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Abstract: Gravitational-wave data (discovered first in 2015 by the Advanced LIGO interferometers
and awarded by the Nobel Prize in 2017) are characterized by non-Gaussian and non-stationary
noise. The ever-increasing amount of acquired data requires the development of efficient
denoising algorithms that will enable the detection of gravitational-wave events embedded in low
signal-to-noise-ratio (SNR) environments. In this paper, an algorithm based on the local polynomial
approximation (LPA) combined with the relative intersection of confidence intervals (RICI) rule for
the filter support selection is proposed to denoise the gravitational-wave burst signals from core
collapse supernovae. The LPA-RICI denoising method’s performance is tested on three different burst
signals, numerically generated and injected into the real-life noise data collected by the Advanced
LIGO detector. The analysis of the experimental results obtained by several case studies (conducted at
different signal source distances corresponding to the different SNR values) indicates that the
LPA-RICI method efficiently removes the noise and simultaneously preserves the morphology of the
gravitational-wave burst signals. The technique offers reliable denoising performance even at the very
low SNR values. Moreover, the analysis shows that the LPA-RICI method outperforms the approach
combining LPA and the original intersection of confidence intervals (ICI) rule, total-variation (TV)
based method, the method based on the neighboring thresholding in the short-time Fourier transform
(STFT) domain, and three wavelet-based denoising techniques by increasing the improvement in the
SNR by up to 118.94% and the peak SNR by up to 138.52%, as well as by reducing the root mean
squared error by up to 64.59%, the mean absolute error by up to 55.60%, and the maximum absolute
error by up to 84.79%.

Keywords: gravitational-waves; core collapse supernova (CCSN) signals; Advanced LIGO
interferometers; adaptive signal denoising; local polynomial approximation (LPA); intersection of
confidence intervals (ICI) rule; relative intersection of confidence intervals (RICI) rule

1. Introduction

The first detection of a gravitational-wave signal from a compact binary coalescence (CBC)
system [1,2] was made in 2015 by the Advanced LIGO (Laser Interferometer Gravitational-Wave
Observatory) detectors [3]. This detection marked a turning point in gravitational-wave astronomy
and initiated intensive scientific research in the field of gravitational-wave data analysis leading
to the Nobel Prize in Physics in 2017. Besides the Advanced LIGO detectors, the Advanced Virgo
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detector [4,5] is operated by the European Gravitational Observatory (EGO) near Pisa, Italy. In addition
to the first observation, the first two Advanced LIGO and Advanced Virgo observing runs (O1 and O2)
resulted in observations of nine more binary black hole (BBH) mergers and one binary neutron star
(BNS) merger [6]. The third run (O3a and O3b) was even more productive, with dozens of BNS, BBH,
and neutron star-black hole (NSBH) observations. Moreover, the future increase in the detection rate is
expected due to the detector sensitivity improvements and new detectors (LIGO-India and Kamioka
Gravitational Wave Detector (KAGRA) [7] in Japan) joining the observation network [8]. The huge
amount of acquired data requires the development of different specialized data processing methods for
accurate identification of gravitational-wave events buried in instrumental and environmental noise.
These will enable scientists to utilize observed gravitational-wave events in order to gain insights
into the astrophysical origins and properties of different gravitational-wave sources and to test the
consistency of the obtained data with those predicted by general relativity. Moreover, it will allow
measurements of various cosmological parameters and may enable the detection of gravitational-waves
from new types of sources, such as core collapse supernovae (CCSNs).

Gravitational-wave detectors are located at mutually distant sites (LIGO Hanford in Washington,
USA; LIGO Livingston in Louisiana, USA; and Virgo in Pisa, Italy), and their main role is to detect
gravitational-wave phenomena embedded in environmental and local instrumental noise and to
calculate their polarization and source location. Each LIGO site runs an L-shaped Advanced LIGO
detector [3] that consists of two orthogonal arms, where each arm is 4 km long (L = L1 = L2 = 4 km)
with two light-reflecting mirrors at each end. At the Advanced Virgo site [9], the detector’s arms are
3 km long. The gravitational-wave propagating through the gravitational-wave detector stretches
one arm, while shortening the other. This difference in arm lengths, ∆L(t) = δL1 − δL2, causes the
phase difference between two light fields returning to the beam splitter, which is recorded by the
output photodetector, thus obtaining the optical signal proportional to the gravitational-wave strain
amplitude h(t), defined as ∆L(t) = h(t)L [1].

The Advanced LIGO and Advanced Virgo detectors, in their most sensitive state, should be
able to detect a change in distance 1/10,000th the width of a proton. In order to achieve their high
sensitivity, detectors include several improvements of the Michelson interferometer, on which they
are based. The first improvement refers to the size of the interferometers, which are the largest ever
built. The longer the interferometer’s arms, the smaller the changes in the arm length that can be
detected. Additionally, the basic Michelson interferometer is modified by including Fabry–Perot
cavities. These optical cavities are formed by placing additional mirrors in the arms near the beam
splitter, thus causing multiple laser reflections. These reflections increase the distance traveled
by the laser beams by 300 times and build up the laser light, thus increasing the interferometer’s
sensitivity [1,10,11].

