωo
, x̃3

ω2
o

]T
. Without loss of generality, we only analyze the stability of one

channel since the others are the same. By recalling (11) and (12), the estimation error dynamics can be
expressed as

ε̇ = ωo Āε + B
f (x)− f (x̂)

ωo
+ E

h
ω2

o
(15)

where Ā =

 −3 1 0
−3 0 1
−1 0 0

.
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Figure 2. Fuzzy input membership function of
∣∣ēy
∣∣.

Figure 3. Fuzzy output membership function of ωo.

For further analysis, the following assumption is given.

Assumption 2. Assume that all of the system state is bounded and function f (x) satisfies the Lipschitz
condition, i.e., there exists a known positive constant such that

‖ f (x)− f (x̂)‖ ≤ c ‖ε‖ (16)

Choose a Lyapunov candidate function as

V1 = εTPε (17)

where P satisfies ĀTP + PT Ā = −I. Based on Assumptions 1 and 2, the derivative of V can be
derived as

V̇1 ≤−ωo‖ε‖2 + 2
∥∥∥∥εTPB

f (x)− f (x̂)
ωo

∥∥∥∥+ 2
∥∥∥∥εTPE

h
ω2

o

∥∥∥∥
≤−ωo‖ε‖2 + 2c ‖ε‖ ‖PB‖ ‖ε‖

ωo
+ 2γ+ ‖PE‖ ‖ε‖

ω2
o

=−
(

ωo −
2cλ1

ωo

)
‖ε‖2 + 2γ+λ2

‖ε‖
ω2

o

=

(
2γ+λ2

ω2
o
−
(

ωo −
2cλ1

ωo

)
‖ε‖
)
‖ε‖

(18)

where λ1 = ‖PB‖ , λ2 = ‖PE‖. If ‖ε‖ > 2γ+λ2
a , where a is the minimum value of ωo

(
ω2

o − 2cλ1
)

with
the constraint ωo ∈ [ωomin, ωo max], V̇1 < 0 is satisfied. Therefore, the estimation error of FAESO can
converge to a small neighborhood asymptotically with proper observer bandwidth chosen by the
fuzzy logic system.
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4. Design of FAESO-Based FADSC

In this section, the main procedure of the design of FAESO-based FADSC is presented to solve
the trajectory tracking problem of the AUV system in the presence of parameter uncertainties,
measurement noise and external disturbance. The method is also designed independently for
each channel.

First, let x1d denote the desired trajectory, whose value and derivative ẋ1d are known. Then,
define the first error surface e1,i = x1,i − x1d,i with i = x, y, z, ψ denoting each channel. For simplicity,
the subscript i is also omitted in the following derivations. The derivative of ei is derived as

ė1 = ẋ1 − ẋ1d = x2 − ẋ1d (19)

Construct a virtual control law σ2 expressed as

σ2 = −k1e1 + ẋ1d (20)

where k1 is the controller gain to be tuned.
The main difference of DSC compared with the backstepping controller is the introduction of

the low-pass filter, which not only solves the “explosion of complexity” problem in the traditional
backstepping but also reduces the effect of measurement noise. Define x2d as the filtering signal of σ2

and a traditional first-order low-pass filter is designed as

ρẋ2d + x2d = σ2, x̄2d (0) = σ2 (0) (21)

where ρ > 0 is the time constant that will affect the performance of the DSC controller. For a large
filtering error, ρ should be large to obtain a rapid convergence. When the filtering error is close to zero,
ρ should be small to avoid the overshooting and reduce the effect of measurement noise. Therefore,
the fuzzy logic system is introduced to adjust the parameter ρ in an intelligent way.

First, define the filtering error as eσ = x2d − σ2. The absolute value of eσ is then regarded as the
input of the fuzzy logic system. For the same reason as described in the fuzzy logic system for the
observer, the input and output variables are divided into five fuzzy subsets. |eσ| = {VS, S, N, L, VL}
are the input variables and ρ = {VS, S, N, L, VL} are the output variables, respectively. The triangular
function are also chosen as the MFs for both input and output variables, as illustrated in Figures 4 and 5.
The fuzzy languages and intervals are defined the same as those in FAESO.

Figure 4. Fuzzy input membership function of |eσ|.



Sensors 2020, 20, 7084 10 of 22

Figure 5. Fuzzy output membership function of ρ.

The fuzzy logic rules are defined as

Rule 1: If |eσ| is VS, then ρ is VS.
Rule 2: If |eσ| is S, then ρ is S.
Rule 3: If |eσ| is N, then ρ is N.
Rule 4: If |eσ| is L, then ρ is L.
Rule 5: If |eσ| is VL, then ρ is VL.

