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Abstract: The Android operating system has gained popularity and evolved rapidly since the
previous decade. Traditional approaches such as static and dynamic malware identification techniques
require a lot of human intervention and resources to design the malware classification model. The real
challenge lies with the fact that inspecting all files of the application structure leads to high processing
time, more storage, and manual effort. To solve these problems, optimization algorithms and
deep learning has been recently tested for mitigating malware attacks. This manuscript proposes
Summing of neurAl aRchitecture and VisualizatiOn Technology for Android Malware identification
(SARVOTAM). The system converts the malware non-intuitive features into fingerprint images to
extract the quality information. A fine-tuned Convolutional Neural Network (CNN) is used to
automatically extract rich features from visualized malware thus eliminating the feature engineering
and domain expert cost. The experiments were done using the DREBIN dataset. A total of fifteen
different combinations of the Android malware image sections were used to identify and classify
Android malware. The softmax layer of CNN was substituted with machine learning algorithms like
K-Nearest Neighbor (KNN), Support Vector Machine (SVM), and Random Forest (RF) to analyze the
grayscale malware images. It is observed that CNN-SVM model outperformed original CNN as well
as CNN-KNN, and CNN-RF. The classification results showed that our method is able to achieve an
accuracy of 92.59% using Android certificates and manifest malware images. This paper reveals the
lightweight solution and much precise option for malware identification.
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1. Introduction

Any software with mala fide intention is a malware (malicious software). They generally have a
mischievous behaviour and are developed to interrupt normal functioning, steal sensitive information,
display unwanted advertising, or getting control of the users’ device without knowledge. Moreover,
malware and unintentionally harmful software are collectively termed as badware. Main categories in
which malware can be grouped are the virus, worms, Trojans, ransomware, rootkits, and botnet [1].
Like computer systems, malware systems have evolved to be more intelligent, smart, and decisive.
Malware can adopt polymorphic and metamorphic techniques to obfuscate traditional methods of
malware identification [2–5]. Newly developed malware is too sophisticated to obstruct emulators and
avoid deep static analysis. Malware also propagates through deploying metamorphism methods like
multi-packer, code transformation, encryption, registry modification, virtual machines, anti-debugging,
and instruction permutation. Malware is smart enough to detect the best moment to launch its
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payload [4,6–9]. The use of automation and reusable development modules can generate a huge
amount of new malware variants [10–12]

Malware developers tend to change small parts of the original source code to generate new
malware variants and evade detection [11,13,14]. This makes identification of malware variants from
the same family extremely challenging [15,16].

The most prominent signature and behavior-based techniques for malware identification are
static and dynamic analysis. In static analysis, the suspected code is analyzed without running the
application. It requires disassembly of source code for feature extraction [17–22]. It is not resilient
against code obfuscation and dynamic code loading [23–26]. On the other hand, dynamic analysis
examines the features and traces of suspected application while it is executing [27–32]. The latter
technique is promising but complex and time-consuming. It is high on resource consumption and
storage space [23,33]. Intelligent malware is using anti-emulation techniques to evade dynamic
analysis [34–36]. Moreover, utilizing static and dynamic techniques on such files requires a lot of
manual effort/human intervention. It also requires domain-level knowledge to analyze or reverse
engineer the application [37–41]. The time required to manually construct the features from the whole
Android Application Package (APK) structure for the classification of Android malware families
is considerably high [4,6,42–44]. These security mechanisms demand high computational resources
and deploying them on a constrained smartphone environment is difficult [34]. Android malware
traces are studied through Classes.dex, resources, manifest, and certificate files of Android application.
The real challenge lies with the fact that inspecting all files leads to high processing time, more storage,
and manual effort. Optimization algorithms and deep learning has been recently tested for mitigating
malware attacks.

A model can easily be trained using deep learning algorithms for malware identification.
If supported with Graphics Processing Unit (GPU) acceleration such models can perform reasonably
well to identify malicious behavior of any application. Such deep learning models with GPU support have
proven to guarantee excellent performance for image classification. Deep learning network [45,46] such as
Convolutional neural network (CNN) takes the images as input. It has the ability to differentiate various
aspects/objects from one other by using learnable weights and biases. There is no better choice than
CNN when the input data is in the form of images. CNNs eliminate the tasks such as feature engineering,
features selection, and features representation that may require extensive human intervention. CNN has
achieved promising results in real world research applications such as sentiment analysis, bioengineering,
pedestrian detection, face recognition, and handwritten digit recognition. In the proposed work too,
Android malware applications have been converted into malware images. Owing to the proven and
widely accepted method for image classification by research community, a CNN was thus fine-tuned
to automatically extract the rich features from malware images. These features were thus used to
perform the classification of malicious applications with respect to their families. This methodology
suggests the conversion of binary information from Android files into images. Such visualization-based
techniques allow analysts to see through the malware binary images without executing it. Unlike machine
learning, deep learning algorithms can perform feature representation without any specific assumption or
parameter configuration. With little guidance, deep learning models can capture the right features, learn
complex patterns, and effectively solve the dimensionality problem. The main contributions of this work
are enumerated as follows:

• We propose a novel system called SARVOTAM that is defined as Summing of neurAl aRchitecture
and VisualizatiOn Technology for Android Malware classification.

• It works on the raw bytes and eliminates the need for decryption, disassembly, reverse
engineering, and execution of code for malware identification. The system converts the malware
non-intuitive features into fingerprint images to extract the quality information.

• Seeing through malware binary, the proposed system can discover and extract insights
necessary for malware analysis, and paves the path for the development of effective malware
classification systems.



Sensors 2020, 20, 7013 3 of 29

• A CNN was fine-tuned to automatically extract the rich features from visualized malware thus
eliminating the feature engineering and domain expert cost.

• SARVOTAM was augmented by imbuing traditional classifiers like K-Nearest Neighbour (KNN),
Support Vector Machine (SVM) and Random Forest (RF) to recommend prominent Android File
structure features for malware identification and classification. It was noted that CNN-SVM
model outperformed original CNN as well as CNN-KNN, and CNN-RF.

• To the best of our knowledge, classification and generation of malware images using fifteen
unique combinations of Android malware file structure have been explored for the first time.

• It was observed that malware images formed using Certificate and Android Manifest files
(CR+AM) offer a light-weight and much precise option for malware identification. One may not
try inspecting all files in the APK for malware identification and classification.

• The proposed system was evaluated against the DREBIN dataset [47]. This dataset consists of
179 different malware families containing 5560 applications.

The simplistic depiction of proposed SARVOTAM methodology is shown in Figure 1.

Figure 1. Simplistic depiction of adopted methodology for classification of Android malware.

• Malware applications: Malicious applications from the DREBIN dataset were considered to
evaluate the efficiency of the proposed methodology. This dataset contains 179 Android malware
families and is widely used among the research community.

• Computer System: The machine with configuration Intel core i5 processor, 8G RAM, and 2.7 Ghz
clock speed was used for the experiments and results.

• Transformation of malware applications into images: The proposed SARVOTAM system allows
seeing through malware binary, discover and extract insights necessary for malware analysis by
converting malware binary into grayscale images. Fifteen unique malware images were created
using different files of an APK for every malware family samples. Section 3.1 discusses in detail
about the methodology adopted to transform malware applications into images.

• Feature Extraction: Accurate Feature engineering is the important task for any classification
model. In this study, a fine-tuned CNN was used to automatically extract rich features from
visualized malware images thus eliminating the feature engineering and domain expert cost.
Section 3.2.1 discusses more about CNN architectures, used in the experiments.