Moreover, in order to increase the interferometer’s resolving power, the laser power must be
increased from the input value of 40 W to the operating value of 750 kW. This is achieved by using
power recycling mirrors at the input that continually reflect the laser light beams back into the
Fabry–Perot cavities, thus boosting their power and sharpening the interference fringes [1,10,12].
Besides power recycling mirrors, the signal recycling mirrors are also used at the output to enhance the
interference signal received by the photodetector. The interferometer operates a 1064 nm Nd:YAG laser
in an ultrahigh vacuum system. The laser is stabilized in amplitude, frequency, and beam geometry
to reduce the photon shot noise and maximize the conversion of gravitational strain to the optical
signal [1,10,13,14].

In order to achieve high measurement sensitivity, the interferometer’s mirrors (test masses)
must be isolated from seismic noise and designed in a way that reduces thermal noise.
Different environmental sources produce vibrations and displacement noise that may affect test
masses and sensitive measurements. In order to eliminate unwanted vibrations, the LIGO and Virgo
sites employ different active and passive damping systems. The active damping system, called the
internal seismic isolation (ISI) system, consists of position- and vibration- sensors that sense a range
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of frequencies characteristic of different environmental vibrations. The sensor data are processed
in a control system that generates counter-movements of permanent-magnet actuators in order to
cancel these vibrations. The passive damping is achieved by suspending each test mass by 0.4 mm
fused-silica fibers at the end of a quadruple-pendulum system [1,15–17]. Thermal noise is reduced
using materials with low mechanical losses for the test masses and suspensions [18–20].

Despite applying the above-described state-of-the-art noise reduction equipment,
several potential noise sources could affect the background estimation of gravitational-wave
events. Narrowband instrumental noises are caused by power lines (60 Hz and the associated
harmonics), mechanical resonances of the system, and injected calibration signals [21]. Other potential
instrumental noise sources include thermal noises, quantum noise, gas noise, charging noise,
laser intensity and frequency fluctuation noise, RF oscillator noise, beam jitter, and electronics
noise [21]. The uncorrelated environmental noise sources include noise sources associated with human
activity that produces vibrational or acoustic noise, seismic waves from earthquakes (0.03–0.1 Hz),
magnetic influences, malfunctions of the electro-optic modulator driver system (10–2000 Hz),
and blip transients (30–250 Hz) [22,23]. Correlated noise sources are those that affect the detectors
almost simultaneously, where electromagnetic sources include lightning strikes, solar events,
and radio-frequency (RF) communication [22]. Thus, the gravitational-wave detector is characterized
by non-white, non-stationary, and non-Gaussian noise. Moreover, gravitational-waves as astrophysical
signals have typical amplitudes comparable to the detector background noise.

Therefore, the crucial research effort in gravitational-wave data analysis is the development
of efficient denoising algorithms that will enable the detection of events embedded in low
signal-to-noise-ratio (SNR) environments. Specific algorithms have been developed for different
types of signals. Matched filtering was applied for the detection of CBC signals, i.e., signals from
BBH mergers or signals from BNS [24–26]. This technique performed a search for CBC signals in
the noisy detector data by correlating the data with a bank of generic transient signals or analytic
waveform templates spanning a large astrophysical parameter space. However, matched filtering is
optimal only for Gaussian noise, while detector noise is non-Gaussian and non-stationary. Moreover,
modeling continuous gravitational-wave sources, such as spinning neutron stars, requires extensive
computational resources, thus rendering the matched filtering method impractical for this type of signal.
Continuous gravitational-wave signals were mainly identified using coherent detection methods and
cross-correlating the data from multiple detectors [27,28].

Numerical-relativity simulations of gravitational-wave transients (bursts), such as CCSN signals,
require significant computational efforts. Therefore, the models that could potentially be used in the
above-mentioned identification methods are imperfect. Studies such as [29–33] proposed different
approaches to estimating the physical parameters of this type of signal and their reconstruction from
noisy data. These approaches were based on the combination of principal component analysis (PCA)
and Bayesian data analysis techniques. The unmodeled long-lived burst signals were detected and
reconstructed in [34,35] using coherent methods and a network of detectors. Burst signals of a short
duration require specific pipelines that are able to provide differentiation between signal transients and
detector noise glitches, such as the BayesWave [36], coherentWaveBurst [37], and oLIB [38] pipelines.

