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Abstract: Image stitching based on a global alignment model is widely used in computer vision.
However, the resulting stitched image may look blurry or ghosted due to parallax. To solve this
problem, we propose a parallax-tolerant image stitching method based on nonrigid warping in this
paper. Given a group of putative feature correspondences between overlapping images, we first
use a semiparametric function fitting, which introduces a motion coherence constraint to remove
outliers. Then, the input images are warped according to a nonrigid warp model based on Gaussian
radial basis functions. The nonrigid warping is a kind of elastic deformation that is flexible and
smooth enough to eliminate moderate parallax errors. This leads to high-precision alignment in
the overlapped region. For the nonoverlapping region, we use a rigid similarity model to reduce
distortion. Through effective transition, the nonrigid warping of the overlapped region and the rigid
warping of the nonoverlapping region can be used jointly. Our method can obtain more accurate
local alignment while maintaining the overall shape of the image. Experimental results on several
challenging data sets for urban scene show that the proposed approach is better than state-of-the-art
approaches in both qualitative and quantitative indicators.
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1. Introduction

Urban scene images acquired by optical sensors have a wide range of applications in urban
informatization, such as environmental monitoring, road planning, street-view map production,
and 3D urban reconstruction [1–4]. Due to the limitations of the camera’s viewing angle and shooting
distance, the area covered by a single image is small. Therefore, it is necessary to use image stitching
technology to expand the coverage of the image and obtain more information from the target area.

Image stitching is a process of merging a group of images into a larger image with a wider
field-of-view of the scene. It can usually be solved by aligning images based on their common features.
The sparsely scattered, distinctive, and well-localized key points provided by the sparse feature
matchers have been widely used in image correlation. Although the sparse feature matchers lack the
corresponding density provided by the dense matching method [5], it can provide the advantages
of wide baseline, fast speed, and unlimited data types [6]. Most of the image alignment algorithms
aim to find a two-dimensional global warp model between two overlapped images, such as similarity,
affine, and homography. A fine global warp minimizes the total registration error instead of exactly
aligning all the features; therefore, it is robust but not sufficient to adapt to all scenes. In computer
vision, homography model is widely used to describe the projection relationship within an image pair.
However, it only works when the scene is planar or the camera undergoes pure rotation [7]. When the
parallax is too large to be ignored, unexpected “ghosts” will appear in the stitched images aligned
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by a single global warp model. For street view images in urban scenes that contain rich objects and
complex depth changes, it is necessary to consider image stitching methods that can handle parallax.

In order to improve alignment accuracy in the presence of parallax, scholars have conducted
extensive work in the field of computer vision. In summary, the existing methods are based on the
following three ideas. One of the ideas is to search for seam lines to bypass the misalignment in the
overlapped region [8–11]. Seam-based methods usually have a high computational cost and are more
suitable for the situation in which there are obvious foreground objects and background in the images.
Another idea is to adopt multiple transformation models [12–14]. The third idea is to use surface fitting
to deal with the parallax on the two-dimensional image [15–17]. Actually, it is believed for the last two
ideas that different regions of the image should utilize different warp models because, in the image
obtained by pinhole imaging, objects closer to the shooting center will have greater parallax. Therefore,
they all tried to find an image alignment model that changes with space.

In addition, we noticed that the quality of feature matching directly affects the stitching
quality. Most image alignment approaches employed the Random Sample Consensus (RANSAC)
algorithm [18] to remove outliers of the matched features, and a global transformation usually serves
as the minimal solver of RANSAC. There are contradictions between global RANSAC and spatially
varying alignment: (1) If the threshold is too small, inliers might be rejected because they do not
conform to the global transformation used by the RANSAC method, which is not conducive to local
alignment; (2) If the threshold is too large, outliers might be preserved and lead to a poor stitching
result. Good feature correspondences can refine the alignment, and a good alignment can verify the
existing correspondences. Therefore, we need a more flexible feature match refinement method which
can preserve spatially varying projection of the feature points.