• Identification and classification of malware: The machine learning algorithms such as SVM,
KNN, and RF were used for the classification purpose. More detail about this is presented in
Sections 3.2.2 and 4.

The rest of this paper is organized as follows; Section 2 offers a discussion on related work;
Section 3 elaborates adopted methodology; Section 4 interprets the experimental results and Section 5
concludes the findings.

2. Related Work

Visualization-based analysis of malware has been conducted by the researchers [10,48–50].
Visualization-based approaches tend to directly work on malware image structure [11,51–53].
Unlike static and dynamic techniques, visualization-based analysis supports the faster classification of
the malware samples as it does not require an application to be disassembled or executed. Therefore,
it outperformed than conventional techniques when the task is to classify a large number of malware
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samples. In [54], the author converted an APK file structure into four different image formats.
Those image formats were Grayscale, Red-Green-Blue (RGB), Cyan-Magenta-Yellow-Black (CMYK),
and Hue Saturation Lightness (HSL). Three different machine learning classifiers namely, Decision
Trees, Random Forest, and K-Nearest Neighbour were trained using Global Image Descriptors (GIST)
features against each image representation to classify whether an application is benign or malware.
The authors achieved a high accuracy of 91% with random forest classifier on grayscale image
representation. Authors in [11] performed fine-grained classification on Portable Executable (PE)
files using the visualization-based approach. They visualize the malware as an RGB-coloured image.
The dataset was composed of 15 families that contained 7087 malware samples. They built their model
by combining global and local features for the malware classification. The data and code section of the
file was processed as feature vectors to constitute local features. Global Features were extracted from
RGB-coloured image. To train the model they used three classifiers namely, Random Forest, Support
Vector Machine, and K-Nearest Neighbour. The results of the malware classification experiments
showed that the Random Forest classifier achieved a high accuracy of 97.47%. Their approach did
not work with a non-PE file structure, e.g., an APK file structure. Hence, their method cannot be
used directly for classification Android malware families. Authors in [55], consider only the code
section of an APK file. For this task, they first converted the dex file into a jar file using dex2jar tool.
Further jar file was converted into java file using jad tool. For each APK file, they put the code part
in separate text files. To identify the important words in text file, authors employed the technique
called as Term Frequency-Inverse Document Frequency (TF-IDF) in their work. TF-IDF weight is a
statistical measure that helps to interpret that how important a term is to a text file in a collection of
large text files. TF computes the normalized term frequency, which is calculated as the number of
times a term appears in a document, divided by the total number of terms in that document. IDF
measures how important a term is. It is computed as the logarithm of the number of documents in the
corpus divided by the number of documents where the specific term appears. It helps to weight down
the frequent terms while scaling up the rare ones. After mining the important terms from the text files,
they arranged these files into several groups. These groups were further processed to generate pictures
by using simhash [56] and djb2 algorithm [57]. The authors deployed a convolutional neural network
for learning and classification and achieved an accuracy of 92%. Authors ignored other building blocks
of APK file, such as META-INF, Resources, AndroidManifest.XML in their work. Authors in [58],
demonstrated the experiment over 32 malware families constituting 12,000 images of malware. They
studied the performance comparisons on various classifiers such as a Convolutional Neural Network,
K-Nearest Neighbour, and Support Vector Machine with different image descriptors such as Local
Binary Pattern (LBP) and GIST. Convolutional neural network model trained with 6 layers using LBP
features achieved a high accuracy of 93.92% against the dataset chosen. They visualized the malware
as grayscale and Red Green Blue Alpha (RGBA) images. Researchers analysed the performance
of both image formats using the CNN model, which was trained with LBP features. Authors also
concluded that visualizing malware as a colour image might lose some important features. In machine
learning, deciding the subset of features that can potentially be used for critical malware analysis is
a challenging task. A proper feature set should be generated to build an accurate malware analysis
or detection model. Authors in [59] developed the visualization method in C language to study
the internal structure (patterns/anomalies) of Android malware executable files. Researchers also
claimed that their method has the potential to disclose feature set for classification of malware families.
They only considered the .dex file in their work. Bytes in .dex file were mapped to a pixel on the image.
Numerous varieties of obfuscation tools have been available in the market, being used by legitimate
developers to protect their intellectual property of Android applications. The tools and techniques
which were originally designed to protect intellectual property are now widely exploited and abused
among malware authors to create Android malware variants more resilient. Authors in [60] utilize
the visualization-based approach to fingerprint the obfuscation tools used in the development of the
Android application cycle. Malware binary visualized as an image. They calculated two types of
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statistical features from an image. These features are synthesized to extract information to uncover
the type of obfuscation tool employed by an application developer. Researchers claimed accuracy
of 73% and 86% for fingerprinting the obfuscation tool and classification of obfuscated and original
applications respectively.

The literature review concludes the fact that an APK file is a sequence of bits and therefore
a binary image, there is no clear consensus within researchers pertaining to type of analysis and
prominent APK parameters suitable for the classification of malware entities. The traditional malware
classification approaches rely on extracting static and dynamic features. These approaches tend to use
code analysis to solve a malware classification problem. Existing malware classification approaches
used signature-based and feature-based approaches. Unfortunately, these approaches suffer from code
disassembly, code obfuscation, and high consumption of resources. Researches have also realized
that these approaches are heavy on time and space. Moving towards deep learning infusion with
visualization approaches is the beginning of a new era in Android security. The proposed solution
leverages the goodness of visualization and deep learning techniques to solve the multiclass malware
classification problem. Deep learning architecture eliminates the need to capture features such
as API calls, permissions, meta-data information, and other dynamic features such as system call,
network activity to generate a high-quality malware classification model. The solutions leveraging the
combination of visualization-based analysis and deep learning [61,62] have shown the impact lately in
the research related to security and privacy. Most of the proposed solutions [10,11,16] have attained
good accuracy against windows malware classification. Researchers worked with PE files because
their experiments were restricted to Windows environments. Windows platform is most popular in
desktop personal computers, and their hardware architecture is much different from light-weight
mobile devices running Android. Therefore, solutions for Windows platform applications such as PE
files cannot be directly applied for Android malware family classification. The cited literature has been
published in the year 2020 and the authors have probably not tested it on APKs. This study validates
the use of feature extraction for Android malware images.

3. Materials and Methods

This section offers a discussion on various fundamental concepts involved in the experiment
design. DREBIN dataset of Android malware applications has been used for this experiment.
The dataset contains 5560 files from 179 different malware families. Most of the research literature
from year 2014–2020 has used DREBIN dataset as standard dataset for malware related experiments.
The dataset includes popular Android malware families such as Fake Installer, GoldDream [24],
GingerMaster [23] and DroidKungFu [25]. A summary of malware datasets used by the research
community is summarized in Figure 2 [63]. Further, the prime objective of this manuscript lies with
validating the proposed method for malware identification instead of malware itself. Furthermore,
the most recent malware dataset available for research is from year 2017 [12], which too may not have
sufficient samples of contemporary malware types.

Experiment design, adopted methodology and fundamental contributory concepts are detailed next.