Machine learning-based algorithms have also gained attention recently with their applications in
gravitational-wave detection and extraction from noisy data [39]. In [40], machine learning methods
based on the dictionaries built from numerical-relativity templates of gravitational-wave signals were
applied for data denoising, with satisfactory results for signals embedded in simulated Gaussian noise
and some promising results for application on real gravitational-wave signals. Deep learning was
applied in [41,42] for the noise reduction in the gravitational-wave detector data. The authors in [43]
proposed deep filtering, which utilized deep learning with convolutional neural networks (CNNs)
for detection and parameter estimation of gravitational-waves from BBH mergers, with signals being
embedded in actual LIGO noise. The application of deep CNNs in detecting CBC signals was also
assessed in several studies, with different neural network configurations applied to simulated signals
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corrupted by either synthetic or real noise [44–47]. The study in [48] presented the deep transfer
learning method with deep CNNs for glitch classification and automatic clustering of new classes of
anomalies occurring in data from the gravitational-wave detectors. Transient noise glitch classification
necessary for interferometer characterization was also studied in [49] where deep CNNs were used
to classify simulated glitches based on their time-frequency representations in the form of images.
Detection and classification of noise transients were further studied in [50–54].

However, the aforementioned machine learning-based algorithms require extensive databases of
different gravitational-wave signal templates. In the case of burst signals produced by core collapse,
the generation of such databases that would be large enough is unfeasible due to the computational
efforts needed to calculate such waveforms.

Therefore, the noise removal methods that do not require any a priori information about the
underlying gravitational-wave signals, such as their signal morphology and astrophysical source,
also have interesting potential applications. In [55], total-variation (TV)-based algorithms were applied
for denoising of two types of gravitational-wave signals: signals from BBH mergers and burst signals
produced by the CCSN. TV denoising methods, mainly applied in the field of image processing,
are based on the L1-norm minimization and Rudin–Osher–Fatemi (ROF) variational model [56–63].
The application of the TV denoising method in [55] resulted in successful noise removal. However,
the study was limited to signals corrupted by the idealized additive Gaussian noise. This work was
extended in [64] where the TV-based denoising method was successfully applied for denoising of
gravitational-wave signals embedded in real noise data acquired from Advanced LIGO detectors,
providing a detailed analysis of the model regularization parameter selection.

In this paper, we propose an algorithm based on the relative intersection of confidence
intervals (RICI) rule combined with the local polynomial approximation (LPA) for denoising of
gravitational-wave burst signals. The LPA is used as a filter design method in which a polynomial
is fitted locally to the noisy measurement data within a data-driven, varying sliding window.
The adaptive window size is selected by employing the asymmetrical RICI rule, which represents an
improvement of the intersection of confidence intervals (ICI) rule. The LPA-RICI algorithm provides
nearly optimal filter supports in terms of minimizing the estimation mean squared error (MSE). It does
not require any information on the input signal, the noise, or the estimation of the bias, but only the
noise variance estimation. This easy-to-implement algorithm is locally adaptive to the unknown and
varying smoothness of the signal, with the estimation accuracy close to the one obtained when the
original signal’s smoothness is known in advance.

We apply the LPA-RICI algorithm to the denoising of gravitational-wave bursts from CCSNs.
The data are obtained by injecting numerically generated signals into the real-life non-Gaussian
and non-stationary noise data obtained by the Advanced LIGO Livingston detector. The denoising
procedure is performed for three different CCSN burst signals at three different distances (5,
10, and 20 kpc) corresponding to different (low) SNR levels. The numerical analysis done on
the experimental results indicates that the proposed denoising method provides an accurate
estimation of the original gravitational-wave signal corrupted by real-life noise data, by efficiently
removing the noise and simultaneously preserving the characteristic features of CCSN bursts.
Moreover, the LPA-RICI method outperforms several competing and conventionally applied denoising
techniques, suggesting that it may be successfully applied in the preprocessing of gravitational-wave
data characterized by intensive noise. The rest of the paper is organized as follows. Section 2 provides
the theoretical background and mathematical framework of the LPA method used for the filter design
and the RICI algorithm used for filter support selection. In Section 3, the experimental results obtained
by several case studies are presented and discussed. Finally, the paper’s conclusion is given in Section 4.
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2. Materials and Methods

Let us consider the noise-corrupted signal x(k), composed of the noise-free signal s(k) and the
additive white Gaussian noise, η(k) ∼ N (0, σ2

η),

x(k) = s(k) + η(k). (1)

The goal of the signal denoising is to estimate ŝ(k) from the noisy measurements x(k), such that
the estimate ŝ(k) is as close to s(k) as possible, i.e., the estimation error is minimized. This results in
the instantaneous slope changes and other features in s(k) being well preserved. In order to achieve
this goal, we applied the LPA method [65–69] as the filter design technique and proposed the adaptive
RICI algorithm for the filter support selection.

2.1. The LPA Filter Design Method

The LPA method provides the estimate ŝ(k) from the noisy measurements x(k), defined in (1),
by fitting a polynomial to measurement data within a sliding window defined in the vicinity of the
considered measurement. The polynomial, obtained as a linear combination of basis vectors, is fitted
locally for each considered measurement so that it minimizes the following loss function using the
weighted least squares (WLS) criterion [65–68]:

JLPA(k0, w, C) =
Nk

∑
k=1

ψw(k− k0)
(

x(k)− CTΦw(k− k0)
)2

Φ(k) =
[

1, k,
k2

2
, . . . ,

kn−1

(n− 1)!