For system output, the same defuzzification method as that in FAESO is adopted to convert the
fuzzy language into precise parameter ρ, formulated as

ρ =

∫ ρmax
ρmin

ρµoutdρ∫ ρmax
ρmin

µoutdρ
(22)

where µout represents the output membership value of ρ. The fuzzy output satisfies ρmin ≤ ρ ≤ ρmax.
The filtering virtual signal x2d will be regarded as the desired velocity for tracking. Thus,

define e2 = x2 − x2d as the second error surface and its derivative is given as

ė2 = ẋ2 − ẋ2d = f (x) + u +
_

d − ẋ2d (23)

However, since the velocity information and the lumped disturbance are assumed to be
unmeasurable, the nonlinear function f (x) cannot be obtained directly. Thus, the estimated states
provided by the FAESO are used to replace the nonlinear function. Finally, the control law is given as

u = − f (x̂)− d̂− k2 (x̂2 − x2d) + ẋ2d (24)

where k2 is the controller gain to be tuned.
Without loss of generality, only one channel of the stability of the closed-loop system is analyzed

since all of the designs are independent for each channel and their dynamics are similar. To analyze
the stability of the closed-loop system, the closed-loop error dynamics, combined with the equations
of error surface, filtering error and estimation error mentioned above, is summarized as follows.

ė1 = −k1e1 + e2 + eσ

ė2 = f (x)− f (x̂) + x̃3 − k2e2 + k2ωoε2

ėσ = − eσ
ρ + k1 ė1 − ẍ1d

(25)

Choose the following candidate Lyapunov function.

V2 =
1
2

eT
1 e1 +

1
2

eT
2 e2 +

1
2

eT
σ eσ +

1
2

V1 (26)
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Substituting (25) and (15) into the derivative of (26), we can derive

V̇2 =eT
1 (−k1e1 + e2 + eσ) + eT

σ ėσ −
ωo

2
‖ε‖2+

eT
2

(
f (x)− f (x̂) + ω2

o ε3 − k2e2 + k2ωoε2

)
+

εTPB
f (x)− f (x̂)

ωo
+ εTPE

h
ω2

o

(27)

It is assumed that there exists a positive number δ such that ‖k1 ė1 − ẍ1d‖ ≤ δ for the filtering error
dynamics. Based on Young’s inequality ab ≤ ap

p +
bq

q with 1
p + 1

q = 1,p > 1, we can further derive that

eT
σ ėσ ≤ −

eT
σ eσ

ρ
+ δ ‖eσ‖ ≤

1
2

δ2 +

(
1
2
− 1

ρ

)
‖eσ‖2

eT
1 e2 ≤

1
2
‖e1‖2 +

1
2
‖e2‖2, eT

1 eσ ≤
1
2
‖e1‖2 +

1
2
‖eσ‖2

eT
2 ε3 ≤

1
2
‖e2‖2 +

1
2
‖ε3‖2, eT

2 ε2 ≤
1
2
‖e2‖2 +

1
2
‖ε2‖2

eT
2 ( f (x)− f (x̂)) ≤ ceT

2 ‖ε2‖ ≤
c
2
‖e2‖2 +

c
2
‖ε2‖2

εTPE
h

ω2
o
≤ εTλ2

γ+

ω2
o
≤ 1

2
‖ε‖2 +

1
2

λ2
2

γ2

ω4
o

(28)

Based on the results of (28), we can further derive that

V̇2 ≤− k1‖e1‖2 +
1
2
‖e1‖2 +

1
2
‖e2‖2 +

1
2
‖e1‖2 +

1
2
‖eσ‖2 +

c
2
‖e2‖2 + ω2

o

(
1
2
‖e2‖2 +

1
2
‖ε3‖2

)
+

c
2
‖ε2‖2 − k2‖e2‖2 + k2ωo

(
1
2
‖e2‖2 +

1
2
‖ε2‖2

)
+

1
2

δ2 +

(
1
2
− 1

ρ

)
‖eσ‖2 − ωo

2
‖ε‖2

+
cλ1

ωo
‖ε‖2 +

1
2
‖ε‖2 +

1
2

λ2
2

γ2

ω4
o

=− (k1 − 1) ‖e1‖2 −
(

2k2 − k2ωo −ω2
o − c− 1

2

)
‖e2‖2 −

(
ωo

2
− cλ1

ωo
− 1

2

)
‖ε‖2

+

(
c
2
+

k2ωo

2

)
‖ε2‖2 +

ω2
o

2
‖ε3‖2 +

(
1− 1

ρ

)
‖eσ‖2 +

1
2

δ2 +
1
2

λ2
2

γ2

ω4
o

≤− β
(
‖e1‖2 + ‖e2‖2 + ‖eσ‖2 + ‖ε‖2

)
+ κ

(29)

where κ = 1
2 δ2 + 1

2 λ2
2

γ2

ω4
o

and β is the minimum value of k1 − 1, k2 −
(1+c+ω2

o+k2ωo)
2 , ω2

o+(k2+1)ωo+c−1
2 −

cλ1
ωo

and 1− 1
ρ , with the constraints of ρ ∈ [ρmin, ρmax] and ωo ∈ [ωomin, ωo max]. The parameters should

be tuned such that β > 0.
Using the fact that εTPε ≤ λmax (P) ‖ε‖2 with λmax (P) denoting the maximum eigenvalue of

matrix P, we have

V̇2 ≤− β

(
‖e1‖2 + ‖e2‖2 + ‖eσ‖2 +

εTPε

λmax (P)

)
+ κ

≤− αV2 + κ

(30)

where α = 2β min
{

1, 1
λmax(P)

}
.