In this paper, we propose a parallax-tolerant image stitching method that follows the idea of
spatially varying alignment. Our goal is to find a good feature correspondence and, at the same time,
determine a fine warp model to reduce registration errors. First, we establish a new feature mapping
relationship base on semiparametric fitting. The semiparametric function includes a smoothness
constraint based on the Motion Coherence Theory (MCT) [19], which provides greater flexibility for
finding good feature maps through rough feature correspondence. Features that do not conform to
the fitting functions are regarded as outliers. This idea is inspired by Lin et al. [20,21]; they used a
complex smooth function to fit the feature correspondence and deal with the piecewise noises that
RANSAC cannot handle. We design a smoothing function that is more suitable for two-dimensional
plane warping and stitching. The advantage is that the alignment model can be directly derived from
the feature correspondence. Then, we obtain a nonrigid warping based on the Gaussian radial basis
function (GRBF) to eliminate misalignments in the overlapped region. Compared with TPS, GRBF is
more suitable for local deformation [22]. Homography is a warping from one two-dimensional plane to
another two-dimensional plane, while the nonrigid warp is more like performing a three-dimensional
surface fitting first and then projecting onto a two-dimensional plane. Therefore, we can eliminate
parallax errors which may be left by a single homography warping. Finally, we gradually change the
nonrigid warp to the global homography warp to reduce unnecessary distortion in the nonoverlapping
region. Meanwhile, a grid-based interpolation calculation method is used to improve efficiency.
Experiments on several challenging image sets prove that our method can effectively reduce the
projection errors, and can be well combined with other global methods.

2. Related Works

2.1. Feature Matching

In feature-based image stitching, feature matching is an important foundation. Lowe and
David [23] proposed a sparse feature descriptor known as scale-invariant feature transform (SIFT),
which is invariant to image translation, rotation, and scale. It is also robust to addition of noise,
affine distortion, and changes in illumination [24]. Numerous studies have shown that the SIFT
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is the most widely used feature descriptor in image stitching and the performance has been
demonstrated [25]. After preliminary matching based on feature descriptors, RANSAC was usually
used to eliminate outliers based on the geometric relationship between images.

Among the researches we have investigated, Zhang et al. [26] introduced an outlier rejection
method based on local homography to remove incorrect feature matchings; this method can only be
used under the framework of the APAP method and is not universal. Guo et al. [27] assumed that the
scene contains two planes. First, they found matches on one of the planes using the RANSAC method;
then, they found matches on the other plane from the remaining points at the adjacent frame. Similar to
DHW, this method is only suitable for specific scenes. Chen et al. introduced a nonrigid matching
algorithm based on vector field consensus (VFC) [28] to the mosaic system for generating accurate
feature matching [29]. In most methods other than global warping, the model fitted by RANSAC and
the model used for alignment are relatively independent. Therefore, the retained feature points cannot
help to optimize the stitching field.

2.2. Parallax-Tolerant Image Stitching

Gao et al. [8] estimated multiple warps from multiple sets of features, then used the quality of
the seam line to evaluate the alignment performance of different warps and selected the best one.
Zhang et al. [9] estimated reasonable seam lines by considering geometric alignment and image
content, and optimized local alignment with reference to the Content Preserving Deformation (CPW)
method [30]. K. Lin et al. [10] followed the mosaic line guidance, introduced contour detection
and straight line detection, and used curve and straight line structures to maintain constraints in
the deformation. The line matching method has obvious advantages, but the high computational
complexity limits its application range. Herrmann et al. [31] made full use of object detection [32]
and combined the multiple registration algorithm [11] to construct an object-centric image mosaic
framework. Multiple potential planes generated by multiple registration can effectively solve the
occlusion of foreground objects on the background, but it also makes the search of seam lines more
complicated. In general, seam-based methods usually require high computational cost because they
involve foreground and background recognition, multiple registration, seam evaluation and search,
and manual interaction. They are more suitable for the situation in which there are obvious foreground
objects and background in the images.

