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Abstract: An automatic accurate T-wave end (T-end) annotation for the electrocardiogram (ECG)
has several important clinical applications. While there have been several algorithms proposed,
their performance is usually deteriorated when the signal is noisy. Therefore, we need new techniques
to support the noise robustness in T-end detection. We propose a new algorithm based on the signal
quality index (SQI) for T-end, coined as tSQI, and the optimal shrinkage (OS). For segments with low
tSQI, the OS is applied to enhance the signal-to-noise ratio (SNR). We validated the proposed method
using eleven short-term ECG recordings from QT database available at Physionet, as well as four
14-day ECG recordings which were visually annotated at a central ECG core laboratory. We evaluated
the correlation between the real-world signal quality for T-end and tSQI, and the robustness of
proposed algorithm to various additive noises of different types and SNR’s. The performance of
proposed algorithm on arrhythmic signals was also illustrated on MITDB arrhythmic database.
The labeled signal quality is well captured by tSQI, and the proposed OS denoising help stabilize
existing T-end detection algorithms under noisy situations by making the mean of detection errors
decrease. Even when applied to ECGs with arrhythmia, the proposed algorithm still performed
well if proper metric is applied. We proposed a new T-end annotation algorithm. The efficiency
and accuracy of our algorithm makes it a good fit for clinical applications and large ECG databases.
This study is limited by the small size of annotated datasets.

Keywords: T-end annotation; signal quality index; tSQI; optimal shrinkage

1. Introduction

The electrocardiogram (ECG) is a ubiquitous diagnostic tool for cardiovascular diseases.
One important clinical application is information about the QT interval, a measure of ventricular
repolarization. A prolonged heart rate corrected QT is associated with ventricular arrhythmia and
sudden death [1], and also used to study adverse drug reactions [2].

The accuracy of QT measurement directly depends on the ability to accurately determine the Q
onset and T offset. Compared with the Q onset, determination of the T-end is challenging. Nevertheless,
various techniques have been proposed for automatic T-end detection. This includes threshold
on the first derivative [3,4], threshold on an area connected by points around the T-wave [5-7],
wavelet transform [8,9], mathematical model [10], support vector machine [11], artificial neural
network (ANN) [12-14], hidden Markov model (HMM) [15,16], partially collapsed Gibbs sample
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and Bayesian [17], “wings” function [18], derivative curve [19], adaptive technique [20], TU complex
analyses [21], correlation analysis [22], and k-nearest neighbor [23]. While those algorithms are
widely applied, they are only validated on databases without severe noise contamination. It is thus
unclear how robust they are to the inevitable noise and artifacts. The emerging wide use of long-term
ECG recording that extends for days calls for robust automatic T-end annotation algorithms that
handle marked prolonged noise such as myogenic noise, electrode contact noise, motion artifacts,
and powerline interference [24,25].

In this report we propose a novel denoising tool to stabilize existing T-end annotation algorithms.
The niche of the algorithm is twofold. First, we defined a signal quality index (SQI) that is suitable for
the T-end annotation. This SQI describes the signal quality from a different perspective compared with
other SQI aiming for R peak detection. Second, we applied a recently developed denoise technique
called optimal shrinkage (OS) [26]. In our previous publication [27], we have demonstrated that
a better and more adaptive template for each cardiac cycle is obtained through OS, which helps
recover ECG morphology from noisy signals. However, we observed a morphology distortion after
the application of OS on clean signals, where “clean” means the noise is dominated by the beat to beat
variation. The noise level is thus overestimated and results in the distorted templates of cardiac cycle.
Therefore, in this work, we incorporated the SQI thresholding step, such that the OS is only applied to
signals with low signal quality. This part will be further addressed in the discussion section. Moreover,
for those arrhythmic beats, we demonstrated that our algorithm still recovers their morphology when
the proper metric between different cardiac cycles is selected.

2. Materials and Methods

2.1. Three Existing T-End Detection Algorithms

To keep things self-contained, we summarize three commonly applied T-end detection algorithms
here. The algorithms are referred to by the last name of the first author, including Zhang [5], Carlos [6],
and Martinez [8]. All these three algorithms require the locations of the QRS complex and T-wave
before estimating T-end points. Both Zhang’s and Carlos’s algorithms are based on the idea that
inside the designed searching window related to the detected R peaks, the maximum value of an
area function is reached over the T-end point. Martinez’s algorithm uses dyadic wavelet transform
to find the peaks and limit points of QRS cycles, P waves, and T waves. The T-end points are
defined as the local maximum or minimum in the wavelet transform with dilation factor 24 or 2.
These algorithms have been evaluated on the PhysioNet QT database [28] with low T-end detection
errors. The performance of Martinez’s algorithm has also been validated on the dataset 3 of the
CSE multilead measurement database (CSEDB) [29]. The MATLAB package of Zhang's algorithm
can be downloaded at http://www.irisa.fr/sosso/zhang/biomedical/ and Martinez’s algorithm can be
downloaded at https://github.com/marianux/ecg-kit. We coded Carlos’s algorithm according to the
original paper’s description. For T-wave locations, Zhang’s and Martinez’s algorithms have their
built-in algorithms, so we simply adopted them. The T-wave locations estimated by Martinez were
applied in Carlos. The other parameters of each algorithm were tuned in the same settings described
in the original papers.

