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Abstract: Accurate prediction of wetland soil organic carbon concentration and an understanding of
its controlling factors are important for studying regional climate change and wetland carbon cycles;
with that knowledge mechanisms can be put in place that are conducive to sustainable ecosystem
management for environmental health. In this study, a hybrid approach combining an artificial
neural network and ordinary kriging and 103 soil samples at three soil depth ranges (0–30, 30–60,
and 60–100 cm) were used to predict wetland soil organic carbon concentration in China’s Liao
River Basin. The model evaluation indicated that a combination of artificial neural network and
ordinary kriging and limited soil samples achieved good performance in predicting wetland soil
organic carbon concentration. Wetland soil organic carbon concentration in the Liao River Basin has
apparent spatial and vertical heterogeneities with values decreasing from southeast to northwest and
concentrates present mainly in the topsoil (0–30 cm). Mean wetland soil organic carbon concentration
values at the three soil depths were 10.43 ± 0.38, 7.93 ± 0.25, and 7.61 ± 0.22 g/kg, respectively, which
are smaller than those over other wetland regions in Northeast China. Terrain aspect contributed the
most in predicting wetland soil organic carbon concentration at each of the three soil depths, followed
by normalized difference vegetation index at 0–30 cm and mean annual precipitation at 30–60 and
60–100 cm. This study provides a framework method and baseline to quantify the soil organic carbon
concentration dynamics in response to climatic and anthropogenic drivers.

Keywords: soil organic carbon concentration; wetland; digital soil mapping; artificial neural network;
remote sensing

1. Introduction

In the context of global warming and environmental degradation, carbon sequestration
and emissions from wetlands have caused widespread concerns of governments and academics
worldwide [1]. Accurate prediction of wetland soil organic carbon concentration (SOCc) and
investigation of its influence factors are important for an understanding of the regional wetland
carbon cycling and climate change; with that knowledge mechanisms can be put in place that are
conducive to sustainable ecosystem management for environmental health [2,3].

The accuracy of wetland SOCc prediction is mainly restricted by the forecast methods and input
data availability [4]. Digital soil mapping (DSM) was proposed to predict the spatial and vertical
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variations of wetland SOCc in regional areas due to the low cost by reducing sampling data sets and
environmental factors [5,6]. In the past decades, various machine learning (ML) methods, including
support vector regression (SVR) [7], boosted regression tree [8], random forest (RF) [9], and artificial
neural networks (ANNs) [10,11], were applied to spatially predict soil parameters at different scales.
The application of ANNs could be one of the most effective methods because of its strong performance in
characterizing the nonlinear relationships between soil parameters and environmental variables [12,13].
Multisource geospatial data correlated with SOCc, including topographic [14], meteorological [15],
and remotely sensed data [16], can be combined to predict SOCc and reveal the relationship between
SOCc and environmental variables. For example, Emadi et al. reported that a deep neural network
method had an excellent performance in predicting soil organic carbon in northern Iran by inputting
105 environmental variables as predictors [5]. Wang et al. compared different ML algorithms to estimate
soil organic carbon stocks in the semi-arid rangelands of eastern Australia [8]. By integrating climatic,
terrain, and remote sensing data, the performance of ML methods to predict SOCc was significantly
improved [12]. In most cases, ML methods employing diverse environmental variables can obtain more
accurate predictions than traditional linear and geostatistical methods (i.e., inverse distance weighting,
kriging), especially at a broad scale with limited samples because of their strong performance in gaining
more information from the nonlinear relationships between SOCc and the environmental variables.

Soil, especially SOCc, varies in different places with high complexity [17]. Therefore, these ML
methods have a critical disadvantage—SOCc prediction considers only the input environmental
variables at corresponding locations but neglects the spatial autocorrelation among the soil samples.
The principle of ordinary kriging (OK) depends on such spatial autocorrelation [18]. The spatial
autocorrelation of measured values can be incorporated by integrating an OK method that interpolates
the residuals from an ANN. Therefore, the combination of ANNs and OK methods could achieve
high prediction accuracy and low error [19]. Although many algorithms and environmental variables
have been developed to predict soil properties, the development of techniques that comprehensively
consider environmental factors and spatial autocorrelation is necessary to enhance the quality of
thematic soil maps. However, a method that combines ANN and OK methods using multisource
geospatial data to predict wetland SOCc is still absent and is seldom reported in the literature [19].

China’s Liao River Basin (LRB) is an important region in Northeast Asia because of the widely
distributed coastal and inland wetlands and the prominent responses of the regional carbon cycle to
climatic changes and human activities [20]. These realities create demand for studying the current
wetland SOCc distribution and their interaction with various environmental factors for this region.
However, previous studies mainly paid attention to surface soil organic carbon of wetlands over the
Liao Estuary, which did not comprehensively investigate the spatial and vertical variance and the
influence factors of wetland SOCc at the regional level [21].

