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Abstract: Three-dimensional (3D) reconstruction and measurement are popular techniques
in precision manufacturing processes. In this manuscript, a single image 3D reconstruction
method is proposed based on a novel monocular vision system, which includes a three-level
charge coupled device (3-CCD) camera and a ring structured multi-color light emitting diode (LED)
illumination. Firstly, a procedure for the calibration of the illumination’s parameters, including
LEDs’ mounted angles, distribution density and incident angles, is proposed. Secondly, the incident
light information, the color distribution information and gray level information are extracted from
the acquired image, and the 3D reconstruction model is built based on the camera imaging model.
Thirdly, the surface height information of the detected object within the field of view is computed based
on the built model. The proposed method aims at solving the uncertainty and the slow convergence
issues arising in 3D surface topography reconstruction using current shape-from-shading (SFS)
methods. Three-dimensional reconstruction experimental tests are carried out on convex, concave,
angular surfaces and on a mobile subscriber identification module (SIM) card slot, showing relative
errors less than 3.6%, respectively. Advantages of the proposed method include a reduced time for 3D
surface reconstruction compared to other methods, demonstrating good suitability of the proposed
method in reconstructing surface 3D morphology.

Keywords: machine vision; 3D measurement; monocular vision system; automatic optical inspection

1. Introduction

Reconstructing three-dimensional (3D) surface morphology can help to quantify product surface
quality information, characterize the product defects in manufacturing process and analyze the defects
distribution. Therefore, 3D reconstruction technology has been widely used in industrial manufacturing
processes [1–4]. With the rapid increase of automation technology, it is necessary to develop fast
and reliable methods for 3D reconstruction and measurement of surface morphology to meet stricter
process quality requirements [5–7].

In terms of 3D reconstruction and measurement, previous works mainly focused on contact and
non-contact approaches. Traditional contact approaches, such as coordinate measuring instrument,
atomic force microscopy (AFM) and other microcopies [8–10], are highly precise in measuring, but slow
and costly, therefore not suitable to meet the fast measurement requirements for online fabrication.
On the other hand, acoustic detection methods [11–13] and magnetic nanoparticle-based detection
methods [14] belong to non-contact approaches, which have been extensively used in manufacturing
processes [13,14]. Such methods are characterized by a high detection speed while the measurement
accuracy is easily affected by the response time and active signal source.
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Compared with above mentioned contact and non-contact methods, optical measurement methods
are widely used as they are characterized by non-contact, non-damage, high-resolution and high
-speed [15–18]. Multi-vision systems are typical optical measurement methods, able to reconstruct the 3D
surface by calibrated cameras and space intersection calculation [19–23]. However, image matching
is still a challenging task during the 3D reconstruction surface process because it needs a massive
matching computation and it is prone to environment lighting issues [24–26], resulting in being highly
costly and computationally time consuming [27].

Single image methods have also recently been proposed for 3D surface reconstruction, such as
the monocular vision method and the structured light method. Currently, the monocular vision method
originally derives from shape-from-shading (SFS) methods [28,29], which estimates the 3D shape from
shading, defocus and correspondence using just a single-capture passive light-field image. Because of
SFS methods mainly being developing from the Lambertian model of illumination reflection [30],
they are ill-conditioned and have no unique solution. To solve such problem, SFS usually assumes
that the object studied is a smooth object, and then the regularization model of the SFS problem is
established according to the relevant conditions, which mainly include the minimization method,
propagation method, local method and linearization method [31,32]. However, experimental results of
3D surface reconstruction are prone to uncertainties [33]. Recently, optical 3D measurement methods
have been developed based on the structured light [34,35]. In such methods, color evaluation is
a crucial aspect. To reveal the relationships between color and 3D reconstruction, the color calibration
is usually formulated as a color pureness problem [36–38]; nevertheless, the color pureness can easily
lead to the need for more accurate calibration.

From the available literature, the 3D measurement methods have developed quickly
in recent years, showing an increasing trend in terms of computational speed and reliability [39].
However, the implementation of existing reconstruction methods still cannot meet fast and reliable
measurement requirements. This paper aims at developing a quick 3D reconstruction method based
on a monocular vision system, in which ring structured light emitting diode (LED) illumination is
used to project the object’s 3D information into the image and only one image is required to realize
the 3D measurement process.