2.2. Signal Quality Index (SQI) for T-End Detection

Signal quality index (SQI) has been a critical quantity in the analysis of biomedical time series.
It could be considered as an index summarizing the relationship between noise, artifact, and the signal
of interest. In the ideal situation, if both the clean signal and the noise are clearly defined, the concept
of signal-to-noise ratio (SNR) is a common approach to define SQI. However, usually it is challenging
to get the clean signal and the noise or artifact from the given noisy signal, particularly when there is
only one channel. Therefore, we need a different approach to determine the SQL


http://www.irisa.fr/sosso/zhang/biomedical/
https://github.com/marianux/ecg-kit

Sensors 2020, 20, 7052 30f17

There have been various ideas in the past decades to define SQI for different biomedical
signals [30-33]. The bSQI proposed by Li et al. [32] is a typical example. They applied two different R
peak detection algorithms to the given ECG signal and obtained two sets of estimated R peak locations.
If an ECG signal has a high signal quality, the estimated R-peak locations should be the same, or at
least similar. This similarity is quantified as the SQL. This idea is simple but brilliant, and it can help
us understand the quality of a given ECG signal. However, it only tells us the quality of the given
ECG signal in the sense of R peak detection but not from all aspects. Specifically, it may not tell us
how good the P wave is, or how clean the T wave is. See Figure 1 for an example. In this example we
have a noisy ECG recording. Although R-peak locations estimated by two different R-peak detection
algorithms, the Elgendi’s [34] and jqrs [30] algorithms, are similar, visually the T waves are not of high
quality. Quantitatively, the T-end’s estimated by Zhang’s and Martinez’s algorithms are quite different.
In summary, the bSQI only describes the signal quality from the aspect of R peak locations, and it
cannot well manifest the signal quality for T-wave, and hence the T-end location.
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Figure 1. The comparison of bSQI and tSQI. The black line is the ECG signal from the Ultra-Long-Term
ECG recordings Database with intermediate quality. The intersection of x-axis and blue (magenta)
vertical lines are the time stamps of R peak locations estimated by Elgendi’s algorithm [34] (jgrs [30]).
The intersection of x-axis and red (green) vertical lines are the time stamps of T-end locations estimated by
Zhang's algorithm (Martinez’s algorithm). The magenta vertical lines are shifted right by 10 milliseconds
to avoid the overlap with blue lines. The value of bSQI is 0.99, and the value of tSQI is 0.66, which are
calculated by matching points from two different algorithms as the same point if the time difference
between them is smaller than 50 ms.

Motivated by this observation, we propose a new SQI for the automatic T-end detection here.
Similar to the idea behind the bSQI, we take two sequences of T-end locations detected by two T-end
detection algorithms, and then determine the SQI in the following way. For each ECG segment,
we assume that the R peak detection algorithm performs well and use the detected R peaks to estimate
T-end points by two chosen algorithms. Denote A € N to be the number of detected R peaks and hence
estimated T-end points. Given a grace period y > 0, we consider that two chosen algorithms match if
the time difference between the two estimated T-ends is smaller than y. Assuming we have B € N of
T-end points that match, we denote a value tSQI € [0,1] as

B
which is the desired SQI for the T-end detection. When tSQI = 1, it means that the two sequences of
estimated T-end locations are perfectly matched, and hence the T-end quality is high; a lower tSQI
stands for less matched estimations, and hence a lower T-end quality. In this work, we chose Zhang’s

and Martinez’s algorithms to determine the tSQI in the following sections.

2.3. Proposed Algorithm

We detail the propose automatic T-end annotation algorithm, step by step, here.
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2.3.1. Step 0: Preprocessing

Given an ECG recording, we resample it at the sampling rate 250 Hz. To remove the baseline
wandering, a Butterworth lowpass filter of order 4 with the cut-off frequency ;s Hz is applied.
Since the source of data is unknown, we apply two notch filters with the notches centered at 50 and 60
Hz to reduce the powerline interference. The recording after the preprocessing is denoted as z € RN,
where N € N is the number of samples.

2.3.2. Step 1: Estimate QRS Complex

There have been several works [30,34,35] discussing how to detect the location of QRS complexes.
Since the T-end detection is our focus, here we simply use QRS locations estimated by Elgendi’s
algorithm before applying any T-end detection algorithm. We denote the collected timestamps of
estimated R-peak locations as

R = {R(})}i, @

where R(i) is the timestamp of the i-th detected R peak and n € N is the total number of estimated
R peaks.

2.3.3. Step 2: Evaluate tSQI

For the i-th «cardiac cycle, we evaluate its tSQI on a signal segment
[z(R(i) = 1250), ..., z(R(i) 4+ 1250)] " with a grace period y. Given a threshold number g € [0, 1], if the
tSQI > g, the final estimated T-end of each cardiac cycle is determined by applying the desired T-end
detection algorithm. Otherwise, the following steps are applied, and the final estimation would be
made in Step 4.

2.3.4. Step 3: Denoise Low Quality Cardiac Cycles by Optimal Shrinkage

e  Construct ECG templates. On the i-th cardiac cycle determined by the i-th R peak, we find a window
large enough, so that the whole P-QRS-T waveform is covered. For instance, denote w € N to be
the rounding number of the 95% quantile of R to R intervals in R, and denote the corresponding
ECG segment over the cardiac cycle as

si = [z(R(i) = Ly),...,z(R(i) + Ry)]" €R? )

where Ly, € N, Ry € N, and p := Ly + Ry + 1. A library for the ECG template is built and
denoted as