]T

C = (C0, C1, C2, . . . , Cn−1)
T ,

(2)

where k0 is the point of interest (center of the LPA), k is a signal sample, Nk is the signal length, ψw(k) is
the scaled window function, w is the window size (filter support size), C is a vector of the polynomial
coefficients, Φw(k) is a polynomial basis vector, and n is the order of the LPA.

The window function ψw(k) defines the location of the polynomial fitting with respect to the
central point k0 and, in normalized form, satisfies the conventional kernel properties [65,66]:

ψ(k) ≥ 0; ψ(0) = max
k
{ψ(k)} ; ψ(k)→ 0 as |k| → ∞;

∫ +∞

−∞
ψ(u)du = 1 (3)

The minimization of criterion JLPA(k0, w, C), defined in (2), with respect to C, leads to the
coefficient Ĉ(k0, w) [65,67]:

Ĉ(k0, w) = argmin
C∈Rn

JLPA(k0, w, C) = ŝ(k0, w), (4)

which represents the estimate of s(k0) with respect to a window function of size w.
The estimates may be represented in the following form [67]:

ŝ(k, w) = ∑
k

q(k, k0, w)x(k), (5)

where q(k, k0, w) is the estimator kernel defined as [67]:

q(k, k0, w) = ψw(k− k0)Φ
T
w(0)Φ

−1
w Φw(k− k0), (6)

with matrix Φw defined as:
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Φw = ∑
k

ψw(k− k0)Φw(k− k0) [Φw(k− k0)]
T . (7)

The window function ψw(k) is a scaled version of the normalized function defined in (3), where the
scaling parameter w > 0 represents the window length (filter support size) [65]:

ψw(k) =
1
w

ψ

(
k
w

)
. (8)

The type of window function affects the weights associated with the signal samples, taken into
consideration by local polynomial fitting inside the sliding window. Namely, the rectangular window
function provides the same weights for all signal samples. In contrast, non-rectangular functions use
higher weights for samples closer to the considered point k0 and smaller weights for these farther
away from the point of interest [68].

The filter support size w controls denoising quality and the smoothness of the signal estimate
ŝ(k, w): larger values of w signify including more samples in the LPA procedure, which leads to the
increase of the estimation bias (and at the same time, the decrease in estimation variance), while smaller
values of w cause the estimation variance to increase (as well as a smaller bias) [65,66]. Therefore,
the selection of filter support size w is a crucial part of the denoising procedure. The main goal is to
find such w that provides the optimal trade-off between estimation bias and variance, which is here
done by applying the RICI algorithm.

2.2. The RICI Algorithm

The absolute value of the estimation error εm(k, w) obtained by LPA estimators is defined as:

|εm(k, w)| = |s(k)− ŝm(k, w)| , (9)

where ŝm(k, w) denotes the estimate of the signal sample value calculated using m samples in the
vicinity of the considered sample and w(k) is the adaptive filter support size.

The point-wise mean squared estimation error, ρ(k, w), is given as [66,67]:

ρ(k, w) = E
{

ε2
m(k, w)

}
= |bm(k, w)|2 + σ2

m(k, w), (10)

where bm(k, w) is the estimation bias and σm(k, w) is the standard deviation of the estimate ŝm(k, w).
According to (10), the performance of the LPA estimators strongly depends on the adaptive filter

support size w(k). Therefore, the main task of the denoising procedure consists of finding such a filter
support size, wo(k), that provides the optimal bias-variance trade-off, hence minimizing ρ(k, w) [66,67]:

wo(k) = argmin
w(k)

ρ(k, w), (11)

ρo(k, w) = min(ρ(k, w)) = ρ(k, wo) = (1 + κ2)σ2
m(k, wo), (12)

where the proportion parameter κ is defined as:

κ =
bm(k, wo)

σm(k, wo)
. (13)

In the case of LPA estimators, the estimation error is given in the following form [65,67,70]:

|εm(k, w)| ≤ bm(k, w) + |ζm(k, w)| , (14)

where ζm(k, w) ∼ N (0, σ2
m(k, w)) is the random error.
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The following inequality holds true with the probability p = 1− β [65,67]:

|ζm(k, w)| ≤ χ1−β/2 · σm(k, w), (15)

where χ1−β/2 is the (1− β/2)th quantile of the standard Gaussian distribution, N (0, 1).
Combining (14) and (15) suggests that the following inequality holds true with the same

probability p [65,66]:
|εm(k, w)| ≤ bm(k, w) + χ1−β/2 · σm(k, w). (16)

As shown in [66,67], based on the estimation bias and standard deviation properties,
for w(k) < wo(k), we have that:

bm(k, w) ≤ κ · σm(k, w). (17)

Using (16) and (17), the following inequalities for the estimation error are obtained [66,67,70]:

|εm(k, w)| ≤ (κ + χ1−β/2) · σm(k, w), (18)

|εm(k, w)| ≤ Γ · σm(k, w), (19)

where parameter Γ is defined as the ICI threshold value:

Γ = κ + χ1−β/2. (20)

With the same probability p, (19) can be expressed as:

ŝm(k, w)− Γ · σm(k, w) ≤ s(k) ≤ ŝm(k, w) + Γ · σm(k, w), (21)

which introduces the confidence intervals, ∆m(k, w), that contain the noise-free signal values s(k) with
the confidence p, defined as [65,67,70]:

∆m(k, w) = [ŝm(k, w)− Γ · σm(k, w), ŝm(k, w) + Γ · σm(k, w)] , m = 1, . . . , M, (22)

∆m(k, w) = [∆l,m(k, w), ∆u,m(k, w)] , m = 1, . . . , M, (23)

where parameter Γ represents the critical value of the confidence interval ∆m(k, w), while ∆l,m(k, w)

and ∆u,m(k, w) are the lower and the upper confidence limits, respectively.
The estimated signal value ŝm(k, w) is calculated using the LPA-based filters. For instance, in the

case of zero-order LPA, the estimate is obtained by averaging sample values in the neighborhood of
the considered sample, where the number of samples that are taken into calculation is determined by
the RICI algorithm.

The first stage of the RICI algorithm is the ICI rule [71], which, for each signal sample k, calculates
a sequence of M growing filter support values [65,67,70]:

W = {w1, w2, . . . , wM} , w1 < w2 < · · · < wM, (24)

and the accompanying confidence intervals ∆m(k, w), defined in (23).
The ICI rule provides the filter support candidates wm(k), such that wm(k) ≤ w−(k). The support

w−(k) denotes the largest support for which the intersection of the confidence intervals is still
non-empty [65,67,70]:

w−(k) = argmax
wm(k)

{
∩M

m=1∆m(k, wm) 6= ∅
}

. (25)

This condition is met if the following inequality still holds true [65,67,70]:

∆u,m(k, w) ≥ ∆l,m(k, w), (26)
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where ∆u,m(k, w) is the smallest upper and ∆l,m(k, w) the largest lower confidence interval limit,
defined as:

∆u,m(k, w) = min
j=1,...,m

∆u,j(k, wj), (27)

∆l,m(k, w) = max
j=1,...,m

∆l,j(k, wj). (28)

Several approaches on the filter support selection using the RICI rule are feasible,
i.e., the above-explained procedure may be applied to only one side of the considered sample (left or
right) or to both sides (symmetrical or asymmetrical filter supports). In this paper, we chose the
asymmetrical filter support selection where the RICI algorithm is applied independently to the
left-hand and right-hand side of the considered sample k [72].

Calculations are done for each signal sample k, resulting in two sets of confidence intervals
∆l(k, w) and ∆r(k, w), one for the left-hand side and one for the right-hand side of the considered
sample [72]:

∆l(k, w) =
{

∆l
1(k, w), ∆l

2(k, w), . . . , ∆l
k(k, w)

}
, (29)

∆r(k, w) =
{

∆r
1(k, w), ∆r

2(k, w), . . . , ∆r
Nk−k(k, w)

}
. (30)

According to confidence intervals definition, given in (22), their widths decrease as the number of
samples k used for their calculation increases: ∆l

1(k, w) > ∆l
2(k, w) > · · · > ∆l

k(k, w) and ∆r
1(k, w) >

∆r
2(k, w) > · · · > ∆r

Nk−k(k, w).
In accordance with (22) and (23), the confidence limits of the confidence intervals determined by

the asymmetrical RICI procedure are calculated as [72]:

∆l
l,m(k, w) = ŝl

m(k, w)− Γ · σl
m(k, w), (31)

∆l
u,m(k, w) = ŝl

m(k, w) + Γ · σl
m(k, w), (32)

∆r
l,m(k, w) = ŝr

m(k, w)− Γ · σr
m(k, w), (33)

∆r
u,m(k, w) = ŝr

m(k, w) + Γ · σr
m(k, w), (34)

where ∆l
l,m(k, w) (∆l

u,m(k, w)) and ∆r
l,m(k, w) (∆r

u,m(k, w)) are the lower (upper) confidence limits of the
confidence interval calculated using m adjacent noisy signal sample values (including the considered
signal sample) to the left-hand side and to the right-hand side of the considered sample k, respectively;
ŝl

m(k, w) and ŝr
m(k, w) are the estimates of the considered signal sample value, calculated using sample

values to its left- and right-hand side, respectively; σl
m(k, w) and σr

m(k, w) are the standard deviations
of the estimation error for the left- and right-hand side calculations, respectively.