From (30), we can obtain that

V2 (t) ≤ V2 (0) e−αt +
κ

α

(
1− e−αt) ≤ κ

α
, ∀t ≥ t0 (31)
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Inequality (31) implies that all of these errors, including tracking errors, filtering errors and
estimation errors, can converge to a small bounded area asymptotically. This completes the stability
analysis of the proposed method.

5. Simulations

To verify the effectiveness and advantage of the FAESO-based FADSC method for AUV system
subject to parameter uncertainties, measurement noises, external disturbance and even actuator faults,
two groups of simulations are implemented in this section. One simulation is for comparisons of the
observers, while the other is for the comparisons between the proposed entire control scheme and
other control schemes. The main parameters of our AUV model are partially given in Table 1.

Table 1. Main parameters of AUV in simulations.

Parameter Names Parameter Symbols Values

Total mass m 39.5 kg
The moment of inertia about z Iz 7.3 kgm2

Length L 1700 mm
Width W 600 mm
Height H 270 mm

Diameter of the body D 200 mm

It is worth noting that during the following two simulations, only output information can be
obtained. In addition, zero mean Gaussian white noise with a standard deviation of 10−5 m for position
feedback and zero mean Gaussian white noise with a standard deviation of 10−5 rad for yaw angle
feedback are added.

5.1. Comparison between Observers

To show the benefit of the FAESO compared with the fixed observer bandwidth ESO, the following
numerical simulation is conducted. To simulate the effect of the ocean current or wind, a manually
designed sinusoidal external disturbance is given as

τd = s


0.33 sin (0.5t) +0.52 cos (0.8t) + 0.15 sin (2t) cos (2t)
0.15 sin (0.5t) +0.52 cos (0.8t) + 0.33 sin (2t) cos (2t)
0.52 sin (0.5t) +0.15 cos (0.8t) + 0.33 sin (2t) cos (2t)
0.01 sin (0.8t) + 0.05 sin (2t) cos (2t)

 (32)

where s is a scalar factor to adjust the amplitude of the disturbance.
Three ESOs are compared in this simulation: fixed low-observer-bandwidth ESO (FxLESO),

fixed high-observer-bandwidth ESO (FxHESO) and the proposed FAESO. The fixed low bandwidth is
set to be 5 and the fixed high bandwidth is set to be 20. The parameters of the fuzzy logic system of
each channel in FAESO are chosen the same, listed as follows: eymin = 0, eymax = 2× 10−3, ωomin = 5,
ωomax = 25, ξ = 5. For a fair comparison, the same FADSC controller is used, and the estimated
velocity and disturbance are compensated for the controller. The simulations are divided into two
groups: small disturbance with s = 50 and large disturbance with s = 300. The root-mean-square
error (RMSE) of the estimation error is adopted as the criterion of the performance of different ESOs,
expressed as

RMSEO =

√∫ t

0

(
d̃2

x + d̃2
y + d̃2

z + wψd̃2
ψ

)
dt (33)

where wψ = 18
π is a scalar weight and d̃i, i = x, y, z, ψ, represents the error between the real disturbance

and the estimation for each channel. The simulation results are depicted in Figure 6.
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As can be seen from Figure 6, FxLESO can have a desired performance under small disturbance
since noise will not be amplified excessively. However, the FxLESO creates a larger estimation
error than the other two ESOs under large disturbance because the lack of tracking rate due to low
observer bandwidth. The situation is adverse for the FxHESO. FxHESO can perform well under large
disturbance, but it has a large estimation error under small disturbance attribute to the amplification
of the measurement noise. The proposed FAESO addresses the above problem in a certain range.
Under small disturbance, the FAESO can have a performance similar to that of the FxLESO, and under
large disturbance, the FAESO can adaptively change the bandwidth and have a performance similar to
that of the FxHESO. By introducing the fuzzy logic system, the FAESO is able to take the advantages of
both FxLESO and FxHESO and complement their disadvantages. The observer bandwidth is changing
differently under the two disturbances according to the fuzzy input, as illustrated in Figures 7 and 8.
It can be seen that under small disturbance, the fuzzy output remains small. When confronted with
large disturbance, the fuzzy output adaptively changes as the amplitude of the disturbance changes,
which satisfies our expectation. However, we notice that fuzzy adaptation also has a limitation since
the inputs and outputs of the fuzzy logic system are bounded. Thus, a more generalized unbounded
adaptation law should be further studied in the future.

Figure 6. Comparison between fuzzy adaptive extended state observer (FAESO) and fixed observer
bandwidth ESOs under small and large disturbance.

Figure 7. Fuzzy input (the absolute value of filtering estimation error
∣∣ēy
∣∣) about the x channel.
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Figure 8. Fuzzy output bandwidth changing process under small and large disturbance about the
x channel.

5.2. Comparison between Control Schemes

To verify the effectiveness and advantages of the proposed FAESO-based FADSC control scheme,
the AUV system is assigned to perform a trajectory tracking task with a reference trajectory starting
from x1 (0) = {0, 0, 0, 0}. The desired trajectory is given as follows.

x1d (t) =


sin (0.2t)
cos(0.1t)
sin (0.1t) + 2 cos(0.2t)
0.1 cos(0.1t)− 0.1 sin (0.1t)

(34)

For comparison, three extra control schemes are briefly introduced here, including PD controller,
super-twisting sliding mode controller (STSMC) and adaptive super-twisting sliding mode controller
(ASTSMC). The adaptive law used in ASTSMC is commonly seen in several researches, namely [16–18].