For an accurate spatial prediction of wetland SOCc, in this study, a hybrid approach combining
ANN and OK (ANN-OK), by employing multisource geospatial data and measured soil data, was used,
and the spatial and vertical patterns of wetland SOCc were examined in the LRB. The purposes of this
study are to (1) test the performance of ANN-OK in predicting wetland SOCc; (2) reveal spatial and
vertical patterns of wetland SOCc in the LRB; and (3) examine the impacts of various environmental
factors on wetland SOCc. The hybrid method and employed environmental variables are expected to
provide a framework for the prediction of soil parameters in other regions and a baseline to evaluate
the soil carbon changes in response to climatic and anthropogenic drivers in the future.

Given these objectives, specifically, the spatial prediction of wetland SOCc was firstly achieved
with ANN. Furthermore, the residual error calculated by samples were then spatially interpolated to
improve the accuracy of the ANN achieved prediction. We also compared the performance of different
algorithms (OK, ANN, and ANN-OK) to document the applicability of the ANN-OK. Based on the
ANN-OK predictions, the spatial and vertical distributions of wetland SOCc were mapped and relative
importance analysis of environmental factors was conducted. Finally, the advantages of the prediction
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model, spatial heterogeneity of wetland SOCc in LRB, and the influence of environmental factors
were discussed.

2. Materials and Methods

2.1. Study Area

The LRB (117◦47′–125◦06′ E, 38◦43′–44◦30′ N) in southern Northeast China, with a total area
of approximately 187,000 km2, is an important part of the Northeast Plains (Figure 1). The study
area is characterized by a semi-humid temperate monsoon climate with a mean annual temperature
(MAT) of 7–13 ◦C from north to south, a mean annual precipitation (MAP) of 352–954 mm and a mean
annual relative humidity (MAH) of 36–82% from northwest to southeast. This basin is one of the
most important wetland distribution regions in China, where many migratory waterbirds live and
breed in the East Asian-Australasian Flyway [22]. Wetlands, which refer only to the vegetated wetland
in this study, are mainly concentrated at the lower reaches of the Liao River, especially in the Liao
Estuary National Nature Reserve [23]. Dominant species are Reed (Phragmites australis) and Suaeda
(Suaeda glauca).
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Figure 1. Location of the Liao River Basin (LRB) in China and the distribution of wetland and soil
samples in the study area.

2.2. Soil Sampling and Determination

Before the field survey, preliminary sampling sites were designed based on the wetland distribution
in the LRB. Due to the road accessibility, 103 soil samples were obtained from September to October 2017
(Figure 1). Each sample consisted of three soil repeats collected by standard containers, and each
repeat included 3 soil depths: 0–30, 30–60, and 60–100 cm [16]. The coordinates of every soil sample
were recorded by the global positioning system (GPS). Wetland SOCc for each soil sample at different
depths was represented by the average values of these three corresponding soil sample repeats. All soil
samples were air-dried and sieved to pass a 2 mm mesh to determine the SOCc by the potassium
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dichromate external heating oxidation method. In the procedure, each soil sample was heated with
potassium dichromate at approximately 100–105 ◦C to obtain carbon dioxide by oxidizing the organic
matter [24]. Then, dichromate ions were reduced. The SOCc can be calculated by various dichromate
ion numbers in the carbon oxidation process.

2.3. Wetland Distribution Dataset

The wetland distribution dataset was obtained from the wetland ecology and environment
data center of the Chinese Academy of Sciences (www.igadc.cn). This dataset was generated by an
object-oriented classification method and the eCognition Developer software. There are four key
steps in the process of classification: multiresolution segmentation, decision rule-based classification,
preliminary result revision, and product accuracy evaluation [25]. The accuracy of the primary wetland
distribution results revised by visual interpretation and ground survey samples was assessed to be 94%.

2.4. Environmental Variables

The variation of wetland SOCc can be affected by soil formation factors, including climate, soil
properties, terrain, organisms, and parent materials [16]. In this study, 11 environmental variables
(Table 1) extracted from remote sensing, meteorological, and topographical data were combined to
predict wetland SOCc.

Table 1. Environmental variables for wetland soil organic carbon concentration (SOCc) prediction.

Variable Types Variables Description

Remote sensing data

B4 Visible-red, 0.64–0.67 µm of the Landsat 8 spectral band
B5 Near-infrared, 0.85–0.88 µm of the Landsat 8 spectral band
B6 Short-wave infrared, 1.57–1.65 µm of the Landsat 8 spectral band

NDVI Normalized difference vegetation index
EVI Enhanced vegetation index

Meteorological data
MAT Mean annual temperature
MAP Mean annual precipitation
MAH Mean annual relative humidity

Terrain data
H Altitude, height above sea level (m)
β Slope, the gradient of slope
α Aspect, the direction of maximum rate of change