3.1. Transforming Malware APK into Images

As per established research standards classes.dex, resource, manifest, and certificate files are
primarily considered for visualization of APK [55]. In this manuscript, the authors generated malware
images using these four files from malware APK. The malware binaries are converted into 8-bit vectors
and subsequently converted into grayscale images. There are a few fundamental steps involved
in transforming any malware samples into a digital image. Entire malware substring can be seen
as the sequence of several substrings. Each substring is 8-bit length long and termed as a pixel.
Further, this 8-bit substring is mapped to an unsigned decimal number within a range from 0 to
255. For example, if a bit string is 0011101110111111, the process is 0011101110111111→00111011,
10111111→59, 191. Any 8-bit number can be represented as bin7, bin6, bin5, bin4, bin3, bin2, b1, bin0 and
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can be converted into a decimal number D as bin7 ∗ 27 + bin6 ∗ 26 + bin5 ∗ 25 + bin4 ∗ 24 + bin3 ∗ 23 +

bin2 ∗ 22 + bin1 ∗ 21 + bin0 ∗ 20. The next step is to create a malicious code matrix. For this purpose,
all malware substrings have been transformed into a one-dimensional vector of decimal numbers.
Subsequently, a one-dimensional vector is transformed into a two-dimensional matrix of a certain
width. The resultant two-dimensional matrix is then interpreted as a two-dimensional grayscale image.
The graphical representation of the transformation process is depicted in the Figure 3.

Figure 2. Popular Android malware datasets.
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Figure 3. Conversion process of APK into grayscale image.

Based on the empirical observations we have fixed the image widths according to the different
image file size, as depicted in Table 1 [16]. It is to be noted that the height of malware image varies with
the file size. Grayscale image visualization of Android families from DREBIN dataset is represented
in Figure 4. The overall structure of grayscale images corresponds to various sections of an APK.
Android malware images for twenty distinct families in the DREBIN dataset have been generated
using fifteen different file structure combinations. These files are certificate (CR), Android manifest
(AM), classes.dex (CL), and resource (RS).The combinations and associated samples of each class are
illustrated in the Table 2. For example, the instances of malware images from various families with
respect to CR+AM+RS+CL combinations are shown in Figure 4.

The images of the malware generated from different malware families are visually comparable.
They vary discernibly from images belonging to another family. For instance, in Figures 4 and 5 variants
of the FakeInstaller, DroidKungFu, Plankton, and Opfake malware family are shown. The images have
different sizes and have visual dissimilarities. This is because they are created using the automation
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scripts or tools by the malware developers. Motivated by the visual similitude of malware images,
we can classify and identify Android malware applications.

Table 1. Fixed Image Width According to File Size.

File Size Width

<50 KB 64
50 KB~100 KB 128
100 KB~200 KB 256
200 KB~500 KB 512
500 KB~1000 KB 1024

Figure 4. Illustration of malware images using the file sections of certificate (CR),Android manifest
(AM), resource (RS), classes.dex (CL) of an APK.

Figure 5. The fingerprint images of different malware family using file sections of Android manifest
(AM) and resource (RS) of an APK structure.
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Table 2. The combinations and associated instances of each malware class from DREBIN dataset.

Name Classes CR * AM * RS * CL * CR+AM CR+RS CR+CL AM+RS AM+CL RS+CL CR+AM
+RS

CR+AM
+CL

CR+RS
+CL

AM+
RS+CL

CR+AM
+RS+CL

FakeInstaller 1 360 925 925 925 925 925 925 925 925 925 925 925 925 925 925
DroidKungFu 2 236 666 666 666 666 666 666 666 666 666 666 666 666 666 666
Plankton 3 439 625 625 625 625 625 625 625 625 625 625 625 625 625 625
Opfake 4 5 613 613 613 613 613 613 613 613 613 613 613 613 613 613
GinMaster 5 30 339 339 339 339 339 339 339 339 339 339 339 339 339 339
BaseBridge 6 13 329 329 329 329 329 329 329 329 329 329 329 329 329 329
Iconosys 7 152 152 152 152 152 152 152 152 152 152 152 152 152 152 152
Kmin 8 4 147 147 147 147 147 147 147 147 147 147 147 147 147 147
FakeDoc 9 107 132 132 132 132 132 132 132 132 132 132 132 132 132 132
Geinimi 10 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91
Adrd 11 88 91 91 91 91 91 91 91 91 91 91 91 91 91 91
DroidDream 12 63 81 81 81 81 81 81 81 81 81 81 81 81 81 81
ExploitLinuxLotoor 13 39 69 69 69 69 69 69 69 69 69 69 69 69 69 69
MobileTx 14 20 69 69 69 69 69 69 69 69 69 69 69 69 69 69
Glodream 15 59 69 69 69 69 69 69 69 69 69 69 69 69 69 69
FakeRun 16 27 61 61 61 61 61 61 61 61 61 61 61 61 61 61
SendPay 17 22 59 59 59 59 59 59 59 59 59 59 59 59 59 59
Gappusin 18 51 58 58 58 58 58 58 58 58 58 58 58 58 58 58
Imlog 19 6 43 43 43 43 43 43 43 43 43 43 43 43 43 43
SMSreg 20 14 40 40 41 40 40 41 40 41 41 40 41 41 41 41

All instances 1826 4659 4659 4660 4659 4659 4660 4659 4660 4660 4659 4660 4660 4660 4660
* CR->Certificate, AM->AndroidManifest, RS->Resource, CL->Classes.dex.
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3.2. Experiment Design

3.2.1. CNN Architectures

The proposed approach sees through binary information to discover and extract necessary insights
for malware analysis. It paves the path for developing an effective malware classification system.
CNN can attain high accuracy over challenging problems such as object detection, object classification
and object recognition. They are a kind of special neural network for processing data that is known
to have a grid-like topology. This could either be a one-dimensional time series data which is a
grid of samples over time or two-dimensional image data. Every filter in CNN does some kind of
operation to extract quality information from images. Filters in CNN play a very important role in
extracting information from images. The detailed configuration of CNN architecture deployed during
this experiment is briefed in Table 3. The description of each layer has been discussed below:

(a) Convolutional Layer: This is the first layer for CNN. At this layer, we convolve image or data
using filters or kernels. Filters are small units that are to be applied through a sliding window.
The depth of the filter is the same as that of input. For instance, a coloured image would have
RGB values hence its depth would be set to three. In other words, a filter of depth 3 would be
applied to it. The convolution operation involves taking the element-wise product of filters in the
image and then summing those values for every sliding action. The output of the convolution of
a 3D filter with a color image is a 2D matrix. It is important to note that convolution is not only
applicable to images but can also convolve one-dimensional time-series data. In this experiment,
the convolution layers are composed of 32, 128, and 256 with filters of size 7 × 7, 5 × 5, and 3 × 3
for the first, second, and third convolutional layer respectively.

(b) Activation Function Layer: An activation function is used to activate the neurons and send the
signals further within the model. Weights and activation functions are important to transfer the
signals through neurons. Rectified Linear Unit (ReLU) activation function prevents the vanishing
gradient problem. It supports faster computation and less overhead as it does not compute
exponentials and divisions. ReLU has been used to remove all the negative values from the
output or matrix that we got through the convolution layer. It only activates a node if the input
is above a certain threshold. While the input is below zero the output is also zero. When the
input rises above the certain threshold it has a linear relationship with the dependent variable.
The output of the ReLU activation function is fed to the pooling layer.

(c) Pooling Layer: It involves the downsampling of features to reduce the number of parameters
during training. Typically, there are two hyper parameters introduced with the pooling layer.
The first is the dimensions of the spatial extent. It is defined as the value of N for which we can
take N × N feature representation and map to a single value. The second is the stride which is
defined as how many features the sliding window should skip along the width and height of
the malware image. In this experiment, the pooling layer uses a max filter of size 3 × 3, 3 × 3,
and 2 × 2 for the first, second, and third convolutional layers respectively. It was moved across
entire matrix resulted by ReLU layer. The maximum pixel value is taken from each window to
shrink the malware image. All these layers were stacked up by adding more layers of convolution,
ReLU, and pooling.