Since a global homography transformation will cause inaccurate image registration, further
misalignment, and ghosting, Gao et al. proposed a dual-homography warping (DHW) model [12],
which divided the scene into a background plane and a foreground plane, and used two homography
matrices to align them. Since their premise was that the scene consists of two main planes, it performed
well in certain specific scenes, but it could not handle more complex scenes. Lin et al. [13] proposed
a smoothly varying affine (SVA) model to deal with parallax. Zaragoza et al. [14] extended this
idea to a smoothly varying homography model and proposed the as-projective-as-possible (APAP)
warp. The image was divided into grids, and then they used moving-DLT to calculate local adaptive
homography for each grid. APAP achieves more accurate alignment in overlapping areas than
DHW and has better extrapolation quality in nonoverlapping areas. Zhang et al. [26] proposed a
multiviewpoint panoramic stitching method based on APAP, a local homography verification method
was used to roughly align the images, and various prior constraints were used to improve the alignment
through an iterative optimization scheme. Based on APAP, many works use similar methods to design
more prior constraints; the combination of different constraints leads to local optimization instead
of global optimization, and the computational cost is higher. Li et al. [16] proposed the elastic local
alignment (ELA) and aligned images based on the Thin Plate Spline (TPS) model. The TPS function
simulates the distortion of a plane based on the principle of minimum surface bending energy. It is
a commonly used deformation function in biology and medical images. This function has a global
nature—that is, all anchor points will have an impact on the desired point. Chen et al. [17] proposed a
drone image stitching method that uses compactly supported radial basis function (CSRBF) instead of
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TPS to reduce local registration errors. This inspired us to think about the application of different RBFs
in image stitching.

The spatially varying warping models can handle moderate parallax and provide satisfactory
stitching performance, but it usually causes projective distortion outside the overlapped region. Therefore,
many scholars have made further improvements. C.H. Chang et al. proposed the shape-preserving
half-projective (SPHP) warps [33] from the perspective of shape correction. They made the warp gradually
change from local warp to global similarity, and added similarity constraints to the entire image. Lin and
Pankanti proposed an adaptive as-natural-as-possible (AANAP) warp [34], which combines a linear
homography warp and a global similarity warp with minimum rotation angle, thereby creating a
natural-looking mosaic. Nan Li et al. proposed a quasi-homography warp [35], which squeezes the mesh
of the corresponding homography warp, but does not change its shape. These methods tried to achieve a
certain balance between projection distortion and perspective distortion in nonoverlapping region, so that
images can be stitched with better visual effects.

Video stitching also involves the processing of parallax, especially for videos captured by mobile
cameras (e.g., smartphones or UAVs). Many researches generally perform image stitching and
stabilization simultaneously to solve the ghosting and blur in the stitched video. Guo et al. [27]
proposed a video stitching method acquired by two mobile handheld cameras. The intertransformation
between different cameras was estimated to obtain the spatial alignment, and the intratransformation
within each video was estimated to maintain the temporal smoothness. They use APAP warping
method for spatial alignment to deal with parallax. Nie et al. [36] introduced a background recognition
method. The backgrounds of input videos were first identified, and a seam-based strategy was used to
obtain the final stitched video.

3. The Proposed Method

The overall workflow of our proposed image stitching is illustrated in Figure 1. First, we use
the SIFT method to obtain matched feature points, and then use semiparametric fitting with motion
coherence constraints to eliminate mismatches. Next, a nonrigid warp model is used to align the
overlapping region. In order to maintain the shape of the nonoverlapping region, the nonrigid warping
is gradually transformed into a global warping. Finally, a simple linear fusion method is used to blend
the stitched images. In this section, we will give a detailed description of the feature match refinement,
the nonrigid warping, and its combination with other global models.

Figure 1. The overview flowchart of our proposed image stitching approach.
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3.1. Feature Match Refinement Based on Semiparametric Function Fitting

Establishing a warping model between images is the basis of stitching. When we use the method
based on sparse feature points, the problem becomes to establish feature mapping relationship based
on feature correspondences. Given a set of N putative matched features S = {(pi, qi)}

N
i=1 from image

Ip and Iq, pi = (xi, yi) and qi = (ui, vi) are two-dimensional vectors that denote the image coordinates
of feature points. Our goal is to fit an appropriate function to map the coordinates from the first image
to the second image, and the mapping f from R2 to R2 can be constructed as two mappings from R2 to
R separately—that is, f =

(
fx, fy

)
, under the constraints fx (pi) = ui and fy (pi) = vi for i = 1, . . . , N.