2.4.1. Remote Sensing Data

The growth status of surface vegetation, which can be detected by the spectral characteristics of
remote sensing data, directly affects the difference in input soil organic matter and results in a significant
difference in SOCc [26]. In this study, remote sensing data, including Landsat 8 operational land
imager (OLI) and Moderate Resolution Imaging Spectroradiometer (MODIS) images, were acquired
from the Google Earth Engine platform (https://earthengine.google.com/). Landsat 8 OLI images were
acquired at a 30 m spatial resolution and with less than 10% cloud coverage in the summer of 2017
(July to September). Visible-red (B4, 0.64–0.67 µm), near-infrared (B5, 0.85–0.88 µm), and short–wave
infrared (B6, 1.57–1.65 µm) bands reflect the vegetation growth, coverage, and biomass, respectively.
The average normalized difference vegetation index (NDVI) and average enhanced vegetation index
(EVI) from July to September at 1000 m spatial resolution were derived from MODIS vegetation indices
16-Day product in 2017 without cloud cover. All three bands and two spectral indices were calculated
as vegetation variables.

2.4.2. Meteorological Data

Climate change affects plant productivity, litter rate, and microbial activity through temperature
and precipitation changes, which has an important impact on soil organic carbon accumulation [27].

www.igadc.cn
https://earthengine.google.com/
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MAP, MAT, and MAH were first calculated based on the recorded meteorological data during 2008–2017,
from the China Meteorological Data Sharing Service System (http://data.cma.cn/). These climatic
variables were then spatially interpolated to cover the whole study area at a 1000 m spatial resolution
by the inverse distance weighting method (IDW), which is a popular and practical method to obtain a
spatial continuous climatic map [28].

2.4.3. Terrain Data

Topographic factors have high potential to greatly explain the change of wetland SOCc in the
LRB due to high spatial variability in the study area [29]. The digital elevation model (DEM) with
30 m spatial resolution released by ASTER GDEM V2 (http://glovis.usgs.gov/) was obtained to extract
the relevant terrain factors. Three topographic variables were collected: altitude, slope gradient,
and terrain aspect.

All the above related environmental data containing the spatial and attributive values to predict
wetland SOCc in the LRB were imported into a GIS database. The Albers equal-area conic WGS84
coordinate system was used to unify these digitized layers from different sources. To match the
resolutions of all layers, the bilinear interpolation method was used to resample the spatial resolution
of all layers to 1000 m. Moreover, the attributive values of related environmental factor layers were
extracted and assigned to all sampling points and used as preliminary indicators for training prediction
algorithms. Figure 2 shows the spatial distribution of some relatively important environmental
variables related to wetland SOCc, including NDVI, aspect, and MAP.
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(SOCc): (A) normalized difference vegetation index (NDVI), (B) aspect (the value of −1 means flat),
and (C) mean annual precipitation (MAP).

2.5. Selection and Standardization of Optimal Environmental Variables

Too many input environmental variables, which may have good fitting but no predictive
ability, are sometimes chance correlations and often represent multicollinearity and overfitting [30].
These problems are well known and important. The relationships between wetland SOCc and
environmental variables must be determined before establishing the prediction model of wetland SOCc.
When the number of variables is huge relative to the number of samples, variable reduction or selection
is commonly used to reduce the data redundancy, multicollinearity, and overfitting [31]. In our study,
the Pearson correlation coefficient was used to select the optimal environmental variables based on the
rule of value < 0.6 between environmental variables [32]. Furthermore, standardization was performed
to eliminate the dimensional effects of input data from different sources and to make the value for
each selected environmental variable conform to the standard normal distribution. The zero-mean
normalization method was used as the standardization method, which standardizes the original data
set into a data set with the mean value of 0 and the variance value of 1 as follows:

http://data.cma.cn/
http://glovis.usgs.gov/
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Xst =
X − µ
σ

(1)

where Xst represents the standardized data; X is the original data; and µ and σ are the mean and
variance of the original data set, respectively.

2.6. Combination Method to Predict Wetland SOCc

In this study, a hybrid method that combines an ANN and OK was used to predict wetland SOCc
(Figure 3). The measured sampling data and optimal environmental variables were first used to predict
wetland SOCc in the LRB by an ANN. Then, OK was used to interpolate wetland SOCc residuals
calculated by ANN, to the whole spatial extent. The final predicted wetland SOCc was obtained as the
sum of wetland SOCc predicted by the ANN and residuals interpolated by the OK.
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Figure 3. Flow diagram of wetland soil organic carbon concentration (SOCc) prediction by combining
an artificial neural network (ANN) and ordinary kriging (OK).