(d) Batch Normalization Layer: Batch normalization is used for stable learning of deep neural
network. There is a significant problem in stable convergence in deep networks. This problem
is caused by the vanishing and exploding gradient problems [64,65] and the different variants
of activations within layers. The varying scale of different parameters cause bouncing in the
gradient descent. In the forward propagation, it multiplicatively depends on each weight and
activation function evaluation. The key point is that in the backward propagation, the partial
derivative gets multiplied by the weights and the activation function derivatives. When the
product of the weight and the activation function derivative is exactly one the gradients will
either tend to increase or they will tend to decrease. This is partially caused by the fact that the
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activations in different layers have different variances. The distribution of input at each layer
changes over training. Batch normalization is a way to address this issue by adding an additional
batch normalization layer between the layers of the neural network. It ensures that the variances
of the outputs of each layer are similar. Batch normalization normalizes not only the input
features but also the features in each layer. This principle of normalization of the input features is
carried through to all layers to ensure the most stable behaviour and faster convergence of the
underlying algorithm.

(e) Dropout Layer: In the multilayer neural network, we often face an overfitting problem, also
known as high variance problem. The Dropout layer in a neural network is used to solve the
overfitting problem. Only a subset of features is selected from the input layer. Dropout randomly
selects the neurons and deactivate them while learning the process. In a nutshell, deactivated
neurons do not participate in the learning process. For every layer, a Dropout Ratio value is
selected to be as 0.5.

(f) Flatten Layer: Flatten is a function or a library which converts the 2D image into 1D image.
The flatten layer in the network takes the output from the previous layer and flattening it into a
one-dimensional tensor. Basically, it takes the shrunk malware images and put it in a single list
or vector.

(g) Fully Connected/Dense Layer: The output from the convolutional layers represents high-level
features in data. Essentially the convolutional layers provide the meaningful low dimensional and
somewhat invariant feature space whereas the fully connected layer learns a possible nonlinear
function in that space. The output of a pooling layer has to be converted to a suitable input for
the fully connected layers. The output of the pooling layer is a 3D feature map (a 3D volume
of features). However, the input to a simple fully-connected feed-forward neural network is
a one-dimensional feature vector. The features are usually very deep at this point because of
the increased number of kernels that are introduced at every convolutional layer. Convolution,
activation, and pooling layers can occur at many times before the fully connected layers and
hence is the reason for the increased depth. To convert the 3D feature map into one dimension
the output width and height has to be 1. This is done by flattening the 3D layer into a 1D
vector. For classification problems, it involves introducing hidden layers and applying a softmax
activation to the dense layers of neurons. In this paper, hidden dense layers D1, D2, and D3 have
been added to the CNN architecture which has 50,100, and 200 neurons respectively. At the last,
one more dense layer D4 is used as the output layer with 20 neurons. It classifies the malware
images with respect to their families. Softmax is used as the activation function at the last layer.

3.2.2. Machine Learning Algorithms

The machine learning algorithms such as KNN, SVM, and RF are applied to analyze the grayscale
malware images using CNN features. The stated algorithms are discussed as follows:

(a) KNN (K-Nearest Neighbors): KNN or K-Nearest Neighbor is a supervised classification
algorithm. It identifies data points which are separated into several classes and predicts the class
label for a new sample data point. It is a renowned method to classify data objects based on the
closest training samples in a feature space. K in KNN refers to the number of nearest neighbors
that the classifier will use to make its prediction. The unknown data points are classified by
majority votes from chosen ‘K’ nearest neighbors. KNN uses the least distance measures such as
Euclidean and Manhattan to find out the nearest neighbors. We have used Euclidean distance
measure in this study.

(b) SVM (Support Vector machine): SVM is specific to supervised machine learning. The model
based on supervised learning learns from the past input data and makes future predictions as
output. SVM is primarily used for classification purposes, though it can also solve regression
problem statements. In the SVM algorithm, support vectors are the extreme points in the dataset.
The distance between the hyperplane and the support vectors should be as far as possible.



Sensors 2020, 20, 7013 11 of 29

Hyperplane has the maximum distance to the support vectors of any class. The distance between
the support vectors of different classes is defined as a distance margin. Distance margin is
calculated as the sum of D− and D+, where D− is the shortest distance from hyperplane to
closest negative point and D+ is the shortest distance from hyperplane to the closest positive
point. SVM aims to find the largest distance margin that leads to getting the optimal hyperplane.
An optimal hyperplane produces good classification results. For the non-linear data or where
hyperplane having a low or no margin, there is a high chance of misclassification of data points.
In such scenarios, kernel functions are used to transform the data into a 2D or 3D array which
makes it easy to split the data and classify. Kernel functions take the low dimensional feature
space as input and transform into high dimensional feature space as output. Applications
of the support vector machine are commonly used with it face detection, text and hypertext
categorization, classification of images, and bioinformatics.

(c) Random Forests: The random forests algorithm is one of the most popular and powerful
supervised machine learning algorithms that is capable of performing both regression and
classification tasks. Random forests combine the simplicity of decision trees with flexibility
resulting in a vast improvement in the accuracy. In general, the more trees in the forest, the more
robust is the prediction. The use of multiple trees in random forests reduces the risk of overfitting.
It runs efficiently and produces highly accurate predictions on large databases. Random forests
can maintain accuracy even when there is a large proportion of data is missing. To classify a
new object based on attributes each tree gives a classification result according to its defined rules.
It can also be assumed that each tree cast its vote for classification. The random forests choose the
classification class which has the most votes over all the other trees in the forests.

Table 3. Detailed Configuration of CNN Architecture.

Layer Number Layer Type Hyperparameters

Layer 1 Convolution Layer Filter Size 7 × 7
Number of Filters 32
Activation Layer Relu

Layer 2 Pooling Layer Pool Size 3 × 3
Pooling type Max-Pooling

Layer 3 Batch Normalization Layer
Layer 4 Dropout Layer Rate 0.5
Layer 5 Convolution Layer Filter Size 5 × 5

Number of Filters 128
Activation Layer Relu

Layer 6 Pooling Layer Pool Size 3 × 3
Pooling type Max-Pooling

Layer 7 Batch Normalization Layer
Layer 8 Dropout Layer Rate 0.5
Layer 9 Convolution Layer Filter Size 3 × 3

Number of Filters 256
Activation Layer Relu

Layer 10 Pooling Layer Pool Size 2 × 2
Pooling type Max-Pooling

Layer 11 Batch Normalization Layer
Layer 12 Dropout Layer Rate 0.5
Layer 13 Flatten Layer
Layer 14 Dense Layer (D1) Activation Layer Relu

Neurons 50
Layer 15 Dense Layer (D2) Activation Layer Relu

Neurons 100
Layer 16 Dense Layer (D3) Activation Layer Relu

Neurons 200
Layer 17 Dense Layer (D4) Activation Layer Softmax

Neurons 20
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4. Results

Experiments were conducted on the DREBIN dataset. As the preprocessing step, the DREBIN
dataset was transformed into malware images (discussed in previous sections). We have worked on the
top 20 classes of the dataset, refer Table 2. The detailed algorithm of the proposed work is depicted in
Algorithms 1–4. The machine with configuration Intel core i5 processor, 8G RAM, 2.7 Ghz clock speed
and GPU was used for experimentation. Proposed SARVOTAM implementation includes the following
steps. First, there is a need to train a deep convolutional neural network. It would actually be a coding
network, and would extract the rich features from the malware images. These features represent
high-level concepts for identification and classification of malware features. Finally, we design an
efficient model to fuse the CNN features with machine learning algorithms. The results obtained are
shown in Table 4. Support vector machine (SVM) is popular for classification, particularly for medical
signal processing, image detection, face detection, geo and environmental sciences, and bioinformatics.
For classification and recognition, great attention has been paid to the fusion of neural networks
and SVM [66–69]. The benefits of their combination have been confirmed by many researchers for
pedestrian detection [70], face recognition [71], and handwritten digit recognition [67].