PD
τPD = Kpe1 + Kd (x̂2 − ẋ1d) (35)

STSMC
s = x̂2 − ẋ1d + K1e1

τST = K2|s|
1
2 sgn(s) + K3

∫ t

0
sgn(s)dt

τSTSMC = Mx1 (−K1 (x̂2 − ẋ1d)− e1 + ẍ1d − τST) + Cx1 x̂2 + Dx1 x̂2 + g

(36)

ASTSMC

s = x̂2 − ẋ1d + K1e1

τST = K2|s|
1
2 sgn(s) + K3

∫ t

0
sgn(s)dt

τASTSMC = Mx1 (−K1 (x̂2 − ẋ1d)− e1 + ẍ1d − τST) + Cx1 x̂2 + Dx1 x̂2 + g

(37)

with adaptive law

k̇2i =

{
ω
√

ς
2 sgn (|si| − µ) , k2i > km

η, k2i ≤ km

k3i = 2εk2i + β + 4ε2

(38)

where k2i, k2i ≥ 0 with i = 1, 2, 3, 4. K2 = {k21, k22, k23, k24} and K2 = {k21, k22, k23, k24} are the
gain matrices. ω, ς, µ, ε, β, km are all positive parameters to be tuned.

The comparisons are made between five control schemes: FADSC+FAESO, DSC+ESO, STSMC,
ASTSMC and PD. The controller parameters are chosen as follows. PD: Kp = {1000, 1000, 1000, 1000},
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Kd = {2000, 2000, 2000, 2000}; STSMC: K1 = {1, 1, 1, 1}, K2 = {3, 3, 3, 3}, K3 = {10, 10, 10, 10};
ASTSMC: K1 = {1.8, 1.8, 1.8, 1.8}, ω = 5, ς = 2, µ = 0.1, ε = 1, β = 1, km = 0.1, k2i (0) = 5; DSC+ESO:
K1 = {3, 2, 2, 2}, K2 = {20, 5, 5, 5}, ρ = 20, ωo = 5. The parameters for the proposed FADSC of each
channel are given as k1,x = 3, k1,y = 2, k1,z = 2, k1,ψ = 2, k2,x = 20, k2,y = 5, k2,z = 5, k2,ψ = 5.
Specially, the parameters of FAESO are the same as those in simulation A, and the the parameters
of the fuzzy logic system in FADSC of each channel are chosen the same, listed as eσmin = 0.02,
eσmax = 0.1, ρmin = 10, ρmax = 100. For fair comparisons, all the parameters remain unchanged during
the following simulations. For comparing the energy consumption of each controller, the integral of
control inputs (the applied forces and torques) are computed as follows.

INT =
∫ t

0

(
|τx|+

∣∣τy
∣∣+ |τz|+wτ

∣∣τψ

∣∣)dt (39)

where wτ = 1
0.3 is a scalar weight and τi, i = x, y, z, ψ, represents the control inputs for each channel.

In addition, the RMSE values of the tracking error are calculated by the following similar expression.

RMSET =

√∫ t

0

(
e2

x + e2
y + e2

z + wψe2
ψ

)
dt (40)

where wψ = 18
π is a scalar weight and ei, i = x, y, z, ψ, represents the error between the real disturbance

and the estimation for each channel.
To test the robustness and effectiveness of the proposed control scheme, three different scenarios

have been performed.

5.2.1. Scenario 1: Robustness toward External Disturbances

In this scenario, external disturbances and measurement noises are considered. The external
disturbances start at the beginning of the simulation and last for the whole process. The manually
added external disturbance is described by (32) with the scalar s = 200. The desired trajectory is given
by (34). The resultant tracking trajectories individually performed by each control scheme and the
RMSE values of tracking errors computed by (40) are illustrated in Figure 9. Moreover, the trajectories
for each channel are given in Figure 10, and the total energy consumptions calculated by (39) are
compared in Figure 11.

Figure 9. 3D trajectory tracking by means of different control schemes in Scenario 1. The actual
trajectories performed by each control scheme are shown at the left, and the RMSE values of each
trajectory are plotted at the right.
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Figure 10. Trajectory tracking in each channel by means of different control schemes in Scenario 1.

Figure 11. Comparison of INT between different control schemes in Scenario 1.