L= (s, 3)

e Remove nuisance variables by optimal shrinkage. Define a metric d(s,, sp) between the a-th and b-th
template. For instance, we can use R-R interval difference in respect to the cycles or I, norm
lls; — spll;2 as the metric. For the i-th cardiac cycle s;, from the library £ we selecte & € N neighbors
that have the smallest difference. We then construct a data matrix S of size p X ( & + 1) consisting
of the i-th cardiac cycle in the first column and all other neighbors in the remaining & columns.
We assume that the S can be decomposed into two parts, S = X + N, where X is the clean data
matrix containing QRS cycles and N is the matrix modeling noise. We also assume each entry of N
has independent and identical noisy component with zero mean and the same variance and finite
fourth moment, and X has a low rank. Under these assumptions, there is an elegant solution based
on the random matrix theory proposed by Gavish and Donoho [26] to recover X from S, which is
named as optimal shrinkage (OS). We apply OS on the data matrix S in the following manner:



Sensors 2020, 20, 7052 50f17

Suppose % < 1 (if not, we simply take the transpose of S and apply the same approaches on S' as
the following). Denote the SVD of the data matrix S as

T
S = Z Aiu;v!, (4)
i=1

where 7 is the matrix rank, »; and v/ are the i-th left and right singular vector corresponding to the
singular value A;, and A 2 A2 > ... > Ay. We normalize S with the noise level estimated by

n P
0= J LYY i) -5(0)2, (5)
Pidio
and
5(k) = median {s1(k),...,sn(k)}, (6)

where k =1,...,p. Then, the denoised data matrix is estimated from S by OS and denoted as

r

._1]* * }\ ’

' = o) w(2 o, @)
if

where n* : [0,00) — [0, 00) is the optimal shrinker. In this work, we let n* be the optimal shrinker that
minimize the asymptotic loss with respect to the operator norm, such that

A N \/2_ VL
() ﬁ\/A B-1+/(\-p-1)-4p, ®)

when A > 1+ /B and n*(A) = 0 otherwise. The first column of §' is the estimated QRS complex of s;,
denoted as’s;. Applying OS on every cardiac cycle in £, we acquire a denoised library and denote it as

L:={s; }?:1- )
2.3.5. Step 4: Evaluate T-End Locations

As mentioned earlier, T-end detection algorithms of Zhang, Carlos, and Martinez are chosen for
T offset delineation. Chosen T-end detection algorithm is applied in the library £, and locations of
T-end are estimated for each denoised cardiac cycles. Based on the R-peak locations R estimated in
Equation (2), estimated T-end locations on the signal z are the final output of the proposed algorithm.

2.4. QT Database

The first database we considered is a common benchmark database, the PhysioNet QT database [28].
It includes ECG signals chosen from the MIT-BIH database [36] and the European ST-T database [37].
The database contains 105 subjects. Each subject has fifteen-minutes recordings of 2-channel ECG
signals sampled at the 250 Hz, which include a broad variety of QRS and ST morphology. A subset of
cardiac cycles in the database have been manually annotated with waveform boundaries, and only
a small portion of signals was annotated for T-end. The manual annotations were made by two
cardiologists using an interactive graphic display to view both signals simultaneously. The first
cardiologist (Cardio 1) made annotations on all 105 subjects, and the second cardiologist (Cardio 2)
made annotations on only 11 subjects. Following the same approach in Zhang’s work [5], we separated
the QT database into three sets for analysis according to which cardiologists made the annotations.
The first set (Set 1) contains all 105 subjects, in which we considered the 3542 annotations made by
Cardio 1 as the true T-end points. The second set (Set 2) is from the 11 subjects annotated by both
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Cardio 1 and Cardio 2, in which we considered the 487 T-end points annotated by Cardio 1 as the
ground truth. The third set (Set 3) also includes the same 11 subjects as Set 2, but the ground truth is
the 402 annotations made by Cardio 2.

To evaluate our proposed algorithm under various noisy environment, we considered two additive
noise models, the random Gaussian noise and the ARMA(1,1) noise [38], and contaminated the QT
database by these noises. Assume the original signal is z € RN, where N € N is the number of samples.
The Gaussian noise was generated by N random points following the Gaussian distribution with mean
0 and variance 1. The ARMA (1,1) noise was generated by the ARMA (1,1) process:

Xt - cbXt—l =c+ Zt + eZt—ll

where t = 1,..., N is the sampling point, X; is the ARMA (1,1) process sampled at point ¢, Z; is a
random variable following Student t-4 distribution sampled at point t, and ¢, ¢ and 6 are selected
constant. Wesetc =0.5, ¢ =0.5and 8 = —0.5 for following evaluation. The desired ARMA (1,1) noise
at point t with variance 1 was then acquired by

X;/SD({x:Y,),

where SD({Xt}iV: 1) is the standard deviation of the sequence {Xt}{\’: 1 Define a constant S

S .= \/172/105NR/20,

where SNR is the desired signal to noise ratio and P, is the power of original signal. We then multiplied
both Gaussian and ARMA (1,1) noise by S and added them to z to create the noisy signal with desired
SNR. We evaluated SNR of 10 dB and 5 dB in the following evaluation.

2.5. 14-Day ECG Recordings Database

Our database of single-lead, ultra-long-term ECG recordings comprised of four recordings; each
recording is approximately two weeks (14 days) in length. The data was recorded using the ZIO® Patch
cardiac monitor (iRhythm Technologies, Inc., San Francisco, CA, USA) at a sampling rate of 200 Hz.
The underlying information of the subjects was unknown to us. Across the four 14-day recordings,
we randomly selected 51, 11, 24, 80, and 32 segments of 10 s for manual review and annotation at
the Epidemiological Cardiology Research Center (EPICARE Center, Wake Forest School of Medicine,
Winston Salem, NC, USA). The ECG core laboratory was provided with the automated T annotation
generated by our algorithm, and the results were reviewed by the ECG core readers for accuracy and
editing. The quality of each ECG segment was also documented as part of the annotation process.
In total, 173 segments were labeled good, 16 segments were labeled intermediate, and 9 segments were
labeled bad.