For classifier boosting, SVM, KNN, and RF are used as an alternative to softmax layer to enhance
generalization ability of CNN. Stand-alone CNN architecture and other machine learning algorithms
such as SVM, KNN, and RF were fused with CNN to augment the performance of proposed system
on various combinations of malware images. As can be seen in Table 4, CR+AM were found to most
precise features for identification and classification of Android malware. In case of generic CNN,
an accuracy of 91.48% was recorded for classification of Android malware based on binary images.
To further augment the classification accuracy of CNN its softmax layer was substituted with SVM,
KNN, and RF. The results observed while substituting softmax layer with SVM, KNN, and RF are
shown in Figures 6–8 respectively.

Algorithm 1: Classification of Android malware families
Input: Malicious aplications from DREBIN dataset
Result: Classification of Android malware families
Step 1. Import all the necessary libraries.
Step 2. An empty list is created for storing the training data.

t r a i n = [ ]

Step 3. Create list of 15 unique combinations.

c o m b i _ l i s t =[ ’CR ’ , ’AM’ , ’RS ’ , ’CL ’ , ’CR+AM’ , ’CR+RS ’ , ’CR+CL ’ , ’AM+RS ’ , ’AM+CL ’ ,
’RS+CL ’ , ’CR+AM+RS ’ , ’CR+AM+CL ’ , ’CR+RS+CL ’ , ’AM+RS+CL ’ , ’CR+AM+RS+CL ’ ]

Step 4. Load the pickle file from the local drive location in binary mode.

fw = open ( ’ l o c a l /content/drive/My Drive/ a l l f i l e s . pckl ’ , ’ rb ’ )

Step 5. Create the object of the file for further processing.

ob j= p i c k l e . load ( fw )

Step 6. For every unique combination as stated in Step 3.

[ a l l d a t a , l a b e l , f l i s t ]=Fimg ( obj , comb )
TRAINDATA=numpy . array ( a l l d a t a )
t ra in_L=numpy . array ( l a b e l )
model_cnn , t r a i n _ a l l , t e s t _ l a b e l , pred_prob=cnn_model (TRAINDATA, t ra in_L )
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Algorithm 1: Cont.
Step 7. Split the testing and training data and set up the features and labels.

[ X_train , X_test , t r a i n _ l a b e l , t e s t _ l a b e l ] = t r a i n _ t e s t _ s p l i t ( t r a i n _ a l l ,
t ra in_L , t e s t _ s i z e =0 .33 , random_state =31 , s t r a t i f y =t ra in_L )

f e a t _ l a y e r = K. funct ion ( [ model_cnn . l a y e r s [ 0 ] . input ] ,
[ model_cnn . l a y e r s [ 1 2 ] . output ] )
for i in range ( 0 , len ( X_tra in ) ) :
f e a t = f e a t _ l a y e r ( [ X_tra in [ i : i + 1 , : , : , : ] ] ) [ 0 ]
i f ( i ==0) :
cnn_tra in= f e a t
e lse :
cnn_tra in=numpy . concatenate ( ( cnn_train , f e a t ) , a x i s =0)
end for

for i in range ( 0 , len ( X_ te s t ) ) :
f e a t = f e a t _ l a y e r ( [ X _ t es t [ i : i + 1 , : , : , : ] ] ) [ 0 ]
i f ( i ==0) :
c n n _ t e s t= f e a t
e lse :
c n n _ t e s t=numpy . concatenate ( ( cnn_test , f e a t ) , a x i s =0)
end for

Step 8. Print the results.

Metr ics=numpy . zeros ( ( 2 0 , 4 ) )
CONFUSION= [ ]
AUC= [ ]
print ( ’CNN r e s u l t s ’ )
Metr ics [ 0 : 4 , : ] , conf , auc_value= e v a l _ c l a s s i ( cnn_train , cnn_test ,
t r a i n _ l a b e l , t e s t _ l a b e l , ’ORG_CNN_ ’ )
CONFUSION. append ( conf )
AUC. append ( auc_value )
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Algorithm 2: Loading the malware families from the path using the above procedure
Input: Call made from Algorithm 1 to read the families
Result: Classes with count, names and labels of the family

Procedure read_family ( ) :

t l =pd . read_csv ( ’ l o c a l /content/drive/My Drive/sha256_family . csv ’ ,
header=None)
t l . drop ( t l . index [ [ 0 , 0 ] ] , i n p l a c e = True )
labelencoder_X = LabelEncoder ( )
Nlabels=labelencoder_X . f i t _ t r a n s f o r m ( t l [ 1 ] )
qa=pd . value_counts ( Nlabels )
S c l a s s e s =( qa [ 0 : 2 0 ] . index ) . values
allnames= t l [ 0 ] . t o l i s t ( )
return S c l a s s e s , allnames , Nlabels

end procedure

procedure g e t _ l a b e l ( fname , allnames , Nlabels , S c l a s s e s ) :

idxC=allnames . index ( fname )
i d x c l a s s =Nlabels [ idxC ]
TMP=numpy . where ( S c l a s s e s == i d x c l a s s )
return i n t (TMP[ 0 ] )

end procedure

Algorithm 3: Training of CNN model
Input: Malware images
Result: Trained CNN model
Step 1. To train the CNN model important libraries such as Conv2D and MaxPooling2D,
Activation, Dropout, Flatten, and Dense are imported.

Step 2. Object of sequential function is created which defines the model name of the neural
network.

model = t f . keras . Sequent ia l ( )

Step 3. The next step is to build and train the CNN on the malware images of different families.
Since we are dealing with the 2D malware grayscale images, we added the first convolutional
layer to the model which is represented as the Conv2D layer.

model . add (Conv2D ( 3 2 , ( 7 , 7 ) , s t r i d e s =1 , padding= ’ va l id ’ , k e r n e l _ i n i t i a l i z e r =
’ glorot_uniform ’ , input_shape = ( 1 0 8 , 1 0 8 , 1 ) , use_bias=True ) )

Step 4. In the convolution layer, each feature will move throughout the entire image and the
pixel value of the image gets multiplied with that of the corresponding pixel value of the filter,
adding them up and dividing by the total number of pixels to get the output.
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Algorithm 3: Cont.
Step 5. ReLU activation function is applied as we want to remove all the negative values from
the output or matrix that we got through the convolution layer.

t f . keras . l a y e r s . ReLU( max_value=None , negat ive_s lope = 0 . 0 , threshold = 0 . 0 )

Step 6. The output of the ReLU activation function is fed to the MaxPooling layer. The pooling
layer uses a max filter of size 3 × 3, 3 × 3, and 2 × 2 for the first, second, and third
convolutional layers respectively.

model . add ( MaxPooling2D ( pool_s ize = ( 3 , 3 ) ) )

Step 7. Batch normalization is applied for the stable learning of the network

model . add ( BatchNormalization ( ) )

Step 8. The Dropout layer in a neural network is used to solve the overfitting problem. The
value is selected to be as 0.5.

model . add ( Dropout ( 0 . 5 ) )

Step 9. More layers of convolution, ReLU, pooling, batch normalization, and dropout are
stacked up.