2.6.1. Spatial Prediction of Wetland SOCc by ANN

The 103 soil samples were randomly assigned to two groups. The training set (n = 76) was used
to train the ANN model, and the validation set (n = 27) was used to validate the accuracy of prediction
results. A radial basis function (RBF) network, which is a multi-layer feed-forward ANN trained by
the error backpropagation algorithm, was selected to predict wetland SOCc, with optimal variables
for its simple structure and strong plasticity [33]. Specifically, there are three layers of RBF networks:
an input layer, a hidden layer with non-linear RBF activation function, and a linear output layer. In this
study, the prediction results of the RBF network are obtained by the following formula:

ZANN =
k∑

j=1

ω jϕ j
(
Y j

)
+ b (2)

where ZANN is the wetland SOCc predicted by the ANN; Y j is a tensor of environmental variables that
are calculated from the input layer to the hidden layer; k is the number of hidden neurons; ω j is the
connecting weight between an output neuron and a hidden neuron; and b is the bias of the model.
Both ω j and b are the network parameters, which are iterated by the network’s own calculation; and ϕ j
is the Gaussian function, which is selected as an activation function for the hidden neurons and is
expressed as follows:

ϕ j
(
Y j

)
= exp

−‖Y j − c j‖
2

2σ2

 (3)

where ‖Y j − c j‖ represents the Euclidean norm between Y j and c j; c j is the center of the hidden neuron;
and σ is the extent of all hidden neurons. The term σ can be calculated by:
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σ =
dmax
√

2k
(4)

where dmax is the maximum distance between any pair of hidden neurons, and k is the number of
hidden neurons.

In this RBF network, four types of parameters were iterated by the model calculation to suit the
network to a specific task: network bias b, output weight ω j, center tensor c j, and width parameters σ.
The number of hidden neurons increased from zero to the most appropriate one that best performed in
both training and testing. The network training process is described in detail as follows:

Step 1: Input the environmental variables and simulate the RBF network.
Step 2: Find the input tensor with a random error and add an RBF with weights.
Step 3: Redesign the weights of each neuron and bias using the gradient descent algorithm to

minimize the error until the mean squared error reaches the target range.

2.6.2. Residual Interpolation by OK

Considering the spatial autocorrelation, the residuals calculated by the RBF network were used
for the stochastic interpolation. The residual only retains the spatial variability decided by the spatial
autocorrelation among surrounding measurements, while the complicated connections between the
actual wetland SOCc and environmental variables were eliminated as the prediction outcome of the
ANN. The residual is defined by

r(xi) = Ẑ(xi) −ZANN(xi) (5)

where r is the residual, Ẑ is the measured value, and ZANN is the prediction value calculated by
the ANN.

OK is the most common kriging method in practice that has linear optimal proper interpolation
with a minimum mean squared error [18]. In this study, OK was used to map the residual calculated
by the RBF network. The spatial dependence between sampling sites is usually described using the
experimental semi-variogram [34], which can be defined as half of the variance of the difference
between the data pairs separated by the lag distance h as follows:

γ(h) =
1

2N(h)

N(h)∑
i=1

[r(xi) − r(xi + h)]2 (6)

where γ(h) is the experimental semi-variance for all pairs within lag distance h, and N(h) is the number
of sampling site pairs separated by lag distance h. This formula is used for the OK interpolation of the
ANN residuals.

The final predicted wetland SOCc, Z, was obtained as the total of ANN prediction, ZANN, and OK
prediction of residuals, rOK, as follows:

Z(xi) = ZANN(xi) + rOK(xi) (7)

To test the approach provided in this study, both OK and ANN were used to make separate
predictions, and their prediction accuracies were then compared. In this study, SPSS 24.0 was used
to select and standardize the optimal environmental variables, MATLAB 2017a was used to train the
ANN, and GS+ 9.0 was used to perform the OK interpolation.

2.7. Evaluation of the Accuracy of Prediction Models

To assess the accuracy of the hybrid method, the predictions of wetland SOCc using single ANN
and OK were performed. Cross-validation was performed to assess the performances of the three
methods. Three indices used in this study include mean error (ME), root mean square error (RMSE),
and correlation coefficient (r) between the measured and predicted parameters. Both the ME and



Sensors 2020, 20, 7005 8 of 18

RMSE represent accuracy, uncertainty, and stability, while r denotes the correlation between predicted
and measured values [15]. They are computed as follows:

ME =
1
n

n∑
i=1

[
Ẑ(xi) −Z(xi)

]
(8)

RMSE =

√
1
n

∑n

i=1

[
Ẑ(xi) −Z(xi)

]2
(9)

r =

{∑n
i=1

[
Ẑ(xi) − Ẑ(xi)

]
·

[
Z(xi) −Z(xi)

]}2

∑n
i=1

[
Ẑ(xi) − Ẑ(xi)

]2
·
∑n

i=1

[
Z(xi) −Z(xi)

]2
(10)

where Ẑ(xi) is the measured wetland SOCc, Z(xi) is the predicted wetland SOCc, Ẑ(xi) is the average
measured wetland SOCc, Z(xi) is the average predicted wetland SOCc, and n is the number of
validation sites. The method with the lowest ME and RMSE and highest r values was determined as
the optimal approach for predicting wetland SOCc in the LRB.