This paper is organized as follows. Monocular vision system and its image information are
presented in Section 2. Then, the imaging principle is analyzed, the model of 3D reconstruction is built,
and the proposed method is developed in Section 3. Following that, a simplified calculation method
for the proposed algorithm is designed in Section 4, experimental results are presented and discussed
in Section 5, while conclusions are reported in Section 6.

2. Monocular Vision System and its Image Information

The proposed monocular vision system is composed of a three-level charge coupled device (3-CCD)
camera and a red-green-blue (RGB) ring illumination source. As shown in Figure 1, the color light
source includes three circular LED rings, respectively red, green and blue. The light source parameters,
including sizes, position, incident angles and distribution density of LEDs are designed and calibrated
accurately [40]. The detected objects are placed in the center of the worktable. In the acquired color
image, each pixel has three intensity values of red, green and blue. Furthermore, these gray values
vary with inclination of the detected surface due to light incident angles. Thus, the intensity values of
red, green and blue reflect the variation trend of detected surface, in other words, the red, green and
blue irradiates to the flat, slow slant and rapid slant surface, respectively [41]. Such characteristics will
be used for image regions segmentation and to design the proposed algorithm.
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Figure 1. The monocular vision system.

Unlike the SFS methods, the proposed method uses a multi-color ring structured light, which has
calibrated parameters in terms of height, incident angle and distribution density for each LED, in order
to get the incident light position information of the acquired color image. Following the calibration,
the same incident light intensities will have the same gray values in the same detected regions [40].

3. Analysis of Imaging Principle and Model of 3D Reconstruction

3.1. Principle of the Imaging based on the Monocular Vision System and the Ring Structure Light Source

In this section, a 3D reconstruction module is presented based on a monocular vision system.
A simplified monocular vision system is shown in Figure 2a, which includes a 3-CCD camera, a lens and
a three-color light source (red, green and blue). The three lighting points, namely, Sr, Sg and Sb represent
the red, green and blue luminous points from the ring light source, respectively, all located in the XOZ
plane. The detected object cross section AGB is also in the XOZ plane. Because of the symmetry
properties of the monocular vision system, every cross section has the same imaging process, including
the Z-axis and perpendicular to the plane of XOY. In this case, the imaging plane of XOZ is shown
in Figure 2b, where LOMMH represents the image plane of the 3-CCD camera, LL1L2 is the lens width,
the curve LAGB stands for the detected surface and the point G is irradiated by light sources Sr, Sg and
Sb. The point MH

(
Gr, Gg, Gb

)
is the image of the detected point G, along with the gray values of red,

green and blue (Gr, Gg, Gb), respectively. The coordinate value of G is defined as (xG, h ), in other words,
the height of the detected point G is defined as h, h is also named zG.
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Figure 2. (a) The monocular vision system; (b) the imaging plane of XOZ.

In particular, h is unknown before reconstruction and measurement. For a focused optical
imaging with object distance H − h, image distance d and a thin lens with focal length f, the following
relationship holds:

1
f
=

1
H − h

+
1
d

(1)

From Equation (1), the detected height can be expressed as:

h = H −
f d

d− f
(2)

As it is affected by depth of field, h may not be the exact height of the detected point. In other
words, usually, the image plane is invariable in an optical system, while the object plane is variable due
to the surface variety of the detected object within a tolerated range. If the object plane does not match
the image plane in an optical system, all the objects located at different distances from the camera
will appear blurred [42]. As shown in Figure 3 A, B and C are the detected points, L1L2 is the lens
width and OMA1 is the image sensor. The detected point A is captured sharply as A1 is on the image
plane OMA1, while the detected points B and C are imaged to B1 and C1, respectively. However, in an
optical system, since A1 is fixed, both B and C will be captured as blurred points. Therefore, in this
configuration, it is not suitable to calculate the detected height only by Equation (2). To get the exact
detected height, additional constraints should be considered.

Figure 3. The imaging process of the measured object.