model . add (Conv2D ( 1 2 8 , ( 5 , 5 ) , s t r i d e s =1 , padding= ’ va l id ’ ,
k e r n e l _ i n i t i a l i z e r = ’ glorot_uniform ’ , use_bias=True ) )
t f . keras . l a y e r s . ReLU( max_value=None , negat ive_s lope = 0 . 0 , threshold = 0 . 0 )
model . add ( MaxPooling2D ( pool_s ize = ( 3 , 3 ) ) )
model . add ( BatchNormalization ( ) )
model . add ( Dropout ( 0 . 5 ) )

model . add (Conv2D ( 2 5 6 , ( 3 , 3 ) , s t r i d e s =1 , padding= ’ va l id ’ ,
k e r n e l _ i n i t i a l i z e r = ’ glorot_uniform ’ , use_bias=True ) )
t f . keras . l a y e r s . ReLU( max_value=None , negat ive_s lope = 0 . 0 , threshold = 0 . 0 )
model . add ( MaxPooling2D ( pool_s ize = ( 2 , 2 ) ) )
model . add ( BatchNormalization ( ) )
model . add ( Dropout ( 0 . 5 ) )

Step 10. The flatten layer is used in the network that takes the output from the previous layers
and flattening it into a one-dimensional tensor. Shrunk malware images are put it in a single
list or vector.

model . add ( F l a t t e n ( ) )

Step 11. Further, malware images fed into a fully connected layer/dense layer. Three dense
layers D1, D2, and D3 have been added to the CNN architecture which has 50,100, and 200
neurons respectively.

model . add ( Dense ( 5 0 , k e r n e l _ i n i t i a l i z e r = ’ glorot_uniform ’ , use_bias=True ) )
t f . keras . l a y e r s . ReLU( max_value=None , negat ive_s lope = 0 . 0 , threshold = 0 . 0 )
model . add ( Dense ( 1 0 0 , k e r n e l _ i n i t i a l i z e r = ’ glorot_uniform ’ , use_bias=True ) )
t f . keras . l a y e r s . ReLU( max_value=None , negat ive_s lope = 0 . 0 , threshold = 0 . 0 )
model . add ( Dense ( 2 0 0 , k e r n e l _ i n i t i a l i z e r = ’ glorot_uniform ’ , use_bias=True ) )
t f . keras . l a y e r s . ReLU( max_value=None , negat ive_s lope = 0 . 0 , threshold = 0 . 0 )

Step 12. Apply one more dense layer as the output layer with 20 nodes. It classifies the
malware images with respect to their families.
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Algorithm 3: Cont.
Step 13. Apply the activation function of softmax in the last layer.

model . add ( Dense ( 2 0 , a c t i v a t i o n = ’ softmax ’ ) )

Step 14. In the compilation phase of the model, apply adam optimizer and loss as categorical
cross-entropy.

model . compile ( l o s s = ’ s p a r s e _ c a t e g o r i c a l _ c r o s s e n t r o p y ’ , opt imizer= ’adam ’ ,
metr i cs =[ ’ accuracy ’ ] )

Step 15. The array is specified with the single string accuracy as the metrics. To train the
model, function model. f it() generator is called. Model is trained for 100 epochs.

model . f i t ( datagen1 . flow ( X_train , t r a i n _ l a b e l , b a t c h _ s i z e =16) ,
steps_per_epoch=len ( X_tra in )//16 , epochs =100 , verbose =1)

Algorithm 4: Transformation of malware binary into images
Input: Malware binary
Result: Malware images of the family depending upon the combination

procedure transform ( Family [ i ] ) , comb ) :
i f ( comb==1)
Resul t = make_image ( Famliy [ i ] , e x t r a c t c e r t i f i c a t e f i l e s
from each sample of Family [ i ] )
e l i f ( comb==2)
Resul t = make_image ( Famliy [ i ] , e x t r a c t android manifest
f i l e s from each sample of Family [ i ] )
e l i f ( comb==3)
Resul t = make_image ( Famliy [ i ] , e x t r a c t resource f i l e s
from each sample of Family [ i ] )
e l i f ( comb==4)
Resul t = make_image ( Famliy [ i ] , e x t r a c t c l a s s e s . dex f i l e s
from each sample of Family [ i ] )
e l i f ( comb==5)
Resul t = make_image ( Famliy [ i ] , e x t r a c t c e r t i f i c a t e and
android manifest f i l e s from each sample of Family [ i ] )
e l i f ( comb==6)
Resul t = make_image ( Famliy [ i ] , e x t r a c t c e r t i f i c a t e and
resource f i l e s from each sample of Family [ i ] )
e l i f ( comb==7)
Resul t = make_image ( Famliy [ i ] , e x t r a c t c e r t i f i c a t e and
c l a s s e s . dex f i l e s from each sample of Family [ i ] )
e l i f ( comb==8)
Resul t = make_image ( Famliy [ i ] , e x t r a c t android manifest
and resource f i l e s from each sample of Family [ i ] )
e l i f ( comb==9)
Resul t = make_image ( Famliy [ i ] , e x t r a c t android manifest
and c l a s s e s . dex f i l e s from each sample of Family [ i ] )
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Algorithm 4: Cont.

e l i f ( comb==10)
Resul t = make_image ( Famliy [ i ] , e x t r a c t resource and
c l a s s e s . dex f i l e s from each sample of Family [ i ] )
e l i f ( comb==11)
Resul t = make_image ( Famliy [ i ] , e x t r a c t c e r t i f i c a t e ,
android manifest , and resource f i l e s from each sample
of Family [ i ] )
e l i f ( comb==12)
Resul t = make_image ( Famliy [ i ] , e x t r a c t c e r t i f i c a t e ,
android manifest , and c l a s s e s . dex f i l e s from each sample
of Family [ i ] )
e l i f ( comb==13)
Resul t = make_image ( Famliy [ i ] , e x t r a c t c e r t i f i c a t e ,
resource , and c l a s s e s . dex f i l e s from each sample
of Family [ i ] )
e l i f ( comb==14)
Resul t = make_image ( Famliy [ i ] , e x t r a c t android manifest ,
resource , and c l a s s e s . dex from each sample of Family [ i ] )
e l i f ( comb==15)
Resul t = make_image ( Famliy [ i ] , e x t r a c t c e r t i f i c a t e ,
android manifest , resource , and c l a s s e s . dex from each
sample of Family [ i ] )

End procedure

procedure make_image ( ar , f i l e s i z e l i s t , w i d t h l i s t ) :

a r_ len=len ( ar )/1024
width=0
for cidx in range ( 1 , len ( f i l e s i z e l i s t ) ) :
i f ( ar_len >= f i l e s i z e l i s t [ cidx−1] and ar_len < f i l e s i z e l i s t [ c idx ] ) :
width= w i d t h l i s t [ cidx−1]
i f ( width ==0) :
width=1024
rem1=len ( ar)\%width
n=array . array ( "B" )
n . frombytes ( ar )
a=array . array ( "B" )
a=n [ 0 : len ( ar)−rem1 ]
i f ( len ( a ) <width ) :
return numpy . array ( [ ] )
img=numpy . reshape ( a , ( i n t ( len ( a )/ width ) , width ) )
img=numpy . uint8 ( img )
return img

End procedure
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Table 4. Accuracy of generic and augmented CNN on 15 different combinations of grayscale
malware images.