2.6. Evaluation

We evaluated our proposed T-end annotation algorithm, which is an enhancement of Zhang,
Carlos, or Martinez, on the above-mentioned databases. For each ECG recording, we cropped a
segment for analysis, which started from 1 min before the first T-end annotations and ended at 1 min
after the last T-end annotation. The R-R interval difference between cardiac cycles was applied as
the metric d(s,, sp). Since our focus was automatically annotating T-end, the R peaks were assumed
to be known. The T-end detection error is the time difference between the automatically detected
T-end points and the provided annotations. In the QT database, since each subject has two recordings,
the estimated T-end points were chosen from the best result that minimized the detection error among
the two computed T-end positions. This approach is the same as that used by Zhang and Carlos.
The justification of this approach is that the cardiologists made their annotations by evaluating both
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ECG records. For the Ultra-Long-Term ECG recordings database, since there is only one channel for
each recording, we simply calculated the estimated T-end locations and provided annotations.

In our previous work, the effects of noise robustness and morphology recovery by optimal
shrinkage and other template estimation algorithms had been compared for the purpose of extracting
fetal ECG from the trans-abdominal maternal ECG [27] over the Physionet CinC Challenge 2013
database [39]. These methods included independent component analysis (ICA), principal component
analysis (PCA), least mean square (LMS), recursive least square (RLS), echo state neural network
(ESN), and extended Kalman filter (EKF). To further demonstrate the strength of optimal shrinkage,
in this work we compared with another ECG denoising method named wavelet shrinkage [40,41].
The idea is similar to the optimal shrinkage, where the empirical wavelet coefficients are shrunk,
and the signals are recovered by the inverse wavelet transform. The main difference is that in OS, the
basis is adaptive to the data, while in the wavelet shrinkage, the basis is predetermined. We compared
these two algorithms on the QT database with the additive Gaussian or ARMA (1,1) noise. The wavelet
shrinkage is applied after Step 0: preprocessing, where wavelet shrinkage is applied on the denoised
signal z € RN following the setup detailed [42]. Then, Step 1 and Step 4 are applied for R peaks and T
offset delineation.

To evaluate the performance of each algorithm, the mean (ME) for the absolute values of detection
errors of each recording were calculated. Then, the median and MAD and 2.5-97.5% quantile interval of
ME over all recordings were computed and reported. To evaluate if the proposed OS approach improved
the existing algorithm, we applied the Wilcoxon signed rank test with the statistical significance level
set to 0.05.

3. Results

The parameters of proposed algorithm were set as follows. We set the grace period y = 50 ms
for the tSQI evaluation. Moreover, we set the cutoff frequency for low pass filter as [,;y = 0.5 Hz,
window length Ly, = Ry = [%-l, where [x] is the smallest integer larger than x, and number of
neighbors £ = 19. The evaluation was performed on MATLAB 2019b, Microsoft 10 system,
Intel i7-6700HQ CPU@2.60GHz 4 cores, and 16GB RAM. The code can be downloaded at: https:
//github.com/MagineZ/Tend-Project.

3.1. t5QI and Quality in the 14-Day ECG Database

The comparison of the signal quality provided in the 14-day ECG database and the proposed tSQI
in the ultra-long ECG recording database is reported in Table 1. We observe that the ECG signals labeled
as good (or bad) quality have higher (or lower) tSQI’s. If we view label good as 1, label intermediate as
3, and label bad as 5, the correlation coefficient between the tSQI and labeled quality is —0.71.

Table 1. The relationship between the tSQI and quality.

Labeled Quality Good Average Bad
tSQT 0.98 + 0.06 0.84 +£0.12 0.68 + 0.08

Note: If we view label good as 1, label intermediate as 3, and label bad as 5, the correlation coefficient between the
tSQ and labeled quality is —0.71.

3.2. Noise Suppression

We examined if the proposed OS denoising could help stabilize existing T-end detection algorithms
under various noise types and noise levels. The results for different SNR levels are reported in Table 2
for the Gaussian noise and ARMA (1,1) noise respectively. It is clear that the proposed OS algorithm
helps improve the traditional algorithms and outperforms wavelet shrinkage. Wilcoxon signed rank
test over the 20 rounds’ rejects the null hypothesis with statistical significance. To appreciate how the
OS recovers the ECG signal, some examples are shown in Figures 2 and 3. We see that the deviations
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of estimated T-end from the annotation is obvious on the signals without OS applied, and the OS helps
recover the ECG morphology and thus reduces the automatic annotation errors. This suggests the
potential of the proposed denoise algorithm to help stabilize existing algorithms.
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Figure 2. Comparison of different T-end detection algorithms with or without optimal shrinkage when
the signal is contaminated by the additive Gaussian noise. In each subplot, the black line is the ECG
signal from the first channel of a subject in the QT database with additive noise, the light blue line is
the denoised ECG signal by the optimal shrinkage, and the magenta line is the original ECG signal
without adding any noise. The red (green) vertical lines indicate the estimated T-end by the chosen
detection algorithm on noisy signals without (with) OS applied. The deep blue vertical line indicates
the annotated T-end by Cardio 1. The plots in the first (second) row are the results when the SNR is
10 dB (5 dB). The chosen T-end algorithm in the first, second and third column is Zhang's, Carlos’s,
and Martinez’s algorithms respectively. The case index of each plot is in the title.