3. Results

3.1. Descriptive Statistics of Measured Wetland SOCc

The descriptive statistics of all wetland SOCc samples are presented in Table 2. The values
of SOCc decrease as the depth increases; averaged values of SOCc are 11.14 (±5.10) g/kg for
0–30 cm, 8.64 (±3.72) g/kg for 30–60 cm, and 8.03 g/kg (±3.38) for 60–100 cm. The variability of
SOCc characterized by coefficients of variation (CV) shows moderate variation and declines with
soil depth. Wetland SOCc at all soil depths were positively skewed (skewness ≈ 1) and showed a
leptokurtic distribution (kurtosis > 0).

Table 2. Descriptive statistics of wetland soil organic carbon concentration (SOCc).

Soil Depth
(cm)

Min
(g/kg)

Max
(g/kg)

Mean
(g/kg) SD (g/kg) CV (%) Skewness Kurtosis

0–30 3.86 31.87 11.14 5.10 45.76 1.03 1.99
30–60 3.67 20.97 8.64 3.72 43.05 1.04 1.17

60–100 3.51 19.28 8.03 3.38 42.10 1.03 0.91

Note: SD: standard deviation. CV: coefficients of variation.

3.2. Performance of ANN-OK and Comparison of Different Prediction Methods

The parameters of these RBF networks are shown in Table 3. The structures of these RBF networks
are 8-27-1, 8-31-1, and 8-23-1; 8 implies that each training point has 8 environmental variable inputs.
The optimal numbers of hidden neurons based on the trial-and-error method with the least RMSE
are 27 for 0–30 cm, 31 for 30–60 cm, and 23 for 60–100 cm. The values of the output neuron are the
predicted wetland SOCc.

Table 3. Parameters of the optimal training ANN model.

Predicted Value Structure Hidden Layer
Function

Output Layer
Function RMSE

SOCc (0–30 cm) 8-27-1 Gaussian linear 4.38
SOCc (30–60 cm) 8-31-1 Gaussian linear 3.09
SOCc (60–100 cm) 8-23-1 Gaussian linear 2.87



Sensors 2020, 20, 7005 9 of 18

The probability distribution of RBF network residuals at all soil depths is consistent with the normal
distribution, which is verified by the Kolmogorov-Smirnov (K-S) test with p > 0.05. Hence, the residuals
were directly used to count the experimental semivariograms for the OK interpolation. Table 4 shows
the best-fit experimental variogram parameters of wetland SOCc residuals at three soil depths.
The best-fit variogram models for the residuals at 0–30, 30–60, and 60–100 cm are exponential, Gaussian,
and spherical models, respectively. The nugget/sill ratios, which reflect the spatial dependence of
wetland SOCc residuals, are 43.95%, 47.62%, and 42.64% at 0–30, 30–60, and 60–100 cm, respectively,
indicating moderate spatial dependence structures.

Table 4. Parameters for the isotropic semivariogram models for wetland SOCc residuals.

SOCc Residuals Model Range (km) Nugget Sill Nugget/Sill (%)

0–30 cm Exponential 9.6 2.24 5.11 43.95
30–60 cm Gaussian 3.29 2.00 4.20 47.62

60–100 cm Spherical 18.70 5.04 11.82 42.64

The accuracies of different prediction methods for wetland SOCc prediction are presented in
Table 5. The performance of OK in wetland SOCc prediction is the worst according to RMSE and r but
best according to ME. In particular, the correlation between the measured values and predicted values
by OK is very low through r. Compared with OK, the ANN has better performance. RMSE and r have
been greatly improved, but ME has decreased. The accuracy of the ANN may be enhanced by the
residual prediction of OK. Thus, the ANN-OK has the best prediction results with lower ME, the lowest
RMSE, and the highest r. Therefore, considering the performance of these methods at different depths,
ANN-OK is the best model for wetland SOCc prediction.

Table 5. Accuracy assessment indicators for the different methods predicting wetland SOCc
(means ± standard deviation).

Interval (cm) Evaluation Indicator OK ANN ANN-OK

0–30
ME 0.09 ± 0.50 −0.08 ± 0.43 −0.02 ± 0.33

RMSE 5.00 ± 4.39 4.38 ± 2.75 3.37 ± 1.57
r 0.21 * 0.61 ** 0.75 **

30–60
ME −0.08 ± 0.36 −0.18 ± 0.29 −0.15 ± 0.26

RMSE 3.62 ± 2.17 3.09 ± 2.01 2.65 ± 1.84
r 0.26 ** 0.58 ** 0.71 **

60–100
ME −0.02 ± 0.32 −0.13 ± 0.26 −0.01 ± 0.24

RMSE 3.25 ± 1.77 2.87 ± 1.41 2.47 ± 1.14
r 0.28 ** 0.52 ** 0.69 **

Note: OK: ordinary kriging; ANN: artificial neural network; ANN-OK: artificial neural network—ordinary kriging;
ME: mean error; RMSE: root mean square error; r: correlation coefficient; *: p < 0. 05; **: p < 0.01.