Image Combination CNN CNN-SVM CNN-KNN CNN-RF

1 CR 83.58% 82.92% 77.11% 83.42%
2 AM 89.79% 90.18% 83.94% 84.85%
3 RS 86.86% 88.56% 86.02% 84.53%
4 CL 89.46% 90.57% 89.40% 87.58%
5 CR+AM 91.48% 92.59% 86.93% 87.52%
6 CR+RS 87.12% 89.47% 86.80% 85.89%
7 CR+CL 89.33% 90.25% 89.01% 88.43%
8 AM+RS 88.29% 89.47% 87.78% 84.98%
9 AM+CL 89.33% 90.83% 89.79% 88.69%
10 RS+CL 88.49% 90.96% 89.34% 87.58%
11 CR+AM+RS 89.46% 90.77% 88.75% 85.50%
12 CR+AM+CL 89.33% 90.51% 88.49% 88.82%
13 CR+RS+CL 89.53% 90.90% 89.66% 88.17%
14 AM+RS+CL 88.55% 90.70% 89.86% 87.97%
15 CR+AM+RS+CL 89.33% 90.70% 89.60% 87.84%

It was observed that fusion of CNN-SVM outperformed rest of the softmax layer substitutes.
An improvement of classification accuracy has been observed for entire fifteen combinations of malware
image sections. For thirteen combinations, CNN-SVM is able to achieve accuracy in the window 90%
to 93%, as shown in Figure 6. The highest accuracy of 92.59% is observed using CR+AM combination
of malware images. The increase in accuracy ranges from 0.50% to 3%.

Figure 6. Fusion of CNN-SVM as substitute of CNN softmax layer.

Using KNN within CNN as softmax layer resulted in marginal increase in CNN accuracy that
too in case of a few image sections. A decrease in accuracy was also observed with respect to the
combination of CR and AM. The average classification results of CNN and CNN-KNN is observed
between 88.66% and 88.76% respectively. Detailed performance of CNN-KNN fusion is depicted in
Figure 7.
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Figure 7. Fusion of CNN-KNN as substitute of CNN softmax layer.

Integrating RF with CNN resulted in poorest performance in comparison to SVM and KNN.
CNN-RF, performed poorly as shown in Figure 8.

Figure 8. Fusion of CNN-RF as substitute of CNN softmax layer.

Table 5 shows the comparison of proposed work with that of state-of-the-art proposals.
The detailed runtime performance metrics such as memory-consumption, total execution time and
time spent to identify a possible APK as malware using different combinations of malware images is
shown in Table 6.
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Table 5. Comparative summary of SARVOTAM with previous studies.

Study
Classification of
Android Malware
Families

Automatic Extraction
of Features through
Deep Learning

Features Model Time (s) Environment

[42] Yes No Control flow graph Single linkage clustering Not specified Not specified

[44] Yes No Call graph, Application
programming interface (API)

Naive Bayes (NB), Support Vector Machine (SVM),
Decision Tree (DT), Random Forest (RF) 19.8 Corei5, 6 G RAM

[72] No No Permissions, events generated by
monkey tool

Recurrent Neural Network (RNN), Long Short
Term Memory (LSTM) Not specified Not specified

[73] Yes No Information flow between APIs Semantic-based approach 175.88 Xeon, 128 G RAM

[74] No No System calls Convolutional Neural Network (CNN) Executed app
for 60 s Not specified

[75] Yes No Application programming
interface Visualization and similarity-based Not specified Not specified

[6] Yes No
Permissions, Package names,
Intents, Information flow
between APIs

C4.5 95.2 8-core, 64 G RAM

[76] Yes No Permissions, API Deep belief network Not specified Not specified
[77] No No System calls into feature vectors K-means Not stated Not specified

[43] Yes No Network, System calls, File system
access, Binder transactions SVM Not specified Not specified

Our method
(SARVOTAM) Yes Yes CNN features extacted from

Lightweight malware images CNN, CNN-SVM, CNN-KNN, CNN-RF 0.55 Core i5, 8 G RAM
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Table 6. A comparison of runtime metrics to showcase resource usage and execution time taken.

S.No. Combination RAM Usage (in %) Execution Time (s) Average Time per App (s)

1 CR 36.50 228.89 0.15
2 AM 37.33 751.33 0.49
3 RS 48.42 880.98 0.57
4 CL 49.33 1069.71 0.70
5 CR+AM 44.42 840.22 0.55
6 CR+RS 49.75 953.16 0.62
7 CR+CL 51.17 1074.94 0.70
8 AM+RS 57.92 855.42 0.56
9 AM+CL 56.58 1052.11 0.68

10 RS+CL 57.75 1060.74 0.69
11 CR+AM+RS 57.25 896.58 0.58
12 CR+AM+CL 63.58 1088.45 0.71
13 CR+RS+CL 54.33 1207.43 0.79
14 AM+RS+CL 63.67 1153.69 0.75
15 CR+AM+RS+CL 68.42 1478.16 0.96

In our work, CNN-SVM performed well on comparison to generic CNN architecture and other
substitutes of softmax layer for 100 epochs. The detailed confusion matrix and other performance
metrics are presented in Table 7 and Figure 9 respectively. Among all classifier combination, CNN
infusion with SVM perfomed well and particularly showed high precision and recall for the Android
malware families Kmin, GoldDream, FakeDoc, Iconosys, Opfake, and FakeInstaller. CNN-SVM
enhanced the performance in malware classification and attained the accuracy of 92.59% using CR+AM
images, as discussed earlier. The performance of CNN-SVM showed low precision and recall for the
malware families such as ExploitLinuxLootor, MobileTx, Gappusin, and BaseBridge. This is mainly
due to the reason that these Android malware families contain less number of samples as compared
to other families. Malware family SendPay attained equal precision and recall of 0.94. The error
rate of malware families such as Kmin and Iconosys is 0. It means that the model learned the actual
behavior of these malware families. The highest error rate was observed for the malware families
such as ExploitLinuxLootor, MobileTx, Imlog, SMSreg, DroidDream, and Gappusin. The probable
reason for low performance of the proposed method in case of malware like ExploitLinuxLotoor was
the small number of samples within the training dataset. Such malware families are meant to exploit
a rooted Android device the most (where admin rights of the device are with used and not with
stock Android provider or proprietor). It alters its signature after attaining root access of the device,
till it does so, the malware file tries to look legitimate to the extent possible. Evaluating the proposed
method on rooted and non-rooted devices opens a new horizon for this research. It is to be noted
that samples of malware families Imlog and SMSreg get highly misclassified to other families but
achieved the precision as high as 100%. This depicts that images of these families are highly different
from other malware families. The classification achieved low error rate for malware families Opfake,
Plankton, FakeInstaller, Golddream, Fakedream, SendPay, and Geinimi which ranged from 2% to 6%.
The root mean square analysis was done to measure the error rate of the proposed method. It was
calculated for every malware family as shown in Figure 10. The value is found to be in between 0
to 0.45. A comparison of the proposed model with that of Visual Geometry Group (VGG16) typic
nertwork was done. VGG16 is a typic convolutional neural network which is adopted from the VGG
family. VGG16 network architecture has been previously used to solve multi-class malware familial
classification problem [78,79]. A comparison of classification accuracy of SARVOTAM and VGG16
on different malware image combinations is presented in Table 8. As per the recorded observations,
proposed CNN structure(s) attained better accuracy than VGG16. The average accuracy of VGG16 is
visibaly less than the average accuracy of SARVOTAM. VGG16 attained an average accuracy of 86.02%
whereas, for CNN-SVM, CNN, CNN-KNN, and CNN-RF it was recorded at 89.96%, 88.66%, 87.50%,
and 86.78% respectively. The classification execution time and RAM usage based on different malware
images combination using the VGG16 network and SARVOTAM is also depicted in Table 9.
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Table 7. A confusion matrix of top 20 malware families.