It can be seen from Figure 9 that the proposed control scheme (the solid green line) outperforms
the other control schemes in the aspect of tracking accuracy. Among all the control methods,
the PD controller performs the worst since it is not a robust method. The STSMC method shows its
robustness disturbances to some extent, but higher energy consumption is required, seen in Figure 11.
The introduction of adaptive law in ASTSMC indeed improves the performance, result in a better
performance and less energy consumption. However, although the ASTSMC method has a similar
performance in tracking accuracy and convergent rate as the proposed method, seen in Figure 10,
the energy consumption is more than twice larger than the proposed method, as shown in Figure 11.
The reason for this may be the influence of the measurement noise. Since the ASTSMC directly makes
use of the state feedback error to calculate the adaptive law, the measurement noise may somehow
exaggerate the controller gains. Differently, the fuzzy language is used to describe the state feedback
error in the proposed method, which is not quite sensitive to noise. Compared with the original
ESO-based DSC method, the proposed method also has improvements both in tracking accuracy and
energy consumption. It is worth noting that the parameters used between DSC+ESO and the proposed
method are all the same except the fuzzy logic part. Thus, it can be concluded that the incorporation of
fuzzy logic system into the original DSC+ESO control scheme indeed increases the robustness of the
entire system and reduces the effect of measurement noise.
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5.2.2. Scenario 2: Robustness toward External Disturbances and Parameter Uncertainties

In this scenario, both external disturbances and parameter uncertainties together with
measurement noises are added into the AUV system. This scenario is more close to the real practical
situation where the system parameters of the AUV cannot be measured accurately. The manually
added external disturbance is designed the same as that in Scenario 1. To simulate the parameter
uncertainties, the nominal parameters are decreased by 30%, to be more specific, ∆M = −0.3M,
∆C = −0.3C, ∆D = −0.3D and ∆g = −0.3g. It is worth mentioning that all the controller and
observer parameters remain the same as those in Scenario 1. The results are shown in Figure 12.
It can be noticed that the proposed method also outperforms the other method in this scenario using
criterion (40). By comparing Figures 12 with 9, the tracking accuracy of the DSC+ESO method
degrades greatly since it is not adaptive to the change of system parameters. However, the parameter
uncertainties have less effect on the proposed FADSC+FAESO method, which shows the robustness
of the proposed method in this scenario. In addition, the energy consumption comparison is plotted
in Figure 13. It can be found that the energy consumption in this scenario, except that of the
ASTSMC method, is less than that in Scenario 1. The ASTSMC method shows its robustness to
external disturbances and parameter uncertainties, but more energy is required in this scenario.
Comparing Figures 11 and 13, it can be seen that the increase of the energy consumption of the
ASTSMC method is much larger than that of the proposed method, which means that the ASTSMC
method needs more energy to obtain robustness toward parameter uncertainties than the proposed
method. Meanwhile, the estimated disturbance and the real added disturbance in each channel are
illustrated in Figure 14. It can be seen that the estimated disturbances are derivative from the real
added disturbances, especially in the beginning because the estimated disturbances by FAESO not
only contain the external disturbance but also the disturbances caused by the parameter uncertainties.

Figure 12. 3D tracking trajectory by means of different control schemes in Scenario 2. The actual
trajectories performed by each control scheme are shown at the left, and the RMSE values of each
trajectory are plotted at the right.

Figure 13. Comparison of INT between different control schemes in Scenario 2.
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Figure 14. Estimation of disturbances in each channel by FAESO in Scenario 2.

5.2.3. Scenario 3: Robustness toward External Disturbances, Parameter Uncertainties and
Actuator Faults

In this scenario, external disturbances, parameter uncertainties, actuator faults and measurement
noises are all considered. This is a more critical and common scenario that is more likely to happen
when the actuators collide or stuck with something in the real underwater environment. Although the
actuator faults are not explicitly considered in the controller design process, the following simulation
results still show that the proposed method is robust toward actuator faults to some extent. To make
a horizontal comparison, the external disturbances and parameter uncertainties are set to the same
configuration as those in Scenario 2. To simulate the actuator faults, one of the six actuators loses 50%
of its power after the 10th second, as illustrated in Figure 15.

Figure 15. The actuator fault on one of the six actuators in Scenario 3.

The simulation results are illustrated in Figure 16. It can be seen that the proposed method still
outperforms the others. By comparing Figures 9, 12 and 16, it can be discovered that the RMSE values
of the proposed method change little among the three scenarios. In contrast, the tracking accuracy
of the DSC+ESO method without fuzzy adaptation degrades greatly as the conditions become more
critical. This is a significant evidence of the benefits of fuzzy adaptation.



Sensors 2020, 20, 7084 19 of 22

Figure 16. 3D tracking trajectory by means of different control schemes in Scenario 3. The actual
trajectories performed by each control scheme are shown at the left, and the RMSE values of each
trajectory are plotted at the right.

As for the energy consumption, the results are shown in Figure 17. By comparing
Figures 11, 13 and 17, the proposed method consumes the least energy in all three scenarios. It can
be found that the AUV needs more energy to maintain its stability and robustness in Scenario 3
than the other two scenarios. The tracking accuracy of the STSMC method changes little in all
three scenarios as well. However, the energy consumption of ASTSMC method increases as more
disturbances are added. In contrast, the proposed method consumes less energy and meanwhile
reaches almost equivalent tracking accuracy and robustness. In Figure 18, the estimated disturbances
of each channel are also presented. It is obvious that the estimated disturbances largely differ from
the real added disturbances as soon as the actuator faults happen at the 10th second, especially in x
and ψ channel. The reason is that the FAESO can estimate the lumped disturbances which not only
include the external disturbance, but also contain the parameter uncertainties and the actuator faults.
Thanks to this characteristic, the proposed scheme manages to maintain its robustness. To summarize,
the proposed control scheme is verified effective and robust for AUV system subject to external
disturbances, parameter uncertainties, actuator faults and measurement noises at the same time.