Since parametric functions such as rigid affine or homography cannot reflect the local spatial changes
of feature points, we naturally think of a smoother semiparametric function. In this article, we use
a semiparametric function composed of parametric affine and nonparametric terms. Taking the x
dimension, for example, the mapping fx with the input domain p = (x, y) can be expressed as

fx (p) = α1x + α2y + α3 + φx(p) (1)

where φx (p) is a smooth function with motion coherence constraint [19,37] as follows:

Ψx =
∫
R2

|φ̄x(ω)|2

ḡ(ω)
dω (2)

φ̄x(.) denotes the Fourier transform of function φx(.), while ḡ(.) is the Fourier transform of a
Gaussian function g(r, σ) = e−|r|

2/σ2
with spatial distribution σ, and |·| denotes the Euclidean

distance calculation.
In order to find the smoothest mapping, we appropriately relax the registration constraint and

introduce the motion coherence constraint Ψx as a regular term. This is expressed as the energy function

Ex =
N

∑
i=1
|ui − (α1xi + α2yi + α3 + φx (pi))|

2 + λΨx (3)

where λ is a constant represents the weight given to the regularization term. It is difficult to
directly minimize Ex due to the existence of continuous functions φx(p) and Ψx. Fortunately, Andriy
Myronenko et al. [37] and Wenyan Lin et al. [38] have deduced the discrete forms:

φx(p) =
N

∑
j=1

wx(j)g
(

p− pj, σ
)
=

N

∑
j=1

wx(j)e−|p−pj |2/σ2
(4)

where g
(

p− pj, σ
)

= e−|p−pj |2/σ2
is the Gaussian radial basis function and {wx(j)}N

j=1 are
unknown variables;

Ψx = wT
x Gwx (5)

where GN×N is a square symmetric matrix with elements G(i, j) = g
(

pi − pj, σ
)

; it can also be called

the Gaussian radial basis kernel. wx = [wx (1) , . . . , wx (N)]T is a N × 1 vector, used as the weights of
the radial basis functions.

Substituting Equations (4) and (5) into Equation (3) yields

arg min
{ fx(p)}

N
∑

i=1
|ui − (α1xi + α2yi + α3 + φx (pi))|

2 + λΨx

= arg min{
α1,α2,α3,{wx(j)}N

j=1

} N
∑

i=1

∣∣∣∣∣ui −
(

α1xi + α2yi + α3 +
N
∑

j=1
wx(j)g

(
pi − pj, σ

))∣∣∣∣∣
2

+ λwT
x Gwx

(6)
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where the energy is dependent on N + 3 variables α1, α2, α3, and {wx (j)}N
j=1. Minimizing the overall

energy function in Equation (6) leads to the parametrized fx as follows:

fx (p) = α1x + α2y + α3 +
N

∑
j=1

wx(j)g
(

p− pj, σ
)

(7)

The mapping from xi, yito vi has the similar form as

fy (p) = β1x + β2y + β3 +
N

∑
j=1

wy(j)g
(

p− pj, σ
)

(8)

and the energy function is

Ey =
N

∑
i=1

∣∣∣∣∣vi −
(

β1xi + β2yi + β3 +
N

∑
j=1

wy(j)g
(

p− pj, σ
))∣∣∣∣∣

2

+ λwT
y Gwy (9)

Since G is a positive definite matrix, the overall energy minimization problem in
Equations (6) and (9) can be solved using the following linear system [39]

[
G + λI P

] [ wx wy

a b

]
=
[

u v
]

(10)

where P is a N × 3 matrix with the ith row [xi, yi, 1], u = [u1, . . . , uN ]
T and v = [v1, . . . , vN ]

T

represent the coordinates of target points in Iq. wx = [wx(1), . . . , wx(N)]T and a = [α1, α2, α3]
T ,

and wy =
[
wy(1), . . . , wy(N)

]T and b = [β1, β2, β3]
T represent two sets of pending variables.

A brief proof is as follows: Consider the energy function Ex in Equation (6). The matrix form of
its derivative with respect to wx should be zero.

∂Ex

∂wx
= 2G ((Gwx + Pa)− u) + 2λGwx = 0 (11)

Multiplying Equation (11) by 1/2G−1, we obtain

(G + λI)wx + Pa = u (12)

Through the above analysis, we successfully treat image warping as a general matching problem
with smoothness constraint. Each feature point has its own associated mapping parameters, rather
than all points sharing the same set of parameters. fx and fy can be regarded as a pair of smooth
surface fitting functions. We transform the smooth function into the sum of a finite number of radial
basis functions, so that the problem of minimizing a convex cost function is transformed into solving
a linear system. After each solution, we use the median absolute deviation (MAD) method [40] to
remove outliers—that is, the points whose deviation from the fitted function is lager than 1.48 times
MAD will be regarded as outliers. The mapping parameters are recalculated using inliers, and this
process repeats three times. This is a more flexible feature match refinement method that can reserve
more points from a set of initial correspondences based on feature descriptors.