S.No. Family
Name

Fake
Installer

Droid
KungFu Plankton Opfake Gin

Master
Base
Bridge Iconosys Kmin FakeDoc Geinimi Adrd Droid

Dream

Exploit
Linux
Lotoor

Glodream Mobile
Tx

Fake
Run

Send
Pay Gappusin Imlog SMSreg

1 FakeInstaller 296 1 0 3 0 3 1 0 0 0 0 0 0 0 0 0 0 1 0 0
2 DroidKungFu 0 203 5 2 1 4 0 0 0 0 1 0 1 0 2 0 0 1 0 0
3 Plankton 0 3 200 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0
4 Opfake 1 0 0 201 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 GinMaster 0 3 3 0 102 1 0 0 0 0 0 0 2 0 0 0 1 0 0 0
6 BaseBridge 3 6 4 0 0 94 0 0 0 1 0 0 1 0 0 0 0 0 0 0
7 Iconosys 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0 0
8 Kmin 0 0 0 0 0 0 0 49 0 0 0 0 0 0 0 0 0 0 0 0
9 FakeDoc 0 0 1 0 0 0 0 0 42 0 0 0 0 0 1 0 0 0 0 0
10 Geinimi 0 0 2 0 0 0 0 0 0 28 0 0 0 0 0 0 0 0 0 0
11 Adrd 0 3 1 0 0 0 0 0 0 0 23 0 0 0 3 0 0 0 0 0
12 DroidDream 1 0 0 1 1 2 0 0 0 0 0 21 0 0 0 0 0 1 0 0

13 Exploit
LinuxLotoor 3 5 1 0 2 3 0 0 0 0 0 1 8 0 0 0 0 0 0 0

14 Goldream 0 0 0 0 0 1 0 0 0 0 0 0 0 22 0 0 0 0 0 0
15 MobileTx 1 3 1 0 1 1 0 0 0 0 1 0 0 0 15 0 0 0 0 0
16 FakeRun 0 0 2 0 0 0 0 0 0 0 0 1 0 0 0 17 0 0 0 0
17 SendPay 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 0 0 0
18 Gappusin 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 15 0 0
19 Imlog 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 10 0
20 SMSreg 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10
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Figure 9. Precision, Recall, and Error rate of CNN-SVM in top 20 malware families of Drebin Dataset.

Figure 10. Root mean square analysis of top 20 malware families of Drebin Dataset.
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Table 8. Observed accuracy of SARVOTAM in comparison to VGG16 typic network.

S.No. Image Combination
SARVOTAM Typic Network

CNN CNN-SVM CNN-KNN CNN-RF VGG16

1 CR 83.58% 82.92% 77.11% 83.42% 78.27%
2 AM 89.79% 90.18% 83.94% 84.85% 85.76%
3 RS 86.86% 88.56% 86.02% 84.53% 82.12%
4 CL 89.46% 90.57% 89.40% 87.58% 87.23%
5 CR+AM 91.48% 92.59% 86.93% 87.52% 90.57%
6 CR+RS 87.12% 89.47% 86.80% 85.89% 88.91%
7 CR+CL 89.33% 90.25% 89.01% 88.43% 89.34%
8 AM+RS 88.29% 89.47% 87.78% 84.98% 86.78%
9 AM+CL 89.33% 90.83% 89.79% 88.69% 84.43%
10 RS+CL 88.49% 90.96% 89.34% 87.58% 84.37%
11 CR+AM+RS 89.46% 90.77% 88.75% 85.50% 87.67%
12 CR+AM+CL 89.33% 90.51% 88.49% 88.82% 86.81%
13 CR+RS+CL 89.53% 90.90% 89.66% 88.17% 84.56%
14 AM+RS+CL 88.55% 90.70% 89.86% 87.97% 89.29%
15 CR+AM+RS+CL 89.33% 90.70% 89.60% 87.84% 84.32%

Table 9. Recorded RAM utilization and execution time for SARVOTAM and VGG16 while classifying
Android malware families.

S.No. Combination
VGG16 Run Time Performance SARVOTAM Run Time Performance

RAM Usage (in %) Execution Time (in secs) RAM Usage (in %) Execution Time (in secs)

1 CR 44.50 1935.51 36.50 228.89
2 AM 48.67 1722.41 37.33 751.33
3 RS 70.33 1548.42 48.42 880.98
4 CL 55.08 1635.32 49.33 1069.71
5 CR+AM 48.75 1754.86 44.42 840.22
6 CR+RS 49.58 1724.42 49.75 953.16
7 CR+CL 56.5 1680.31 51.17 1074.94
8 AM+RS 55.42 1535.78 57.92 855.42
9 AM+CL 55.17 1418.45 56.58 1052.11

10 RS+CL 62.92 1656.43 57.75 1060.74
11 CR+AM+RS 63.5 1771.69 57.25 896.58
12 CR+AM+CL 63.75 1619.16 63.58 1088.45
13 CR+RS+CL 73.25 1834.11 54.33 1207.43
14 AM+RS+CL 73.42 1795.91 63.67 1153.69
15 CR+AM+RS+CL 74.33 2178.12 68.42 1478.16

The information in the Table 9 reveals that VGG16 is heavy on time and memory. The average
classification time for all malware image combinations is recorded to be as 1720.72 s. The SARVOTAM
model attained the average classification time as low as 972.78 s. The average RAM usage is observed
to be 59.67% for VGG16 whereas, for SARVOTAM, it is recorded as 53.09%. The performance of
SARVOTAM was best recorded for the malware image combination CR+AM. It utilized 37.33% of the
total RAM available and took 840.22 s to classify Android malware applications. The malware image
combination CR+AM attained a classification accuracy of 92.59% using CNN-SVM. The malware
images generated using only CR and AM files took less time and RAM than CR+AM but their highest
accuracy was recorded as 83.58% using CNN and 90.18% using CNN-SVM respectively which was
lesser than CR+AM. CR+AM proved to be the lightweight combination to classify applications. VGG16
also attained a high accuracy of 90.57% on CR+AM malware images but at the same time consumes
more memory and time. It almost took double the time and 4.33% more consumption of memory as
taken by CNN-SVM.

5. Conclusions and Future Scope

This manuscript concludes the fact that certificate and Android manifest (CR+AM) are most suited
features for malware identification and classification. Generic CNN attained a maximum accuracy of
91.48%. The softmax layer of CNN was augmented for classification purposes using SVM, KNN and
RF. The combination of CNN and SVM was found to be most suited and even surpassed generic CNN
in identification and classification of Android malware families. CNN-SVM achieved the classification
acuracy of 92.59%. Following common sense, one may try to identify and classify malware using
entire of the features for malware images. This may demand additional hardware resources, time and
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complex comparisons for identification of malware features. On the other hand, CR+AM offer a light
weight and much precise option for malware identification. The proposed methodology is primarily
focused on identification and classification of malware images using feature extraction techniques
instead of static and dynamic analysis of malware applications. Malware authors employ automation
tools to generate dynamic payloads and inject them into the applications. It was noticed that the
malware families hard coded with dynamic payloads or some obfuscated code, tend to generate similar
malware images. Therefore, a visual similarity between malware images from the same malware
family is anticipated. The scope of this experiment was limited to evaluate the performance of the
proposed model using malware images. Obfuscation images may look legitimate but they differ with
respect to the access rights, resource utilization and other attributes related to APKs, this is why they
do not look completely similar to legitimate Android applications and can be classified using proposed
method. We will look forward to attune the proposed methodology to be used alongside static and
dynamic analysis as future scope of this research. We also intend to investigate the effect of data
augmentation and feature fusion strategy. Also, the transformation of malware images into color
images and fine-tuning of pre-trained typic CNNs need to be further explored for the classification of
Android malware images.
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