3.2. The 3D Reconstruction Model

In an optical imaging system, every pixel coming from image sensor elements represents a special
region in the detected object surface, denoted by σG. Its corresponding gray value indicates the energy
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intensity of the incoming light, coming from the light source and reflected by the special region σG of
the detected object.

As shown in Figure 2, the physical point G, which is imaged as pixel MH, is lighted by the light
source Sr, Sg, and Sb, and its gray values are Gr, Gg and Gb, respectively. The angle of the tangent
plane of point G to the plane XOY is denoted by θ. The angle of incidence of Sg to the plane XOY is
denoted by βg, its mirror reflecting line is denoted by LGMH and its reflection angle is denoted by ϕ,
representing the theoretical reflecting line to the pixel MH. The actual reflecting line is denoted by LGR
and its angle to the line LGMH is denoted by γg. Then, the parallel light reflecting from G is denoted by
LGMH focusing on the point MH. As shown in Figure 2, the incoming red, green and blue angles are
denoted by βr, βg and βb, respectively, therefore the following equations hold:

tanβr =

∣∣∣∣∣ zr − zG
xr − xG

∣∣∣∣∣ (3)

tan βg =

∣∣∣∣∣∣ zg − zG

xg − xG

∣∣∣∣∣∣ (4)

tan βb =

∣∣∣∣∣ zb − zG

xb − xG

∣∣∣∣∣ (5)

tan(∅+ θ) =

∣∣∣∣∣ zo − zG
xo − xG

∣∣∣∣∣ (6)

In which (xr, zr),
(
xg, zg

)
, (xb, zb), and (xo, zo) can be measured on the vision system, and xG

can be retrieved from its nominal physical size based on its pixel coordinate. Therefore, only the three
variables zG, ∅ and θ are unknown in Equations (3)–(6). Based on the triangle transformation,
reflection angles between the theoretical reflecting line and the actual reflecting lines of red, green,
and blue, denoted by γr,γg and γb, respectively, which can be expressed as:

γr =

∣∣∣∣∣∣(π+ θ−∅) −

(
π− arctan

∣∣∣∣∣ zr − zG
xr − xG

∣∣∣∣∣)
∣∣∣∣∣∣ =

∣∣∣∣∣θ−∅+ arctan
∣∣∣∣∣ zr − zG
xr − xG

∣∣∣∣∣∣∣∣∣∣ (7)

γg =

∣∣∣∣∣∣θ−∅+ arctan

∣∣∣∣∣∣ zg − zG

xg − xG

∣∣∣∣∣∣
∣∣∣∣∣∣ (8)

γb =

∣∣∣∣∣θ−∅+ arctan
∣∣∣∣∣zb − zG

xb − xG

∣∣∣∣∣∣∣∣∣∣. (9)

In which 0 < γr,γg,γb <
π
2 .

The incoming red, green and blue light intensities are indicated as Ir, Ig, and Ib, respectively.
Such intensities are reflected by the detected surface σG, and part of their energy is transmitted to
the pixel element MH. Furthermore, Ir, Ig and Ib are affected by the detected material and the inclination
angle of the detected surface. Based on Equations (7)–(9) and the reference model proposed in [40],
if the influencing factors on the material to red, green and blue light are denoted by fr, fg and fb,
respectively, which can be obtained by experimental tests, then the relationships between incoming
lights and their gray values can be built as follows:

Gr = Ir·σG·fr·cos θ·cosγr (10)

Gg = Ig·σG·fg·cos θ·cosγg (11)

Gb = Ib·σG·fb·cos θ·cosγb (12)
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Inserting Equations (7)–(9) into Equations (10)–(12) results in

Gr = Ir·σG· fr·cosθ·cos
∣∣∣∣∣θ−∅+ arctan

∣∣∣∣∣ zr − zG
xr − xG

∣∣∣∣∣∣∣∣∣∣ = Ir·σG· fr·cosθ·cos
(
θ−∅+ arctan

∣∣∣∣∣ zr − zG
xr − xG

∣∣∣∣∣) (13)

Similarly,

Gg = Ig·σG· fg·cosθ·cos

∣∣∣∣∣∣θ−∅+ arctan

∣∣∣∣∣∣ zg − zG

xg − xG

∣∣∣∣∣∣
∣∣∣∣∣∣ (14)