Figure 17. Comparison of INT between different control schemes in Scenario 3.
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Figure 18. Estimation of disturbances in each channel by FAESO in Scenario 3.

6. Conclusions and Future Work

In this paper, an output-feedback FAESO-based FADSC is proposed to address the trajectory tracking
problem for AUV system in the presence of external disturbance, parameter uncertainties, measurement
noise and even actuator faults. The fuzzy logic systems are designed both for the time constant tuning of
the low-pass filter in DSC and the bandwidth of ESO. The stability of the entire system is analyzed using
Lyapunov’s direct method, and the convergence to a small vicinity is guaranteed. Comparative simulations
are conducted for comparing observers and controllers. The results show that the introduction of fuzzy
logic system in ESO can not only improve the adaptability to disturbances with various amplitudes,
but also reduce the effect of measurement noise. The proposed control scheme shows better robustness
than other control schemes under measurement noises, parameter uncertainties, external disturbances
and even actuator faults. In addition, higher accuracy can be also guaranteed compared with other
controllers. In terms of energy consumption, the proposed method is more energy-efficient than the
ASTSMC which has similar robustness and performance as the proposed method. However, there may be
some drawbacks that need to be studied further. For example, the parameter tuning of the fuzzy logic
system is time-consuming. In the future, more robust adaptive methods and systematic ways for parameter
tuning of the fuzzy logic system will be studied and the experiments in the real AUV will be considered.
In addition, more considerations, such as output saturations, unmodeled dynamics and measurement
delays should be considered in the future research.

Author Contributions: Conceptualization, S.K.; writing—original draft preparation, S.K.; software, S.K. and
Y.R.; validation, S.K. and Y.R.; methodology, S.K. and W.C.; writing—review and editing, S.K., W.C. and Y.R.;
supervision, W.C. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Key R&D Program of China under grant number
[2017YFB1302503] and the National Natural Science Foundation of China under grant number [61633002].

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:



Sensors 2020, 20, 7084 21 of 22

FAESO Fuzzy adaptive extended state observer
FADSC Fuzzy adaptive dynamic surface control

References

1. Ji-Yong, L.; Hao, Z.; Hai, H.; Xu, Y.; Zhaoliang, W.; Lei, W. Design and vision based autonomous capture of
sea organism with absorptive type remotely operated vehicle. IEEE Access 2018, 6, 73871–73884. [CrossRef]

2. Takagi, M.; Mori, H.; Yimit, A.; Hagihara, Y.; Miyoshi, T. Development of a small size underwater robot
for observing fisheries resources–Underwater robot for assisting abalone fishing. J. Robot. Mechatron.
2016, 28, 397–403. [CrossRef]

3. Gray, S. Are robots and satellites the future of fishries management? Fisheries 2010, 35, 48. [CrossRef]
4. Antonelli, G.; Antonelli, G. Underwater Robots; Springer: Berlin/Heidelberg, Germany, 2014; Volume 3.
5. Smallwood, D.A.; Whitcomb, L.L. Model-based dynamic positioning of underwater robotic vehicles:

Theory and experiment. IEEE J. Ocean. Eng. 2004, 29, 169–186. [CrossRef]
6. Xiang, X.; Chen, D.; Yu, C.; Ma, L. Coordinated 3D path following for autonomous underwater vehicles via

classic PID controller. IFAC Proc. 2013, 46, 327–332. [CrossRef]
7. Wang, Y.; Yan, W.; Gao, B.; Cui, R. Backstepping-based path following control of an underactuated

autonomous underwater vehicle. In Proceedings of the 2009 International Conference on Information and
Automation, Macau, China, 22–24 June 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 466–471. [CrossRef]

8. Kim, M.; Joe, H.; Kim, J.; Yu, S.c. Integral sliding mode controller for precise manoeuvring of
autonomous underwater vehicle in the presence of unknown environmental disturbances. Int. J. Control
2015, 88, 2055–2065. [CrossRef]

9. Xiang, X.; Yu, C.; Lapierre, L.; Zhang, J.; Zhang, Q. Survey on fuzzy-logic-based guidance and control of
marine surface vehicles and underwater vehicles. Int. J. Fuzzy Syst. 2018, 20, 572–586. [CrossRef]

10. Cui, R.; Yang, C.; Li, Y.; Sharma, S. Adaptive neural network control of AUVs with control input nonlinearities
using reinforcement learning. IEEE Trans. Syst. Man Cybern. Syst. 2017, 47, 1019–1029. [CrossRef]

11. Heshmati-Alamdari, S.; Nikou, A.; Dimarogonas, D.V. Robust trajectory tracking control for underactuated
autonomous underwater vehicles in uncertain environments. IEEE Trans. Autom. Sci. Eng. 2020. [CrossRef]