3.2. Nonrigid Warping Based on Gaussian Radial Basis Functions

As mentioned before, the smooth function φ (.) has a discrete form in Equation (4). It is a linear
sum of Gaussian radial basis functions (GRBFs). They are constructed based on the Euclidean distances
between the target point to the control points. Taking Iq as the reference image, we transform the
coordinates (x, y) of an arbitrary point in image Ip into the coordinate system of the reference image
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to become (x′, y′). The feature points {pi = (xi, yi)}M
i=1 , M ≤ N in image Ip are used as the control

points, and their correspondences in image Iq are {qi = (ui, vi)}M
i=1. Our nonrigid warp model has the

same form as the feature mapping function, which is a polynomial plus the linear sum of GRBFs in
each dimension. The formula is as follows:

x′ = fx(x, y) = α1x + α2y + α3 +
M
∑

i=1
wx(i)e−|(x,y)−pi |2/σ2

y′ = fy(x, y) = β1x + β2y + β3 +
M
∑

i=1
vx(i)e−|(x,y)−pi |2/σ2

(13)

where {wx(1), . . . , wx(M), α1, α2, α3}, and
{

wy(1), . . . , wy(M), β1, β2, β3
}

are variables calculated
based a set of M features correspondences after match refinement. The linear system is also used in
Equation (10).

In order to better apply nonrigid warp to image stitching, it is necessary to overcome the large
amount of calculation, because, for our nonrigid warp model, each pixel on the target image has its
own deformation parameters, and its Euclidean distances to all control points need to be calculated.
Therefore, the pixel-by-pixel calculation will be time-consuming. We use mesh deformation to speed
up the calculation: before resampling, we divide the image into a grid mesh of C1 × C2 cells, calculate
the deformation on the grid nodes first, and then obtain other points’ coordinates through linear
interpolation. A visualization example in Figure 2 shows how the image is warped based on our
nonrigid warp model and mesh deformation. The parallax between pixels is regarded as the “height”
above the image plane in the imaginary third dimension. Then, the smooth surface fitted by the
nonrigid model is reprojected to the reference image plane. Therefore, our method is suitable for image
stitching with smooth varying parallax.

(a) x dimension (b) y dimension

Figure 2. Nonrigid warp using mesh deformation.

3.3. Smooth Transition to Global Warping

In addition to warping, image stitching also involves extrapolating the warp model calculated
based on the overlapping region to the nonoverlapping region. Because of the strong intervention of
the matching points, the nonrigid warp leads to better alignment in the overlapping region. However,
if it is forced to extrapolate to the nonoverlapping region, this part of the image will be excessively
distorted. Therefore, we choose a common global warp (such as similarity and homography warps) to
maintain the shape of the image in nonoverlapping regions.

According to the given feature correspondences, the least squares method is usually used to
minimize the projection error of all feature points to solve a global warp model for image stitching,
and it is easy to implement using the Levenberg–Marquardt (LM) algorithm [41].

Similarity warp describes the rotation, translation, and scaling of the image, and its matrix form
is as follows:

S =

 s cos(θ) −s sin(θ) tx

s sin(θ) s cos(θ) ty

0 0 1

 (14)
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The corresponding coordinate transformation is:{
x′ = Sx(x, y) = s cos(θ)x− s sin(θ)y + tx

y′ = Sy(x, y) = s sin(θ)x + s cos(θ)y + ty
(15)

The homography warp, also known as the perspective transformation, has the matrix form
as follows:

H =

 h00 h01 h02

h10 h11 h12

h20 h21 1

 (16)

The corresponding coordinate transformation is:{
x′ = Hx(x, y) = h00x+h01y+h02

h20x+h21y+1

y′ = Hy(x, y) = h10x+h11y+h12
h20x+h21y+1

(17)