Gb = Ib·σG·fb·cos θ· cos
∣∣∣∣∣θ−∅+ arctan

∣∣∣∣∣zb − zG

xb − xG

∣∣∣∣∣∣∣∣∣∣ (15)

In which, Gr, Gg, and Gb are the gray values of red, green and blue obtainable from the detected
color image. Ir, Ig, Ib, σG, , fr, fg and fb, can be measured by calibrated experimental tests. In other
words, there are only three variables of zG,∅, θ in Equations (13)–(15). Therefore, zG can be calculated by
solving Equations (13)–(15), which indicate the height information of the detected area σG. By repeating
this procedure across the whole detected area, the whole detected surface will be reconstructed,
and the measurement of surface size can be carried out.

4. Simplified Calculation Method for the Proposed Algorithm

As mentioned in Section 3, in order to reconstruct the whole detected surface, the proposed
method needs to calculate all the pixels of the detected image by Equations (13)–(15), being very
inefficient and time consuming. In this section, the proposed algorithm is optimized to improve its
reconstruction speed while its inspection accuracy remains controllable.

Two aspects will be considered in the following to simplify the proposed algorithm. Firstly, the detected
color image is divided into different regions based on the color gradients. Secondly, polar coordinates are
used to simplify the computing processing based on the cycle calculation.

4.1. Algorithm Simplified Based on Regions

Within the uniform material, the surface of the detected object has the same property of the specular
and diffuse reflection, which abides to the law of light reflection. In this manuscript, the detected image
is obtained by the monocular vision system, which includes a 3-CCD color digital camera and a 3-color
(red, green and blue) ring structured light source. As shown in Figure 1 and analyzed in Section 1,
the red, green and blue distribution in the detected image indicates the surface slant gradients of
the detected object [42]. Within the single-color layer image, the same gray values, which are adjacent,
indicate the same height in the detected surface, and the increased or decreased gray values indicate
variations in the detected surface height. Therefore, the detected image can be divided into several
regions based on the gray levels, and the height information of every region can be calculated by
Equations (13)–(15) using only one-pixel information within the same regions. In this way, a high
number of redundant calculation tasks will be avoided, speeding up the reconstruction process.

4.2. Algorithm Simplified based on Coordinates Transformation

As shown in Figure 4, supposing that the detected point G corresponds to the pixel coordinates
(i,j) in the detected image. δx, δy is denoted as the ratio factor between the physical region and its
pixel’s region in the direction of X and Y, respectively. In the plane of XOY, the region of (i·δx, i·δx + δx)

in width and
(
i·δy, i·δy + δy

)
in height, which corresponds to the pixel coordinates (i,j), is the projection

of the detected surface region G. zG is the height of the detected surface region G. Then

r =

√
(i·δx + 0.5δx)

2 +
(
j·δy + 0.5δy

)2
(16)

x = r·cosω (17)
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y = r·sinω (18)

ω = arcsin
j·δy

r
(19)

Figure 4. Algorithm simplification based on coordinates transformation.

Inserting Equations (16)–(18) into Equations (13)–(15) and solving the resulting equation for
z yields:

z = f (x, y) = f (r·corω, r·sinω) (20)

Then, the detected surface can be expressed as

a = 1, z =

∫ rmax

r=0

∫ 2π

ω=0
f (r·corω, r·sinω) =

∑rmax

r=0

∑2π

ω=0
f (r·corω, r·sinω) (21)

In which, rmax =

√
(imax·δx + 0.5δx)

2 +
(
jmax·δy + 0.5δy

)2
, and imax , jmax are limited by the field

of view. z is calculated based on its pixel in the field of view one by one, then Equation (20) can be
expressed as:

z =

rmax∑
r=0

2π∑
ω=0

f (r·corω, r·sinω) (22)

From Equation (21), it indicates that the detected surface can be reconstructed completely by
a series of cyclical calculation, which obviously reduces the complexity of computation and improves
the efficiency of the 3D reconstruction process.

Therefore, the flow chart of the proposed algorithm can be presented as Figure 5.
Especially, the boundary condition is limited to the field of view, and the calculation sequence
comes from divided regions and the order of regions.
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Figure 5. The flow chart of the proposed algorithm.