12. Wang, J.; Wang, C.; Wei, Y.; Zhang, C. Three-dimensional path following of an underactuated AUV based on
neuro-adaptive command filtered backstepping control. IEEE Access 2018, 6, 74355–74365. [CrossRef]

13. Li, H.; He, B.; Yin, Q.; Mu, X.; Zhang, J.; Wan, J.; Wang, D.; Shen, Y. Fuzzy optimized MFAC based on ADRC
in AUV heading control. Electronics 2019, 8, 608. [CrossRef]

14. Ismail, Z.H.; Putranti, V.W. Second order sliding mode control scheme for an autonomous underwater
vehicle with dynamic region concept. Math. Probl. Eng. 2015, 2015. [CrossRef]

15. Shtessel, Y.; Edwards, C.; Fridman, L.; Levant, A. Sliding Mode Control and Observation; Springer:
Berlin/Heidelberg, Germany, 2014.

16. Guerrero, J.; Torres, J.; Creuze, V.; Chemori, A. Trajectory tracking for autonomous underwater vehicle:
An adaptive approach. Ocean Eng. 2019, 172, 511–522. [CrossRef]

17. Shtessel, Y.; Taleb, M.; Plestan, F. A novel adaptive-gain supertwisting sliding mode controller: Methodology
and application. Automatica 2012, 48, 759–769. [CrossRef]

18. Borlaug, I.L.G.; Pettersen, K.Y.; Gravdahl, J.T. The generalized super-twisting algorithm with adaptive gains.
In Proceedings of the 2020 European Control Conference (ECC), Saint Petersburg, Russia, 12–15 May 2020;
IEEE: Piscataway, NJ, USA, 2020; pp. 1624–1631.

19. Cervantes, J.; Yu, W.; Salazar, S.; Chairez, I.; Lozano, R. Output based backstepping control for trajectory
tracking of an autonomous underwater vehicle. In Proceedings of the 2016 American Control Conference
(ACC), Boston, MA, USA, 6–8 July 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 6423–6428. [CrossRef]

20. Shao, X.; Liu, J.; Cao, H.; Shen, C.; Wang, H. Robust dynamic surface trajectory tracking control for a
quadrotor UAV via extended state observer. Int. J. Robust Nonlinear Control 2018, 28, 2700–2719. [CrossRef]

21. Baldini, A.; Ciabattoni, L.; Felicetti, R.; Ferracuti, F.; Freddi, A.; Monteriù, A. Dynamic surface fault tolerant
control for underwater remotely operated vehicles. ISA Trans. 2018, 78, 10–20. [CrossRef]

22. Chu, Z.; Zhu, D. 3D path-following control for autonomous underwater vehicle based on adaptive backstepping
sliding mode. In Proceedings of the 2015 IEEE International Conference on Information and Automation, Lijiang,
China, 8–10 August 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1143–1147. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2018.2880413
http://dx.doi.org/10.20965/jrm.2016.p0397
http://dx.doi.org/10.1577/1548-8446-35.1.48
http://dx.doi.org/10.1109/JOE.2003.823312
http://dx.doi.org/10.3182/20130902-3-CN-3020.00188
http://dx.doi.org/10.1109/ICINFA.2009.5204969
http://dx.doi.org/10.1080/00207179.2015.1031182
http://dx.doi.org/10.1007/s40815-017-0401-3
http://dx.doi.org/10.1109/TSMC.2016.2645699
http://dx.doi.org/10.1109/TASE.2020.3001183
http://dx.doi.org/10.1109/ACCESS.2018.2883081
http://dx.doi.org/10.3390/electronics8060608
http://dx.doi.org/10.1155/2015/429215
http://dx.doi.org/10.1016/j.oceaneng.2018.12.027
http://dx.doi.org/10.1016/j.automatica.2012.02.024
http://dx.doi.org/10.1109/ACC.2016.7526680
http://dx.doi.org/10.1002/rnc.4044
http://dx.doi.org/10.1016/j.isatra.2018.02.021
http://dx.doi.org/10.1109/ICInfA.2015.7279458


Sensors 2020, 20, 7084 22 of 22

23. Suarez Fernandez, R.A.; Parra R, E.A.; Milosevic, Z.; Dominguez, S.; Rossi, C. Nonlinear attitude control of a
spherical underwater vehicle. Sensors 2019, 19, 1445. [CrossRef]

24. Li, J.; Du, J.; Sun, Y.; Lewis, F.L. Robust adaptive trajectory tracking control of underactuated autonomous
underwater vehicles with prescribed performance. Int. J. Robust Nonlinear Control 2019, 29, 4629–4643. [CrossRef]

25. Liang, X.; Qu, X.; Wang, N.; Zhang, R.; Li, Y. Three-dimensional trajectory tracking of an underactuated
AUV based on fuzzy dynamic surface control. IET Intell. Transp. Syst. 2019, 14, 364–370. [CrossRef]

26. Liang, X.; Qu, X.; Wan, L.; Ma, Q. Three-dimensional path following of an underactuated AUV based on
fuzzy backstepping sliding mode control. Int. J. Fuzzy Syst. 2018, 20, 640–649. [CrossRef]

27. Qiang, C.; Yu-Rong, N.; Heng-Huo, Z.; Xue-Mei, R. Full-order sliding mode control of uncertain chaos
in a permanent magnet synchronous motor based on a fuzzy extended state observer. Chin. Phys. B
2015, 24, 110504.