sel100 sel116 sel123

1.5 0.5 1
; 0 M&LM 05
0.5 -0.5 0
0 -1 -0.5
A
o5 >1v5—~_~/\[\’__"./\ P
-1 -2 -1.5
-1.5 -2.5 -2
20.4 20.6 20.8 21 298 30 30.2 30.4 15.6 15.8
Time(second) Time(second) Time(second)
sel117 sel221 sel230
2 0.5 1
0.5
1 0
0
0 -0.5 -0.5
-1
-1 -1
-1.5
2 -1.5 -2
9.6 9.8 10 10.2 30.4 30.6 30.8 31 33.2 334
Time(second) Time(second) Time(second)

Figure 3. Comparison of different T-end detection algorithms with or without optimal shrinkage when
the signal is contaminated by the additive ARMA (1,1) noise. In each subplot, the black line is the ECG
signal from the first channel of a subject in the QT database with additive noise, the light blue line is
the denoised ECG signal by the optimal shrinkage, and the magenta line is the original ECG signal
without adding any noise. The red (green) vertical lines indicate the estimated T-end by the chosen
detection algorithm on noisy signals without (with) OS applied. The deep blue vertical line indicates
the annotated T-end by Cardio 1. The plots in the first (second) row are the results when the SNR is
10 dB (5 dB). The chosen T-end algorithm in the first, second and third column is Zhang's, Carlos’s,
and Martinez’s algorithms respectively. The case index of each plot is in the title.
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Table 2. Evaluation of algorithms on the QT database under contamination of Gaussian/ARMA (1,1) noise.

SNR Zhang
Gaussian ARMA (1,1)
q=0 WS q=09(0S) q=0 WS q=0.9(0S)
104dB 22.32 +0.26 20.15+0.24 17.43 +0.19 ** 22.39 +0.22 20.15 +0.22 17.53 £ 0.17 **
et 1 [21.47,22.99] [19.58, 20.75] [16.97,17.76] [21.47, 22.60] [19.64, 20.74] [17.16,18.01]
€ 5dB 29.22 +0.51 23.84 +0.33 18.35 + 0.44 ** 28.55 + 0.38 24.13 £ 0.35** 18.57 + 0.49 **
[28.12, 30.] [22.82, 24.25] [17.62,19.30] [27.97,29.57] [23.62, 25.02] [17.71,19.65]
104dB 17.91 £ 0.67 16.81 + 0.51 15.35 £ 0.47 ** 1795+ 0.75 16.65 + 0.56 ** 15.20 + 0.46 **
Set2 [15.95, 20.04] [15.65, 17.85] [14.07, 16.16] [15.68,19.24] [15.87,18.78] [14.41,16.92]
< 5dB 23.96 + 0.61 19.68 + 0.62 16.08 + 0.43 ** 2323 +1.01 19.76 + 0.88 15.66 + 0.70 **
[22.85, 25.55] [18.49, 21.16] [15.04,17.18] [21.48, 26.42] [18.21,21.78] [15.09, 18.89]
10dB 21.85 +1.63 19.81 £1.22 20.33 +0.50 * 22.36 + 1.06 20.22 +0.60 * 20.07 +0.57 *
Set3 [20.06, 27.38] [18.55, 23.38] [18.74,21.09] [19.97,24.42] [17.87,22.54] [18.79,21.91]
© 5dB 26.85 +1.16 21.40 + 1.69 2143 +0.62 ** 26.87 +1.33 22.77 +1.30 20.82 £ 0.67 **
[24.99, 30.09] [19.13, 27.01] [19.52, 23.02] [23.33, 31.10] [19.36, 25.74] [19.96, 24.22]
Carlos
Gaussian ARMA (1,1)
q=0 WS q=0.9(0S) q=0 WS q=0.9(0S)
104B 25.12 +0.34 24.70 + 0.34 22.78 +0.33 ** 25.82 +0.28 25.36 + 0.26 2298 +0.28 **
Set1 [24.41, 25.93] [24.07, 25.42] [22.18, 23.58] [25.13, 26.51] [25.03, 26.00] [22.35, 23.86]
. 5dB 3227 +0.41 29.12 + 0.30 23.19 + 0.45 ** 32.53 + 0.57 29.75 + 0.45 23.39 +0.27 **
[31.28, 32.86] [28.31, 29.63] [21.96, 24.44] [30.83, 34.14] [28.69, 31.01] [22.53, 23.90]
104dB 21.20+0.71 20.10 + 0.56 19.49 + 0.79 ** 22.01+0.93 20.59 + 0.67 19.56 + 0.63 *
Set2 [19.01, 22.22] [17.56, 20.61] [16.81,21.47] [19.18, 23.53] [19.09, 22.97] [18.67, 21.45]
< 5dB 25.62 +0.75 23.14+£0.75 19.99 +1.10 ** 26.61 +1.10 25.46 +0.70 20.29 + 0.87 **
[23.45, 26.81] [20.43, 24.67] [16.41,22.16] [24.91, 29.69] [23.20, 26.88] [18.32, 22.28]
10dB 19.96 + 0.98 1715 +1.28 14.67 + 0.54 ** 20.33 +1.14 18.32 £1.25 14.62 +0.78 **
Set3 [17.89, 24.02] [14.37,19.65] [13.22,15.99] [18.04, 22.90] [15.35,20.59] [13.76,17.12]
< 5dB 26.12 +1.24 21.15 + 1.30 16.03 + 0.83 ** 27.21+174 23.72 + 1.06 15.67 + 0.92 **
[23.56, 31.77] [18.50, 24.36] [14.07,17.69] [23.51,31.32] [20.58, 26.85] [13.51, 18.45]
Martinez
Gaussian ARMA (1,1)
q=0 WS q=0.9(0S) q=0 WS q=0.9(0S)
10dB 26.64 +0.29 25.74 +0.26 22.86 + 0.25 ** 26.35 +0.22 25.47 +0.25 2291 +0.26 **
Set1 [26.16, 27.29] [25.01, 26.25] [22.22,23.54] [25.77,26.80] [24,75 25.85] [22.13, 23.15]
¢ 5dB 33.87 +0.29 30.38 + 0.30 23.39 + 0.34 ** 33.51 +0.24 30.17 + 0.30 23.43 +0.48 **
[33.04, 34.38] [29.40, 31.35] [22.43,24.41] [32.42, 33.84] [29.40, 30.90] [22.85, 24.86]
104dB 19.49 +£0.73 17.41 + 0.68 17.12 £ 0.79 ** 19.24 + 0.69 17.30 + 0.43 17.02 + 0.55 **
Set2 [17.88, 21.35] [15.83, 18.84] [14.91, 18.69] [17.38,20.61] [16.18,18.14] [15.91, 18.76]
© 5dB 25.67 +0.83 21.33 +0.84 17.52 £ 0.72** 25.38 £ 0.79 21.03 + 0.96 16.93 + 0.74 **
[23.19, 27.49] [17.89,22.92] [16.29,19.33] [23.75, 27.94] [18.78, 23.25] [14.87,18.45]
10dB 20.20 +0.97 17.38 + 0.88 16.87 +0.79 ** 20.12 + 1.03 18.12+1.18 17.55 +0.81 *
Set3 [18.30, 23.09] [15.71, 21.57] [15.40, 18.52] [18.27,21.79] [15.36, 21.93] [14.58, 18.80]
< 5dB 27.12 +1.39 2230 + 1.61 18.77 + 0.77 ** 26.62 +1.62 23.02 +1.71 18.57 + 0.79 **
[23.92, 30.58] [17.96, 27.41] [16.51,20.09] [24.09, 32.05] [19.46, 27.78] [16.69, 19.58]