The algorithm operates on the each side of the considered kth sample independently by tracking
the intersection of the currently calculated mth confidence interval (∆l

m(k, w) =
[
∆l

l,m(k, w), ∆l
u,m(k, w)

]
for the left- and ∆r

m(k, w) =
[
∆r

l,m(k, w), ∆r
u,m(k, w)

]
for the right-hand side) with the intersection of

all previous m− 1 confidence intervals (denoted as ∆l
m−1(k, w) for the left- and ∆r

m−1(k, w) for the
right-hand side). If the confidence intervals’ intersection is non-empty, the algorithm marks wl

m(k) and
wr

m(k) as the current candidate for the optimal filter support to the left- and to the right-hand side of
the considered sample, respectively. This intersection condition is checked by comparing the values of

the smallest upper ∆l
u,m(k, w) and the largest lower ∆l

l,m(k, w) confidence limit on the left side [72]:

∆l
u,m(k, w) ≥ ∆l

l,m(k, w), (35)

and the values of the smallest upper ∆r
u,m(k, w) and the largest lower ∆r

l,m(k, w) confidence limit on
the right side:

∆r
u,m(k, w) ≥ ∆r

l,m(k, w). (36)
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The above described first stage of the RICI algorithm (the ICI stage) results in wl−(k) for the
left-hand side calculations and wr−(k) for the right-hand side calculations, as the largest filter supports
satisfying (35) and (36), respectively. Finally, the largest candidate for the optimal filter support w−(k)
is obtained as [72]:

w−(k) = wl−(k) + wr−(k)− 1, (37)

where the fact that both supports (left and right) contain the considered sample k is taken into account.
The thus obtained filter support w−(k) is close to the optimal value wo(k), defined in (11) [70,73].
The performance of the described ICI stage relies heavily on the proper selection of the threshold

parameter Γ. Namely, selecting too small Γ values leads to w−(k) < wo(k), thus resulting in signal
undersmoothing, while selecting Γ too large results in signal oversmoothing, as w−(k) > wo(k) [65,66].
Moreover, the ICI stage shows weaker performance when applied to wide regions of nearly constant
signal values in which sudden changes occur [72].

Therefore, the second stage of the algorithm, the RICI rule stage, introduces the additional
criterion for the adaptive filter support selection and applies it to the filter support candidates obtained
in the first stage (the ICI rule stage) of the algorithm. The RICI rule method significantly improves the
estimation accuracy of the ICI rule method for the same values of parameter Γ, while simultaneously
being more robust to suboptimal Γ values [72,74,75]. The study in [74] considered only high SNR
scenarios of the synthetic data corrupted by the additive white Gaussian noise. In this paper,
the approach is extended to the real-life problem of gravitational-wave denoising using different
orders of the LPA in the intensive noise scenarios (low SNRs), characterized by the non-stationary and
non-Gaussian noise.

The RICI criterion is defined with respect to the ratio of the intersection of the confidence intervals’
width and the current confidence interval’s width, thus taking into account the relative amount of
confidence intervals overlapping [72,74]. As in the previous algorithm stage, this ratio is also calculated
for both sides of the considered sample, thus obtaining Rl

m(k, w) for the left-hand side [72]:

Rl
m(k, w) =

∆l
u,m(k, w)− ∆l

l,m(k, w)

∆l
u,m(k, w)− ∆l

l,m(k, w)
=

∆l
u,m(k, w)− ∆l

l,m(k, w)

2Γσl
m(k, w)

, (38)

and Rr
m(k, w) for the right-hand side:

Rr
m(k, w) =

∆r
u,m(k, w)− ∆r

l,m(k, w)

∆r
u,m(k, w)− ∆r

l,m(k, w)
=

∆r
u,m(k, w)− ∆r

l,m(k, w)

2Γσr
m(k, w)

. (39)

The RICI criterion is defined for the left-hand side of the considered sample as [72]:

Rl
m(k, w) ≥ Rc, (40)

and for the right-hand side as:
Rr

m(k, w) ≥ Rc, (41)

where Rc is a preset threshold value (0 ≤ Rc ≤ 1).
The RICI stage results in wl+(k) as the largest filter support satisfying (35) and (40) for the

left-hand side calculations, while wr+(k) is obtained by the right-hand side calculations, as the largest
filter support satisfying (36) and (41) [72].

Finally, the filter support w+(k) obtained by the RICI algorithm is calculated as:

w+(k) = wl+(k) + wr+(k)− 1. (42)
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3. Results and Discussion

3.1. Data Conditioning

In order to test whether the proposed LPA-RICI-based denoising algorithm can efficiently
suppress noise in gravitational-wave data in real-life conditions, numerically generated CCSN
burst signal templates are injected into the real-life noise data collected by the Advanced LIGO
Livingston detector. Burst signals are obtained from the Dimmelmeier catalog [76], which contains
waveforms generated by general-relativistic simulations of rotating stellar core collapse neutron
stars. We assess the denoising performance of the LPA-RICI method on three CCSN template signals:
s20a1o05, s20a2o09, and s20a3o15 (data publicly available at https://zenodo.org/record/4108838#
.X48R7pxR1Pa), as in [64]. Moreover, the denoising performance for each signal is analyzed when the
signal source is located at three different distances (5, 10, and 20 kpc), which correspond to different
SNR levels.