28. Jiao, R.; Chou, W.; Rong, Y.; Dong, M. Anti-disturbance control for quadrotor UAV manipulator attitude system
based on fuzzy adaptive saturation super-twisting sliding mode observer. Appl. Sci. 2020, 10, 3719. [CrossRef]

29. Li, S.; Yang, J.; Chen, W.H.; Chen, X. Disturbance Observer-Based Control: Methods and Applications; CRC Press:
Boca Raton, FL, USA, 2014.

30. Huang, Y.; Xue, W. Active disturbance rejection control: Methodology and theoretical analysis. ISA Trans.
2014, 53, 963–976. [CrossRef] [PubMed]

31. Han, J. From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 2009, 56, 900–906.
[CrossRef]

32. Juan, L.; Ming, K.; Xing-hua, C.; Long-fei, L. AUV control systems of nonlinear extended state observer
design. In Proceedings of the 2014 IEEE International Conference on Mechatronics and Automation,
Tianjin, China, 3–6 August 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1924–1928. [CrossRef]

33. Gharesi, N.; Ebrahimi, Z.; Forouzandeh, A.; Arefi, M.M. Extended state observer-based backstepping
control for depth tracking of the underactuated AUV. In Proceedings of the 2017 5th International
Conference on Control, Instrumentation, and Automation (ICCIA), Shiraz, Iran, 21–23 November 2017; IEEE:
Piscataway, NJ, USA, 2017; pp. 354–358. [CrossRef]

34. Yin, Q.; Shen, Y.; Li, H.; Wan, J.; Wang, D.; Liu, F.; Kong, X.; He, B.; Yan, T. Fuzzy PID motion control
based on extended state observer for AUV. In Proceedings of the 2019 IEEE Underwater Technology (UT),
Kaohsiung, Taiwan, 16–19 April 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–4. [CrossRef]

35. Liu, C.; Luo, G.; Duan, X.; Chen, Z.; Zhang, Z.; Qiu, C. Adaptive LADRC-based disturbance rejection method
for electromechanical servo system. IEEE Trans. Ind. Appl. 2019, 56, 876–889. [CrossRef]

36. Liu, S.; Liu, Y.; Wang, N. Nonlinear disturbance observer-based backstepping finite-time sliding mode
tracking control of underwater vehicles with system uncertainties and external disturbances. Nonlinear Dyn.
2017, 88, 465–476. [CrossRef]

37. Guerrero, J.; Torres, J.; Creuze, V.; Chemori, A. Adaptive disturbance observer for trajectory tracking control
of underwater vehicles. Ocean Eng. 2020, 200, 107080. [CrossRef]

38. Precup, R.E.; Tomescu, M.L. Stable fuzzy logic control of a general class of chaotic systems. Neural Comput.
Appl. 2015, 26, 541–550. [CrossRef]

39. Turnip, A.; Panggabean, J. Hybrid controller design based magneto-rheological damper lookup table for
quarter car suspension. Int. J. Artif. Intell 2020, 18, 193–206.

40. Ai, X.; Kang, S.; Chou, W. System design and experiment of the hybrid underwater vehicle. In Proceedings of
the 2018 International Conference on Control and Robots (ICCR), Hong Kong, China, 15–17 September 2018;
IEEE: Piscataway, NJ, USA, 2018; pp. 68–72.

41. Lee, K.H. First Course on Fuzzy Theory and Applications; Springer Science & Business Media: New York, NY,
USA, 2004; Volume 27.

42. Palm, R. Robust control by fuzzy sliding mode. Automatica 1994, 30, 1429–1437. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/s19061445
http://dx.doi.org/10.1002/rnc.4659
http://dx.doi.org/10.1049/iet-its.2019.0347
http://dx.doi.org/10.1007/s40815-017-0386-y
http://dx.doi.org/10.3390/app10113719
http://dx.doi.org/10.1016/j.isatra.2014.03.003
http://www.ncbi.nlm.nih.gov/pubmed/24742958
http://dx.doi.org/10.1109/TIE.2008.2011621
http://dx.doi.org/10.1109/ICMA.2014.6885996
http://dx.doi.org/10.1109/ICCIAutom.2017.8258706
http://dx.doi.org/10.1109/UT.2019.8734374
http://dx.doi.org/10.1109/TIA.2019.2955664
http://dx.doi.org/10.1007/s11071-016-3253-8
http://dx.doi.org/10.1016/j.oceaneng.2020.107080
http://dx.doi.org/10.1007/s00521-014-1644-7
http://dx.doi.org/10.1016/0005-1098(94)90008-6
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Model Dynamics
	Design of FAESO
	Design of FAESO-Based FADSC
	Simulations
	Comparison between Observers
	Comparison between Control Schemes
	Scenario 1: Robustness toward External Disturbances
	Scenario 2: Robustness toward External Disturbances and Parameter Uncertainties
	Scenario 3: Robustness toward External Disturbances, Parameter Uncertainties and Actuator Faults


	Conclusions and Future Work
	References