Note: Column one stands for which set is used for error computation. Column 2 is the signal to noise ratio. Column 3-5 (Gaussian noise) and 4-6 (ARMA(1,1) noise) are the results
of T-wave end detection error using algorithms of Zhang, Carlos, and Martinez respectively, where q stands for the tSQI threshold for deciding when to apply the optimal shrinkage,
WS stands for wavelet shrinkage, and OS stands for optimal shrinkage. The results are shown by taking median + MAD of ME over 20 rounds’ random noise addition. The unit is
millisecond. The 2.5% and 97.5% quantile interval of ME are also listed beneath median + MAD. * (**) stands for p-value < 0.05 (0.01).
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3.3. Evaluation in the QT and 14-Day ECG Databases

10 of 17

We applied the proposed tSQI and OS denoising to the QT and 14-day ECG recording databases.

We considered tSQI thresholds g = 0.9 when applying the proposed algorithm; that is, the OS was
applied to those cardiac cycles with the tSQI less than 0.9. Note that g = 0 means we do not apply
the OS. The results are shown in Tables 3 and 4. First, note that in Zhang’s and Carlos’s algorithms,
the ME and SD were defined without taking the absolute value. The error is thus underestimated since
the detection error of the estimated T-end has positive or negative values. Therefore, smaller MEs
were reported by Zhang and Carlos in comparison with our results when g = 0, even if we applied
their announced codes on the same database. We see that, overall, the MAD and 97.5% quantile are
improved, while there is no statistical significance. To have a better feeling about how the algorithm

performs, the scatterplots of T-end detection errors of the QT database are shown in Figure 4.

Table 3. Evaluation of algorithms on the QT database.

Zhang Carlos Martinez
# of Beats Before OS After OS Before OS After OS Before OS After OS
Set1 1417 12.00 +20.83 12.00 + 18.96 12.00 + 35.82 12.00 + 32.84 12.00 + 40.59 12.00 + 37.88
© [0, 128.00] [0, 116.00] [0,212.30] [0, 224.00] [0, 304.60] [0, 332.00]
Set2 169 12.00 +9.43 16.00 +9.17 12.00 + 20.41 12.00 + 19.94 12.00 +20.33 12.00 + 18.47
€ [0, 44.80] [0, 44.00] [0, 108.00] [0, 101.60] [0, 92.00] [0, 84.80]
Set3 13 16.00 + 27.49 12.00 + 27.37 8.00 +£14.22 8.00 +13.35 16.00 + 22.60 12.00 + 21.87
© [0, 100.00] [0, 100.80] [0, 72.00] [0, 49.6] [0,79.20] [0, 81.60]

Note: Column one indicates which set is analyzed. Column 2 is the number of heart beats. Column 3, 4, and 5 are
the results of T-wave end detection error using algorithms of Zhang, Carlos, and Martinez respectively. The median
+ mean absolute deviation (MAD) of detection errors are evaluated. The unit is millisecond. Note that since the
sampling rate is 250 Hz, the median error is the multiple of 4 ms.

Table 4. Evaluation of algorithms on the Ultra-Long-Term ECG recordings database.