A simple method is to directly set the nonrigid warp of the nonoverlapping region to zero,
but it will cause a sudden change in the overlapping edge. In this paper, the nonrigid warp is
gradually reduced to achieve a smooth transition. As the point p(x, y) gradually moves away from the
overlapping area, the scale parameter ε gradually changes from 1 to 0 (taking nonrigid warp + similarity
warp, for example): {

x′ = ε fx(x, y) + (1− ε)Sx

y′ = ε fy(x, y) + (1− ε)Sy
(18)

ε is calculated as:

ε =


1 , Ws ≤ 0

1−Ws/Wb , 0 < Ws ≤Wb
0 , Wb < Ws

(19)

where Ws = max (x− xb, xa − x, y− yb, ya − y), Wb = η ∗min (xb − xa, yb − ya). [xa, xb] , [ya, yb] are
the coordinate ranges in x and y directions of the overlapped region calculated by the global warp,
and η is a constant used to control the width of the transition area.

A comparison of using different global warps is illustrated in Figure 3, using image pair “building”
from [34]. The main difference is in nonoverlapping region. Homography warp preserves all straight
lines, but the region of an object is enlarged or stretched compared to its appearance in the original
image. Similarity warp preserves the original shape of the object, since they purely involve translation,
rotation, and uniformly scaling, but the perspectives of an object in two images may be inconsistent
with each other [35]. In Figure 3a, the streetlight and door are stretched. In Figure 3b, the streetlight
maintains its original shape, but the shape of the top of the building changes from straight to slightly
curved. When stitching wide-field-of-view images, homography may cause large projective distortion
in the nonoverlapping region, which is inconsistent with human cognitive habits. So we prefer to use a
similarity warp to maintain the shape of nonoverlapping region. This is consistent with the conclusion
of the SPHP [33] method, which also used similarity transformation in the nonoverlapping region.
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(a) Nonrigid + Homography (b) Nonrigid + Similarity

Figure 3. Combination with different global models. The visual effect of homography warp is
not as good as similarity warp, because the streetlight and door in nonoverlapping region are
severely deformed.

4. Experiments and Discussion

We compare our nonrigid warp against the global homography warp and other two spatially
varying warps for image stitching—that is, as-projective-as-possible (APAP) warp [14] and elastic
local alignment (ELA) [16]. The SIFT [23] method is used to provide initial feature correspondences.
In order to cogently evaluate these methods, we simply blend the aligned images by pixel intensity
averaging so that any misalignment remain obvious. The image data sets includes several urban scene
images from other related works.

The experiments are performed on a laptop with Intel i7 CPU@2.70GHz and Matlab Code.

4.1. Parameter Settings

The semiparametric function and the nonrigid warp model involve two free parameters λ and σ.
λ represents the trade-off between the feature registration and the smoothness constrain, and σ reflects
the strength of the interaction between the feature points. A larger σ will lead to a flatter warping,
and the same is to λ. In order to take into account both the image size and the distribution of
feature points, we set σ = 100 × (ho + wo)/ptnum, where ho and wo represent the height and
width of the overlapped region and ptnum represents the number of feature points. λ is set to
be π/3 correspondingly.

The constant η used in smooth transition is an empirical value. It acts as a scale parameter of
the width of overlapping region wo. The larger the η, the larger the width of the transition area.
Let the width of a single image be wi. After experimenting with multiple sets of images, we suggest
setting η by making Wb = 1.5× (wi − wo). Figure 4 shows a set of stitched results of image pair
“roundabout” [34], where Wb are 0.25, 0.5, 0.75, 1.0, 1.25, and 1.5 times of (wi − wo), respectively,
and the corresponding η are 0.0398, 0.0796, 0.1195, 0.1593, 0.1991, and 0.2389.

In the mesh deformation stage, the larger the grid cell, the shorter the calculation time, but the
precision of model fitting will also decrease. Therefore, it is necessary to find a suitable grid size to
balance efficiency and stitching quality. We selected five pairs of images to count the deformation time
corresponding to different grid sizes. The results are shown in Figure 5, where the result of 1× 1 pixel
is the time it takes for pixel-by-pixel deformation. It can be seen from the chart that when the grid size
is 5× 5 pixels, the warping time has been greatly shortened, but the acceleration effect of larger grid
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sizes such as 20× 20 pixels and 25× 25 pixels is no longer obvious. In our experiments, the size of the
grid cell is set to 10× 10 pixels.