The 1:1 scatterplot of measured vs. predicted wetland SOCc from the ANN-OK prediction at
different depths are shown in Figure 4. ANN-OK explained the spatial dynamics of wetland SOCc to a
good extent with large values of r being 0.75, 0.71. 0.69 at different depths, respectively. For all depths,
wetland SOCc predictions by ANN-OK were credible.
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Figure 4. Performance of the hybrid method combining artificial neural network and ordinary kriging
(ANN-OK) in predicting wetland soil organic carbon concentration (SOCc) at different depths: (A) 0–30,
(B) 30–60, and (C) 60–100 cm.

3.3. Spatial and Vertical Patterns of Wetland SOCc in the LRB

The spatial and vertical distributions of wetland SOCc predicted by ANN-OK at different soil
depths over the LRB are shown in Figure 5. The distribution pattern of wetland SOCc in the entire study
region had great spatial and vertical variability, which tended to decrease from southeast to northwest
and from shallow soil depths to deep depths. The ranges of predicted wetland SOCc across the study
area at 0–30, 30–60, and 60–100 cm are 2.31–31.52, 2.21–27.93, and 1.11–22.48 g/kg, respectively. Wetland
SOCc was concentrated mainly in the topsoil (0–30 cm), and the mean wetland SOCc values at 0–30,
30–60, and 60–100 cm were 10.43 ± 0.38, 7.93 ± 0.25, and 7.61 ± 0.22 g/kg, respectively. The local change
in wetland SOCc is apparently observed due to the addition of environmental variables in ANN-OK.
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Figure 5. Spatial patterns of the predicted wetland soil organic carbon concentration (SOCc) at different
depths: (A) 0–30, (B) 30–60, and (C) 60–100 cm.

3.4. Effects of the Environmental Variables on Wetland SOCc in LRB

Pearson correlation coefficients between wetland SOCc and environmental variables and among
various environmental variables at the sampling sites in the LRB are listed in Table 6. Wetland SOCc is
significantly linearly correlated with aspect, MAP, and MAH at 0–30 cm; with the NDVI, B5, MAT, MAP,
and MAH at 30–60 cm; and with altitude, aspect, MAP, and MAH at 60–100 cm. High collinearity is
found among some environmental variables (r > 0.6), such as the correlations between NDVI and EVI,
band 4 and band 6, and MAH and MAP. The overfitting phenomenon may be caused by the addition
of all highly collinear environmental variables in the prediction. By excluding collinear environmental
factors and considering the correlation with wetland SOCc, altitude, slope, aspect, NDVI, band 5,
band 6, MAT, and MAP were selected as optimal environmental variables to predict wetland SOCc.

Figure 6 explains the roles of various environmental factors in wetland SOCc prediction using
ANN-OK. At 0–30 cm depth, aspect, which characterizes the land surface orientation conditions, shows
the greatest contribution to wetland SOCc prediction, followed by the NDVI, Slope, MAP, and so
on. At 30–60 cm, aspect had a larger contribution in predicting wetland SOCc than MAT and MAP.
At 60–100 cm, aspect continued to be a primary factor in the prediction of wetland SOCc. MAP and
slope were secondary factors, and the contribution of the NDVI further declined. For the prediction
of wetland SOCc, with the increase in soil depth, the contribution of NDVI decreased, the relative
contribution of climatic factors increased and then decreased, and aspect always performed the most
important role at each examined soil depth.
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Figure 6. Relative importance of the environmental variables in the prediction of wetland soil organic
carbon concentration (SOCc) at different soil depths: (A) 0–30 cm, (B) 30–60 cm, and (C) 60–100 cm.
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Table 6. Correlation coefficients of wetland SOCc and environmental variables.

SOCc
Altitude Slope Aspect NDVI EVI B4 B5 B6 MAT MAP MAH

0–30 cm 30–60 cm 60–100 cm

SOCc
0–30 cm 1.00

30–60 cm 0.64 ** 1.00
60–100 cm 0.38 ** 0.67 ** 1.00

altitude −0.03 −0.03 −0.16 * 1.00
slope −0.05 −0.06 −0.11 0.39 ** 1.00
aspect 0.13 * 0.09 0.16 * −0.01 0.02 ** 1.00
NDVI 0.10 0.17 * 0.14 0.05 ** 0.05 ** 0.03 ** 1.00
EVI 0.00 0.08 0.08 0.05 ** 0.05 ** 0.03 ** 0.99 ** 1.00
B4 −0.07 0.00 −0.08 −0.11 ** −0.11 ** −0.01 ** −0.03 ** −0.03 ** 1.00
B5 0.11 0.17 * −0.01 −0.10 ** 0.01 0.00 0.04 ** 0.04 ** 0.15 ** 1.00
B6 0.05 0.12 −0.10 −0.09 ** −0.01 ** 0.00 0.01 ** 0.01 ** 0.70 ** 0.44 ** 1.00