Labeled .
Quality # of Beats Zhang Carlos Martinez
Before OS After OS Before OS After OS Before OS After OS
Good 538 0.00 +17.05 5.00 + 13.55 5.00 + 13.65 5.00 + 12.95 10.00 + 14.09 10.00 + 13.68
00 [0, 125.00] [0, 115.25] [0, 105.00] [0, 95.50] [0, 120.25] [0, 115.50]
Averaged 148 0.00 + 33.99 10.00 + 29.94 10.00 + 33.88 15.00 + 38.23 10.00 + 33.73 15.00 + 34.10
8 [0, 168.00] [0, 159.00] [0, 145.00] [0, 200.00] [0, 157.00] [0.00, 169.00]
Bad 127 0.00 + 45.04 30.00 + 47.90 25.00 + 50.46 35.00 + 50.38 35.00 + 54.88 50.00 + 50.07
a [0, 208.25] [0, 208.25] [0, 236.63] [0, 230.00] [0, 216.63] [0, 225.00]

Note: Column one indicates which set is analyzed. Column 2 is the number of heart beats. Column 3, 4, and 5 are
the results of T-wave end detection error using algorithms of Zhang, Carlos, and Martinez respectively. The median
+ mean absolute deviation (MAD) of detection errors are evaluated. The unit is millisecond. Note that since the
sampling rate is 200 Hz, the median error is the multiple of 5 ms.
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Figure 4. Scatterplot of T-end prediction error before and after applying the OS. From left to right are
the scatterplot of applying Zhang’s algorithm to the set 1, set 2, and set 3 of the QT database.



Sensors 2020, 20, 7052 11 of 17

4. Discussion

In this report, we showed that the labeled quality in the 14-day ECG database provided by the ECG
core lab is well captured by the proposed tSQI. We also showed how the noise deteriorates the signal
quality and thus induces high detection errors in both databases when the commonly applied T-end
detection algorithms are applied. The proposed OS denoise was able to recover the ECG morphology
when the signal was contaminated by noise, and hence stabilized the T-end detection algorithm. In the
arrhythmic cases, the T-wave morphologies could be visually better recovered by selecting proper
metric between cardiac cycles.

The spike model underlying the proposed algorithm deserves discussion. As shown in Figure 5,
there is T-wave distortion after the OS, and hence the T-end location shifts. In other words, when the
ECG signal is clean, a morphology distortion after the OS is applied. This observation suggests that the
cardiac cycles cannot be fully captured by the spike model used in Gavish’s and Donoho’s work [26]
for the OS, and hence the morphology is distorted when the noise is dominated by the beat to beat
variation. Recall that the PQRST morphology is not fixed from cycle to cycle, and the variation is
caused by various physiological dynamics such as the respiratory and heart rate [2]. See Figure 6 for an
example, where 20 cycles of clean PQRST waves from the same subject were superimposed. It is also
clear that the PQRST variation from cycle to cycle is small compared with the dominant PQRST pattern.
Therefore, the data matrix for a set of clean cardiac cycles can be modeled by E = Zle wea; € RPX,
where py > 1, > p3 > ---, e1 € R? is the dominant PQRST pattern, a; € R" describes the magnitude
the dominant PQRST pattern of each cycle, e; ... e, € R? describe the variation of the PQRST pattern,
and a; ...ay € R" describe the magnitude of each variation of the PQRST pattern. Clearly, E can be
well approximated by a spike model E= e a] € RP*". While this seems to be a nice approximation,
it does generate trouble when we apply the OS. Specifically, when the signal is clean, Equation (5) for
noise level estimation will consider the physiological variation Zf:z Hie;a; between each PQRST cycle
as a source of noise. Thus, the noise level of the clean signal is overestimated. As a result, the OS
might eliminate Zfzz ul-eialf in order to recover the “clean matrix” p;e; ai, which leads to a distortion
of morphology. The critical observation is that the variation of T wave morphology from cycle to cycle
is quantified by the variation term 25;2 ul-eial'. . However, due to the nonlinear relationship among T
waves from cycle to cycle, it is not clear how to directly use the T wave information in Zf:z Hieia).
When the signal is heavily contaminated by noise, E= Zle u,-eia; + &, where £ is the noise matrix,
the small variation term pyexa), ..., wyepa, will be dominated by the noise, particularly those with
small singular values. Hence, there is benefit from applying the OS because it will balance between
recovering the morphology and reducing the noise. This explains why we only apply OS to those
cycles with low tSQI. We mention that in general, the dynamics of T wave morphology can be modeled
by a low dimension manifold, which is referred to by the wave-shape manifold [43]. An exploration of
this model to further improve the denoising performance, or even noise estimation shown in Equation
(5), is out of the scope of this paper.
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Figure 5. Comparison of the estimated T-end with or without optimal shrinkage on P-QRS-T cycles
with high signal quality in the QT database. The black line is the preprocessed ECG signals from the
first channel of one subject, and the light blue line is the same signals with the optimal shrinkage
applied, where the whole signal is shifted down by 0.5 to enhance visualization. The red vertical line
indicates the T-end point estimated by the chosen algorithm on the original signal. The green vertical
line indicates the T-end point by the chosen algorithm on the denoised signal. The deep blue vertical
line indicates the time point of T-end annotations provided by Cardio 1. Zhang’s algorithm is applied
for the T-end detection. The case index is in the title.
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Figure 6. Illustration of cardiac cycles variation. The gray lines are 20 cardiac cycles from subject id
sel30 in QT database. The red line is the median over the 20 cycles.

In the QT and ultra-long-term ECG recordings databases, while there was improvement of the
T-end algorithm after applying OS with a properly chosen tSQI threshold, this improvement did not
reach statistical significance. See Table 3. There are two possible explanations. First, the motion or
other artifacts are inevitable. Usually, artifacts have structures that are unknown to us, unless we have
other ECG channels to confirm. Due to these artifacts, visual manual annotation of T-end might be
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challenging. Consider the following scenario. Suppose the visual manual annotation of T-end was
deviated by the existence of noise or artifacts. On the other hand, the denoising tool recovered the
T wave, and hence the automatic T-end annotation algorithm provided the correct T-end annotation.
In this case, the “correctly detected T-end” will be viewed as a bad annotation compared with visual
manual annotation of T wave. To visualize this effect, we show some results in Figure 7. When the
signal quality is labeled as average in the ultra-long-term ECG recording database, it is challenging
even for experts to annotate the T-end due to noise and artifacts.