Figure 4. Different transition effects with different η. The green boxes represent the approximate
transition region. A small η will cause an unnatural transition, so we try to make the transition area
cover the nonoverlapping region on the right side.

Figure 5. Warping time statistics for different grid sizes. The selected images have different image size
and different number of feature points. For each grid size, we count the warping time 10 times and
take the average time.

4.2. Qualitative Comparisons

First of all, our feature match refinement is compared with the traditional RANSAC method.
Homography is selected as the global model to be fitted for RANSAC. The maximum number of
iterations in the experiments is set to 500; this determines the computational efficiency of RANSAC
algorithm and has been proved to be a reliable empirical value in the APAP [14] and ELA [16] methods.
Another threshold minDistance is used to determine the feature points that are fit well by global
model, which directly determines the number and distribution of matched features. With a smaller
minDistance, some inliers may be eliminated because they do not conform to the fitted global model,
as shown in Figure 6a. With a larger minDistance, some outliers will be retained, which are not
conducive to our nonrigid warping, as shown in Figure 6c,d. Figure 6e,f show that our semiparametric
fitting method can retain more matched features, thereby producing better stitching results.
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(a) Refinement after RANSAC(minDistance = 0.06) (b) Applied to our stitching

(c) Refinement after RANSAC(minDistance = 0.1) (d) Applied to our stitching

(e) Refinement after Semi-parametric fitting (f) Applied to our stitching

Figure 6. Feature match refinement. (a,c) are the outlier removal results of global RANSAC. The green
dots and the red dots indicate the retained and removed features, respectively. Some of the removed
inliers are marked in yellow, while the remaining outliers are marked in blue. (b,d) are the stitching
results of our nonrigid warp based on the global RANSAC results. (e) is the feature refinement result
of our semiparametric fitting. (f) is the stitching result of our method.

Then, we selected three pairs of urban scene images to visually demonstrate the stitching quality
of various methods. They are “temple” from AANAP [34], “carpark” from DHW [12], and “railtrack”
from APAP [14]. Figures 7–9 show the results of different methods, three representative regions of
each resulting image are highlighted. The first row shows the results of the global homography,
which serves as the baseline for comparison, with obvious misalignment in all highlighted areas.
The second row shows the results of APAP, the third row shows the results of ELA, and the fourth row
shows the result of our nonrigid warp combined with a global similarity warp.

Figure 7 is a case of image pairs with low overlap. In the result of APAP, the nonoverlapping
region of the image is severely stretched, and ghost still exists in the regions marked in green and
blue. In the result of ELA, the ground suffered some distortion around the overlapping borders.
In all marked regions, our nonrigid warp achieves a more accurate local alignment. Compared to
the ELA method, our transition to nonoverlapping region is smoother. In Figure 8, the scene can
be clearly divided into the background and the ground. In the green marked regions, APAP aligns
the manhole cover on the ground, but fails to align the steps in the background, and ELA’s results
are exactly the opposite. Our nonrigid warp is more flexible to align the background and ground
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simultaneously. Figure 9 shows a challenging data set used in APAP which is rich of complex curved
features. Our nonrigid warp also has a good performance and can successfully align railways and
rod-shaped objects. The marked regions show better alignments than APAP and ELA methods.

In general, our nonrigid warp performs better in the selected data sets. The nonrigid warping
leads to more accurate local alignment. The combination with similarity warps leads to better visual
effects in non-overlapping region.

(a) Baseline (b) Baseline details

(c) APAP (d) APAP details

(e) ELA (f) ELA details

(g) NR + S (h) NR + S details

Figure 7. Comparison of stitching quality on “temple”. (a,b) are results of the baseline with obvious
local misalignments. (c,d) are results of as-projective-as-possible (APAP). (e,f) are resluts of elastic local
alignment (ELA). (g,h) are resluts of nonrigid + similarity warping.
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(a) Baseline (b) Baseline details

(c) APAP (d) APAP details

(e) ELA (f) ELA details

(g) NR + S (h) NR + S details

Figure 8. Comparison of stitching quality on “carpark”. (a,b) are results of the baseline with
obvious local misalignments. (c,d) are results of APAP. (e,f) are results of ELA. (g,h) are results
of nonrigid + similarity warping.