MAT 0.04 0.12 * 0.11 −0.36 ** 0.09 ** −0.01 −0.07 ** −0.07 ** 0.11 ** 0.13 ** 0.15 ** 1.00
MAP 0.27 ** 0.35 ** 0.20 * −0.21 ** 0.30 ** 0.00 −0.04 ** −0.04 ** 0.03 ** 0.09 ** 0.10 ** 0.54 ** 1.00
MAH 0.20 * 0.33 ** 0.30 ** −0.37 ** 0.13 ** 0.00 −0.10 ** −0.10 ** 0.07 ** 0.11 ** 0.11 ** 0.41 ** 0.86 ** 1.00

Note: * means p < 0. 05, ** means p < 0.01.



Sensors 2020, 20, 7005 13 of 18

4. Discussion

4.1. Advantages of ANN-OK in Predicting Wetland SOCc

In this study, wetland SOCc in the LRB was predicted by three approaches such as using only soil
samples (i.e., OK), soil samples with environmental variables (i.e., ANN), and a proposed two-step
hybrid method combining ANN and OK. The results of ME, RMSE, and r indicate that ANN-OK
predicted wetland SOCc better, with higher precision and lower uncertainty than other approaches.
This result is unanimously consistent with the conclusion of the previous study [19], which mentioned
that ANN-integrated residual kriging can provide better prediction accuracy and more detail for soil
properties over a large scale than kriging.

In a previous study [35], kriging was considered to have better performance than other pure
interpolation methods such as IDW, especially when SOCc data have low sampling density and complex
spatial structure. However, the kriging interpolation method performed poorly for the prediction of
wetland SOCc in this study. There are two possible reasons for the poor performance of OK. Above all,
the strong local variation of wetland SOCc is related to the changes in extrinsic environmental factors,
such as vegetation [36], terrain [15], and climate [16] in this study area. Moreover, the spatial correlation
of single type soil samples, which may be controlled by the intrinsic factors (i.e., soil properties), is not
obvious when they are sparse on a large scale under low sampling density [37]. Hence, these traditional
kriging methods are difficult to perfectly describe the spatial and vertical variations of wetland SOCc
in the entire study area.

Good performance of ML methods, such as ANN [10], RF [9], boosted regression tree [8], and SVR,
in predicting soil parameters were observed from previous studies [7]. In this study, ANN, one of
the most popular ML methods, was chosen because of its powerful nonlinear fitting and simple
structure [12,13]. Compared to OK which predicts SOCc only on the soil samples, ANN achieved
higher accuracy in spatially predicting SOCc, due to its strong performance in gaining more linear or
nonlinear relationships between wetland SOCc and environmental variables. ANN does not strongly
depend on the sampling density [19], as clarified by the higher accuracy of ANN (Table 5). Despite
the better prediction ability they showed, the neglection in spatial autocorrelation indicated that
these ML prediction models still can be improved. Compared with ANN, a hybrid model, ANN-OK,
achieved good interpretability and predictions of SOCc [38]. Improvement of the ANN-OK can be seen
from the low RMSE and the high r (Table 5). Therefore, the ANN-OK provides a framework method
example for the prediction of other soil parameters at regional scales by means of various environment
variables [39]. By employing multisource geospatial data, different soil parameters could be predicted
more accurately by such a combination method.

4.2. Patterns of Wetland SOCc in the LRB

Although many studies have focused on the spatial variation of wetland SOCc in Northeast China
at a local scale [15,16], patterns of wetland SOCc in the entire LRB were not clear due to limited soil
investigation and high spatial and vertical variability of soil properties. In the present study, the spatial
and vertical patterns of wetland SOCc in the LRB were revealed. The spatial distributions of wetland
SOCc in different soil depths showed similar features: higher values were found in the southeast,
while lower values were in the northwest. Meanwhile, wetland SOCc decreased with the increase in
soil depth and mainly concentrated in the topsoil layer (0–30 cm).

The predicted value of wetland SOCc in the LRB is higher than the average level of China’s
wetlands, which is consistent with the previous research result [40]. Different from wetlands in the
tropics and subtropics and the arid zone, wetlands in the LRB have high SOCc due to the small
decomposition rate caused by low temperature [41,42]. Compared with other wetland distribution
regions in Northeast China such as the Greater Khingan Mountains [43] and Western Songnen Plain [44],
the values of wetland SOCc in the LRB are relatively low, mostly due to warmer temperature and more
decomposition of organic matter in the LRB located in southern Northeast China. The soil microbial
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activity decreases at low temperatures and high precipitation, which is conducive to stabilizing soil
organic carbon storage. Hence, the spatial change of wetland SOCc is similar to spatial distributions of
temperatures and precipitation.