500 200
. ML
0 "/ 200 200
- -400 1 ~400
-500 600 -600
8.4 8.6 8.8 9 6.6 6.8 7 7.2 1.6 11.8 12
Time(second) Time(second) Time(second)

Figure 7. Comparison of the estimated T-end points with or without optimal shrinkage over
Ultra-Long-Term ECG recordings Database with intermediate quality. In each subplot, the black
line is the original ECG signal, and the blue line is the denoised ECG signal estimated by the optimal
shrinkage. The red (green) vertical lines indicate the estimated T-end by the chosen detection algorithm
on noisy signals without (with) OS applied. The deep blue vertical line indicates the annotated T-end
provided by EPICARE Center. The chosen T-end algorithm in the first, second and third column is
Zhang's, Carlos’s, and Martinez’s algorithm respectively.

Second, the OS performance might be masked by the experts” annotation process. This can
be observed clearly in the ultra-long-term ECG recording database. Due to the labor-intensive
annotation process, the data analysis team provided the automatic annotated labels by applying
Zhang's algorithm, and the experts only provided a corrected T-end when they disagreed with the
automatic label. This “semi-automatic” process might bias the experts” T-end annotation. We can
see this potential bias in Table 4. Before applying the OS, the Zhang’s algorithm outperforms other
algorithms with or without OS. Therefore, we may conclude that it is possible that the non-statistical
significance comes partially from the label uncertainty issue. Combining these facts and its performance
when marked noise of different kinds exists, we may argue that the proposed stabilization algorithm by
combining tSQI and OS is potential for automatic T-end annotation purpose in practice. We may also
discuss a relevant but different topic. The labeling procedure for the ultra-long-term ECG recording
database in this study can be viewed as an artificial intelligence aided approach to speed up the
standard annotation procedure. By and large, the common labeling procedure is composed of two steps.
First, one group of experts provide an initial manual annotation of ECG waveform. Then, another group
of experts doubly confirm the provided annotation and edit extreme values as a quality control. In this
study, we replace the first step by the existing best automatic annotation system and control the overall
quality by a human expert intervention. How to improve this semi-automatic labeling procedure to
avoid the above-mentioned issues is of its own interest, and it will be explored in our future work.

Another topic deserves a discussion is arrhythmic ECGs. It is well-known that occasional
arrhythmias, like premature ventricular contraction (PVC), can cause sudden T wave changes in normal
rhythms. Although we cannot find a publicly available arrhythmia database with T-end annotation,
we provide some preliminary visual evaluation of the OS algorithm on the ECG signals with arrhythmia.
We consider the Physionet MITDB [44] that contains 48 half hour excerpts of two-channel ambulatory
ECG recordings. Each recording has 2 channels with the sampling frequency 360 Hz and the 11-bit
resolution over a 10-mV range. The R peak annotations are provided. To see the performance of our
proposed algorithm on arrhythmic ECGs, we applied OS on MITDB with Zhang’s method for T-end
annotation. Both the R-R interval difference and the l-norm of difference between cardiac cycles were
applied as the metric d(s,, s;). See Figure 8 for a typical result. We see that the distortion of T-wave
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morphology is obvious when the RRI metric is applied. The distortion is less when the I, norm is used
as the metric to compare two cardiac cycles. For example, for the cycles around 1719.2 s and 1723 s,
the T wave is distorted when the RRI metric is applied, and these distortions disappear when the I,
norm is considered and the ECG signal is better recovered. While we do not have experts’ label for
T end, visually when the [, norm is applied, the detected T ends are closer to those detected from
the original ECG signal, while the detected T-ends might not be correct. This preliminary result is
encouraging, but an extensive study is needed to evaluate its performance. While developing a more
accurate T-end detection algorithm is not the focus of this paper, we mention that developing such an
algorithm that is suitable for arrhythmic ECG is another critical topic for exploration.
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Figure 8. A preliminary comparison of ECG morphologies with different metrics for arrhythmic ECG.
For each subplot, the blue line is the ECG contaminated by ARMA (1,1) noise, the orange line is the ECG
after OS with RRI as the metric, the yellow line is the ECG after OS with I; norm as the metric, the purple
line is the original ECG, green vertical lines are the locations of R peaks in each PVC occurrence, and the
magenta spots are the corresponding estimations of T-end locations by Zhang's algorithm. The signal
is from the first channel of case 106 in MITDB. From top to bottom subplot, the noise level is 20 dB,
10 dB, and 5 dB respectively.

There are several limitations in this study. First, the labeled database is small. Because manual
T-end labeling for ultra-long ECG recording to validate the algorithm is a labor intense process,
even with the help of the initial labels, the sample size was small. Second, we need to develop a new
denoising algorithm that can handle structured artifacts. The main challenge is how to model artifacts
when there is no extra information. A basis pursuit approach might be suitable, and we will report
our theoretical research result in our future work. Third, in this article we focus on the tSQI and ECG
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denoising. To further improve the T-end annotation accuracy, we may need to further improve existing
T-end annotation algorithms, probably by incorporating some machine learning algorithms.

In conclusion, our proposed T-end annotation algorithm has the efficiency and accuracy that make
it a good fit for clinical applications and large ECG databases.
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