5. Experiments Results and Analysis

The process of three-dimensional measurement is carried out firstly by reconstructing the 3D
surface of the detected object, and then by measuring the 3D size information of any point by the optical
system. In this section, the 3D measurement process is illustrated according to the proposed method,
including its performance evaluation via benchmarking. As shown in Figure 6, the image acquisition
system is composed of a JAI CV-M9CL (JAI Corp., Copenhagen, CO, Denmark) 3-CCD camera and
the designed light source, (reported in Figure 1). In this case study, the object distance H is 285.4 mm
and the image distance d is 31.6 mm, the focal length f is 28.4 mm and the field of view is 24 mm ×
18 mm. During the experiments, a noise environment less than 90 dB and stable lighting environment
are necessary, the vibration frequency of the worktable should be less than 100 Hz and its amplitude
should be less than 0.5 µm, moreover, the light intensity deviation of the light source should be less
than 5% within the field of view. In addition, a 3D measurement system VR 5200 (KEYENCE Corp.,
Osaka, Japan) is used in the experiment (Figure 7) to measure the true height of samples. VR 5200
has 0.1 µm display resolution and 120 × resolution on 15 inch displays is 2.5 mm × 1.9 mm, and its
precision of measurement repeatability is less than 0.4 µm without z-connection. Therefore, the object
height can be measured accurately by VR 5200 to evaluate the performance of the proposed method
comparing with other similar methods.

Figure 6. (a) The acquisition image; (b) The experimental platform.
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Figure 7. 3D measurement system VR 5200.

The process of measuring surface height with the proposed method is shown in Figure 8.
Firstly, the working environment should be carefully checked, and the light source must be calibrated,
then the sample color images can be acquired by the proposed system, for example, the color image
shown in Figure 8a. Secondly, the acquired color image is converted to gray levels for red, green and
blue channels, and then gray images are segmented into several regions based on similar gray levels,
as shown in Figure 8b,c. Thirdly, each region is located to define the calculation region, and arrangement
relations are identified to form the calculation sequence. Additionally, surface height information is
cyclically calculated using Equation (22). Lastly, calculation results are arranged based on location
information and then the 3D surface can be retrieved as shown in Figure 8d.

Figure 8. Surface height measurement process scheme using the proposed method. (a) Color image
acquisition; (b) grayscale image; (c) image regions segmentation and (d) detected surface reconstruction.
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To evaluate the performance of the proposed method, four different samples, namely,
convex surface, concave surface, angular surface and convex and concave surface were produced
by 3D printing using a single material, and tested based on the proposed algorithm, as shown
in Table 1. In addition, a subscriber identification module (SIM) mobile card slot was also tested.
Furthermore, benchmarking was carried out to compare the proposed method to alternative methods,
in terms of reconstruction accuracy and speed.

Table 1. Experimental results.

Convex Surface
Sample

Concave Surface
Sample

Angular Surface
Sample

Convex and
Concave Surface

Sample

Sample images

Images acquired
via the proposed

system

Reconstructed
images via

the proposed
method

As shown in Table 1, the four samples in the first row are obtained by utilizing a digital camera and
natural light. The second row shows images acquired using the proposed vision system. The bottom
row shows the reconstruction results obtained by the proposed algorithm. In order to compare
the proposed method to other methods (proposed in [9,29,39]), four section views were considered
from the reconstruction results, as shown in Figures 9–12, respectively. In these charts, the black line
refers to the object height measured by VR 5200, the blue line refers to the object height measured by
the method of light microscopy axial-view imaging [9], the yellow line refers to the reconstruction
height based on the proposed method, the purple line refers to the reconstruction height by [29] and
the green line refers to the reconstruction height by [39].

Figure 9. Convex surface reconstruction results.
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Figure 10. Concave surface reconstruction results.

Figure 11. Angular surface reconstruction results.

Figure 12. Convex and concave surface reconstruction results.