As the Advanced LIGO detector noise is non-Gaussian and non-stationary, the data are first
preprocessed using the autoregressive model developed in [77,78], in order to whiten the data,
i.e., to transform the colored noise into the white noise that is flat in frequency. Afterward, the LPA-RICI
denoising algorithm is applied.

Whitening Procedure

The data whitening procedure is applied to make the data delta-correlated. This means that
the sequence of data x[n], after the whitening procedure, will be uncorrelated at each lag different
from zero, i.e., the autocorrelation rxx[n] is a delta function. There are several strategies to perform
this process: some are based on techniques in the frequency domain, others on techniques in
the time domain. The result of this operation is that the contribution of the statistics up to the
second order will be removed from the data. In this work, we used the time domain technique,
developed in [77,79], which is based on the time domain procedure, using an autoregressive (AR) fit to
the data. An autoregressive process x[n] of order P with parameter ak, hereafter AR(P), is characterized
by the relation:

x[n] =
P

∑
k=1

akx[n− k] + σw[n], (43)

where w[n] is a white Gaussian process.
The problem of determining the AR parameters is the same as that of finding the optimal

“weights vector” w = wk, for k = 1, ...P, for the linear prediction problem [80]. In the linear
prediction, we would predict the sample x[n] using the P previous observed data x[n] = {x[n −
1], x[n− 2], . . . , x[n− P]}, building the estimate as a transversal filter:

x̂[n] =
P

∑
k=1

wkx[n− k]. (44)

We can find the coefficients of the linear predictor by minimizing a cost function that is the mean
squared error ε = E [e[n]2] (E is the ensemble average operator), with:

e[n] = x[n]− x̂[n] (45)

Being the error we make in this prediction and obtaining the so-called normal or
Wiener–Hopf equations:

εmin = rxx[0]−
P

∑
k=1

wkrxx[−k], (46)

https://zenodo.org/record/4108838#.X48R7pxR1Pa
https://zenodo.org/record/4108838#.X48R7pxR1Pa
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which are identical to the Yule–Walker equations [80] used to estimate the AR parameters ak from the
autocorrelation function, with wk = − ak and εmin = σ2.

This is the key relationship between the AR model and the linear prediction, which assures
obtaining a filter that is stable and causal [80]. In this way, we can use the AR model to reproduce
stable processes in the time domain.

What we have to do is to simply find the P parameters that fit the power spectral density of our
process, and at the same time, we find the optimal weights vector that allows us to reproduce the
process at time n knowing the process at the previous time P. The method that uses this estimation
tries to make the error signal (45) a white process. This is the reason we call this a whitening procedure.

Using a lattice structure [78], we can implement the whitening filter in the time domain. This is a
procedure that is used for other pipelines [50,81] and that can eventually be also implemented in an
adaptive way [77], taking care of the non-stationary noise.

3.2. Data Denoising

The results obtained by the LPA-RICI denoising of gravitational-wave data are also compared to
the results obtained by several conventionally applied signal denoising methods, including the LPA-ICI
method [65], the TV-L1 denoising method with the primal-dual algorithm [56,82,83], the method based
on the neighboring thresholding in the short-time Fourier transform (STFT) domain (Neigh STFT) [84],
and three wavelet denoising methods. The data-driven Neigh STFT method represents an adaptive
noise level estimation and denoising algorithm based on the minimal controlled recursive averaging
estimator and neighboring block thresholding in the STFT domain, where the optimal threshold
and block size are automatically adjusted by minimizing Stein’s unbiased risk estimator (SURE) [84].
An analysis of the wavelet-based denoising techniques was conducted by inspecting the denoising
performances of three different wavelets—symlet wavelets, Daubechies wavelets, and coiflet wavelets.
For each wavelet, a range of the numbers of vanishing moments was considered (sym2-sym45,
db1-db45, and coif1-coif5), as well as different levels of wavelet decomposition and threshold selection
rules applied to the wavelet coefficients (including SURE [85] and minimax [86] thresholding).
These wavelet-based methods employ hard thresholding and multiplicative threshold rescaling using
a level-dependent estimation of level noise.

For each tested denoising method, the optimal algorithm parameters are selected by conducting
an extensive search in the parameter space and choosing parameter values that minimize the estimated
root mean squared error (RMSE). In order to quantify the performance of the proposed LPA-RICI-based
denoising algorithm in comparison to the alternative methods, a set of performance indices is used.