Sensors 2020, 20, 7050 14 of 18

(a) Baseline (b) Baseline details

(c) APAP (d) APAP details

(e) ELA (f) ELA details

(g) NR + S (h) NR + S details

Figure 9. Comparison of stitching quality on “railtrack”. (a,b) are results of the baseline with
obvious local misalignments. (c,d) are results of APAP. (e,f) are results of ELA. (g,h) are results
of nonrigid + similarity warping.

4.3. Quantitative Comparisons

To quantify the alignment accuracy of our nonrigid warp f =
{

fx, fy
}

: R2 7→ R2, we compute
the root mean squared error (RMSE) of f on a set of corresponding feature points {(x, y)i, (x′, y′)i}

M
i=1,

where RMSE( f ) =
√

1
M ∑M

i=1

(∣∣ fx (xi, yi)− x′i
∣∣2 + ∣∣ fy (xi, yi)− y′i

∣∣2).
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In addition to the matched feature points used for the calculation of the warp model, we also
manually selected 20–30 groups of uniformly distributed checkpoints, and also counted their root mean
square errors. For each pair of images, we repeat the statistics 20 times, and then use the average of the
results. Table 1 shows the REMSs of feature points and checkpoints, corresponding to homography
warp, APAP, ELA and our nonrigid warp respectively. Compared with other methods, nonrigid warp
can obtain smaller REMSs (shown in bold), which means our method has higher alignment accuracy.

Table 1. Comparison of average root mean squared error RMSE for the proposed method and
other methods.

Image Pair Number Baseline APAP ELA Nonrigid

temple [34] matches - 3.98 2.51 0.88 0.35
checkpoints 25 3.34 2.18 1.33 1.24

carpark [12] matches - 4.71 2.10 1.70 1.084
checkpoints 24 6.06 1.85 4.98 0.89

railtracks [14] matches - 14.54 4.70 4.10 1.28
checkpoints 21 21.54 1.80 2.29 1.81

building [34] matches - 3.66 4.33 2.81 1.79
checkpoints 23 3.2 1.59 2.15 1.76

4.4. Limitations

The proposed nonrigid warping fits the parallax in a similar way to smooth surface fitting.
Occlusions in the images will cause discontinuous changes in depth differences and make the occluded
parts lack matched features. Therefore, if there are severe occlusions in the images, our method will
be powerless. Figure 10 shows a failure case in which ghosting effects appear around the foreground
objects. Similar to other spatially varying alignment methods, straight lines will be curved in order
to achieve precise local alignment. For applications that need to preserve straight lines, adding line
features may be helpful. Another limitation of our method is effectiveness. In the implementation
of the experiment, the ELA method is faster than APAP, and our method is somewhere in between.
The main time cost is in the step of feature match refinement. In the case of sufficient and well-matched
features, an effective speed-up method is to skip the semiparametric fitting and directly calculate the
nonrigid warp model.

(a)

(b)

Figure 10. A failure case using our method. (a) Occlusions will cause the lack of feature points. (b) The
artifacts are circled in the stitched image.
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5. Conclusions

In this paper, we propose an effective image stitching method based on nonrigid warping. First,
the semiparametric functions fitting is used to refine the features matched by descriptions. This new
feature mapping relationship provides more feature points and helps to eliminate the influence of
parallax. Second, a nonrigid warp model based on the Gaussian radial basis functions is derived from
the semiparametric functions, and a uniform grid is set on the image plane to speed up the calculation
of the warping. As a kind of surface fitting model, the proposed nonrigid warp can adapt to the spatial
change of the projection relationship. This results in a more precise alignment in the overlapping
region of the image. Finally, the nonrigid warp is effectively combined with a global transformation to
improve local alignment while reducing distortion in nonoverlapping regions. The stitching quality of
our method is evaluated through several comparative experiments. Our method has good performance
in both visual effects and accuracy. In terms of quality, there is less blur and ghost in our stitching
results. In terms of quantity, the projection error of feature points using our nonrigid warping is
smaller than that of feature points using ELA and APAP methods. In future work, we will try to
improve efficiency of our method, and the proposed nonrigid warp model will be applied to aerial
image stitching to eliminate the parallax caused by terrain fluctuations.
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