As regards the convex surface, Figure 9 shows that the proposed reconstruction height curve
fluctuates along the actual object height curve with an error less than 2.3%, while the other two methods,
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respectively proposed by [29] and [39], both have an error over 6%. This result demonstrates that
the proposed algorithm can reconstruct and measure the convex surface effectively. Within the error
range, the proposed reconstruction height curve is also characterized by a smaller deviation compared
to the other methods. This can be explained by the processed gray region segmentation. In addition,
the wave-like pattern in the reconstruction height curve, suggests that the uniformity of the light source
raying is very important in the proposed algorithm.

As regards the concave surface, Figure 10 shows that the proposed reconstruction height curve
fluctuates along the actual object height curve with an error less than 3.2%, showing higher accuracy
compared to the other two methods [29] and [39]. This result indicates that the proposed algorithm can
also reconstruct and measure the concave surface effectively. Figure 10 also shows that the reconstruction
height curve overestimates the actual object height curve. Such error is mainly caused by intensity
calibration issues with the incoming light. Such errors can be reduced by properly calibrating the light
source parameters.

As regards the angular surface, Figure 11 shows that the proposed reconstruction height curve
fluctuates along the actual object height curve with an error less than 3.2%, showing a good suitability of
the proposed algorithm in effectively reconstructing the angular surface. The error, shown in Figure 11,
indicates that the gray region segmentation and the calibration accuracy of light source parameters are
crucial aspects for improving the reconstruction precision with the proposed algorithm.

As regards the convex and concave surface, Figure 12 shows that the proposed reconstruction
height curve fluctuates along the actual object height curve with an error less than 2.7%. Such results
suggest that the proposed algorithm can be used to reconstruct and measure different types of surfaces,
which represent a common scenario for industrial applications.

Furthermore, to evaluate the performance of the proposed algorithm, a mobile SIM card slot was
also measured experimentally. The SIM card slot image is shown in Figure 13, and its concave-convex
components are highlighted in Figure 13b. The reconstruction results using the proposed method
are shown in Figure 14. A comparison with the light microscopy axial-view imaging method [9] and
the true height of the SIM card measured by VR-5200 are presented in Figure 15. The chart shows how
the proposed method yields very similar results to the method developed by Guo et al. [9] in terms of
measurement accuracy. It is also found that the maximum deviation (within 3.6%) corresponds with
the bottom of the concave region, this is due to the lower image definition in the region. Adjusting focal
length and acquiring clear images can improve measurement accuracy.

Figure 13. (a) SIM card slot acquired image; (b) an example of concave-convex components.
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Figure 14. Mobile SIM card slot reconstruction result via the proposed method.

Figure 15. Measurement results comparison.

To verify the computational load of the proposed method, the SIM card slot is detected with
different reconstruction methods. As shown in Figure 16, with an increasing number of SIM card
slots, the proposed method (before the simplification procedure) has the slowest detection speed
because it needs to compute every pixel to retrieve the height information. The other three methods
proposed in [9,29,39] have an intermediate velocity to compute the height of SIM card slots. In contrast,
the proposed method after simplification has the fastest reconstruct speed, because it only needs
to calculate few pixels within the same gray values of adjacent pixels, and because of the polar
coordinate symmetry of monocular vision system, it reconstructs the surface height by a series of
cyclical calculations with a double loop program. Such results indicate that the proposed method
after simplification can reduce the computation complexity and improve the efficiency of the 3D
reconstruction process.
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Figure 16. The inspection speed with different methods.

6. Conclusions

In this paper, a single image 3D reconstruction method is proposed based on a novel monocular
vision system. In such a proposed method, the relationship model of the detected height information
and its image gray value is built, and the 3D reconstruction method is presented.

A simplified calculation method is described to speed up the process of 3D reconstruction based
on gray regions segmentation and the coordinate transformation.

Experimental results show that the proposed algorithm can reconstruct the 3D size of convex,
concave and angular surfaces with errors less than 3.2%. A mobile SIM card slot was also investigated
and the resulting measurement error was less than 3.6%, which illustrates the validity of the proposed
algorithm. In terms of applicability, the proposed method can be effectively utilized to reconstruct
diffuse surfaces, while a low accuracy has been obtained for specular surfaces. In addition, a light
source calibration procedure should be carried out prior to detection operations in order to improve
the results accuracy.
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