For different soil depths, the predicted wetland SOCc values at 0–30 cm have the largest range,
and the value range decreases with an increase in depth. This is probably because the spatial
heterogeneity and environmental impact on wetland SOCc will decrease with the soil depth increase.
In a previous study, the global soil organic carbon was predicted to be mainly concentrated in the
topsoil layer (0–30 cm) [45], which is consistent with our observation. This trend demonstrates that
the accumulation and emission of soil organic carbon are mainly concentrated in the surface layer of
soil [46].

4.3. Relationships between Wetland SOCc and Environmental Variables

The physical and chemical properties of soil are affected by environmental conditions [47]. Climate
and vegetation significantly impact wetland SOCc distributions, and aspect is the main controlling
factor in predicting SOCc. In this study, linear correlations reflected by Pearson correlation coefficients
between wetland SOCc and environmental variables were weak (Table 6). This result differs with
previous reports [48,49] that SOCc has strong linear correlations with climate and terrain variables,
but consistent with another research [19]. These low linear correlations between wetland SOCc and
environmental variables probably result from the great changes of topography and climate, as well as
the derived change of vegetation across the study area. In summary, the relationships between wetland
SOCc and other environmental factors are rarely purely linear [50]. Due to the strong nonlinear fitting
ability of machine learning methods, in this study, ANN [29] was used to reveal the complex relationship
between environmental factors and wetland SOCc. When we input the same environmental factors,
the prediction accuracy decreases with the increase in soil depth, which may imply that the surface
organic carbon is more susceptible to environmental factors [43]. Furthermore, surface wetland SOCc
can be used as a sensitive indicator of environmental change, which may enhance an ability to detect
global climate change.

In this study, aspect contributed the most in predicting wetland SOCc at all soil depths, which
is mostly because aspect controls the soil temperature, hydrology condition, and other conditions
in a local range to affect the formation of soil organic carbon [51]. However, the value of r between
aspect and wetland SOCc is small, suggesting they do not have linear relationships. Vegetation debris
is an important source of humus formation and organic carbon enrichment [52]. Therefore, NDVI,
which reflects vegetation status, has an important contribution in the prediction of wetland SOCc.
The relative contribution of NDVI decreased with increased soil depth. This observation is most likely
related to limited carbon sequestration due to less vegetation debris in deep soil. Previous studies
found that climate conditions significantly contributed to the spatial and vertical distribution of SOCc
by affecting respiration of soil microbes, the migration and deposition of soil organic matter, and the
growth and rot of vegetation [53]. Generally, wetland SOCc is stable and has no obvious variation even
in several years, due to its soil water saturation and anaerobic environment [27]. Therefore, the mean
annual meteorological data in ten years were used. For MAP and MAT, the results of this study are
consistent with the observation from France [54] that reported precipitation has a greater effect on SOC
storage than temperature. Furthermore, with the increase in soil depth, the contribution of climatic
factors in predicting wetland SOCc in our study increases first and then decreases.

Soil parameters (such as texture, pH, texture, and so on) are also closely related to the decomposition
rate of organic matter and water holding capacity of soil [17], which thus affect the spatial distribution
of wetland SOCc. For instance, SOCc is positively correlated to silt content in the Sanjiang Plain [16].
In predicting the spatial pattern of soil parameters by ML, all the environmental input data need to be
obtained in geospatial format (polygon or grid). Similar to wetland SOCc, all the other soil parameters
also should be spatially interpolated. Therefore, other soil parameters were not considered as input
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databases in this study. These roles of soil properties can be further explored in examining affecting
factors of wetland SOCc.

5. Conclusions

In this study, a combination method integrating ANN and OK was used to examine spatial and
vertical distributions of wetland SOCc in the LRB. The results showed that ANN-OK was effective in
predicting wetland SOCc at a regional scale. Compared with other methods, the prediction accuracy
was raised by incorporating ANN and OK with lower RMSE and higher correlation coefficient (r). In the
LRB, wetland SOCc has obvious spatial and vertical variations. The prediction results showed that
wetland SOCc decreased from southeast to northwest, and the high values were mainly concentrated
near the ocean, which faces south and has low temperatures, heavy rainfall, and lush vegetation.
Wetland SOCc mainly stocked in the topsoil, and the mean wetland SOCc values at soil depths of 0–30,
30–60, and 60–100 cm were 10.43 ± 0.38, 7.93 ± 0.25, and 7.61 ± 0.22 g/kg, respectively, which is larger
than the average level of China’s wetland soil but smaller than that over other wetland regions in
Northeast China. At the scale of the LRB, terrain aspect contributed the most to predicting wetland
SOCc at all soil depths but an insignificant linear correlation between aspect and wetland SOCc was
identified. In the future, the impacts of different environmental variables on SOCc could be further
analyzed at larger scale. This study provides a framework for the prediction of soil parameters in
other regions and it provides a baseline to evaluate the SOCc changes in response to climatic and
anthropogenic drivers.
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