3.3. Performance Indices

The estimation efficiency of the LPA-RICI-based gravitational-wave denoising is assessed using
the following performance indices:

• Improvement in the signal-to-noise ratio (ISNR):

ISNR = 10 log10

(
∑Nk

k=1 (s(k)− x(k))2

∑Nk
k=1 (s(k)− ŝm(k))

2

)
(47)

• Peak signal-to-noise ratio (PSNR):

PSNR = 20 log10

 maxk=1,...,Nk
s(k)√

1
Nk

∑Nk
k=1 (s(k)− ŝm(k))

2

 (48)
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• Root mean squared error (RMSE):

RMSE =

√√√√ 1
Nk

Nk

∑
k=1

(s(k)− ŝm(k))
2 (49)

• Mean absolute error (MAE):

MAE =
1

Nk

Nk

∑
k=1
|s(k)− ŝm(k)| (50)

• Maximum absolute error (MAX):

MAX = max
k=1,...,Nk

|s(k)− ŝm(k)| (51)

Performance indices RMSE, MAE, and MAX are given as normalized values in the following
subsection, i.e., they are calculated based on the normalized signals obtained by dividing the signals by
their maximum values. This normalized representation facilitates the comparison of the performance
indices’ values between different signals and corresponding SNR values.

3.4. Case Studies

3.4.1. Case Study—Signal s20a1o05

The denoising accuracy of the LPA-RICI method with the signal s20a1o05 was analyzed for three
different signal source distances, namely, 5, 10, and 20 kpc, corresponding to the SNR levels of 3.9 dB,
−2.11 dB, and −8.13 dB, respectively. CCSN burst template signal s20a1o05 at a distance of 5 kpc
is shown in Figure 1a, while Figure 1b shows the noise-corrupted version of this signal. As seen in
Figure 1, signal s20a1o05 and other signals of this type, including signal s20a2o09 and signal s20a3o15,
are characterized by a negative peak whose occurrence is associated with the core bounce and is
followed by damped oscillations of the proto-neutron star.

t(s)

1.2 1.22 1.24 1.26 1.28 1.3

s
(t
)

×10−20

-6

-4

-2

0

2

4

6

(a)

t(s)

1.2 1.22 1.24 1.26 1.28 1.3

x
(t
)

×10−20

-6

-4

-2

0

2

4

6

(b)
Figure 1. CCSN signal s20a1o05 at a distance of 5 kpc: (a) template signal; (b) noisy signal (SNR = 3.9 dB).

The results obtained by applying the LPA-RICI denoising algorithm to the noisy signal s20a1o05
at a distance of 5 kpc are presented in Figure 2. Figure 2a,c,e shows the comparison between the
original template signal and the signal obtained by the LPA-RICI denoising procedure with the LPA
order set to the values of n = 0, n = 1, and n = 2, respectively. Figure 2b,d,f shows the respective
estimation errors. The results presented in Figure 2 suggest that the LPA-RICI method successfully
removes the noise from the noisy signal s20a1o05 at a distance of 5 kpc, as the denoised signals fit
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the templates almost perfectly. All three LPA-RICI variants provide excellent denoising performance,
with the second-order LPA variant producing the best results visually.
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Figure 2. Results of applying the LPA-RICI denoising method to the noisy CCSN signal s20a1o05 at a
distance of 5 kpc (SNR = 3.9 dB): (a) template and LPA-RICI denoised signal (n = 0, Γ = 5.5, Rc = 1);
(b) LPA-RICI estimation error (n = 0, Γ = 5.5, Rc = 1); (c) template and LPA-RICI denoised signal
(n = 1, Γ = 7, Rc = 1); (d) LPA-RICI estimation error (n = 1, Γ = 7, Rc = 1); (e) template and LPA-RICI
denoised signal (n = 2, Γ = 11, Rc = 1); (f) LPA-RICI estimation error (n = 2, Γ = 11, Rc = 1).
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The quantitative comparisons of the denoising results obtained by the LPA-RICI method,
the LPA-ICI technique, the TV method, the Neigh STFT technique, the symlet, the Daubechies, and the
coiflet wavelet-based methods, for the signal s20a1o05 at distances of 5, 10, and 20 kpc, are given
in Tables 1–3, respectively. Performance indices ISNR and PSNR are shown in dB, while RMSE,
MAE, and MAX are given as normalized values. The best performance indices in each table,
i.e., the highest values of ISNR and PSNR and the lowest values of RMSE, MAE, and MAX, are marked
in bold. The results presented in Tables 1–3 confirm that all three variants of the proposed LPA-RICI
method provide excellent denoising performance, improving the SNR of the signal and reducing the
estimation errors. As the signal source distance increases (and the SNR of the noisy signal decreases),
the performance of the LPA-RICI method deteriorates slightly, but still provides satisfactory denoising
results. At all three distances, the best results are obtained when the second-order LPA is applied.

The relative performance improvement of the second-order LPA-RICI method over the other
tested methods for the signal s20a1o05 at distances of 5, 10, and 20 kpc is calculated, and the percentage
values are given in Tables 4–6, respectively. The positive percentage values indicate the performance
improvement of the LPA-RICI method over the other denoising methods, i.e., the increase in the values
of performance indices ISNR and PSNR and the decrease in the values of RMSE, MAE, and MAX.
On the other hand, negative values indicate performance deterioration. The results presented in these
tables suggest that the LPA-RICI method outperforms the other tested methods at each considered
distance, by increasing ISNR by up to 118.94% and PSNR by up to 27.49%, as well as by reducing
RMSE by up to 54.51%, MAE by up to 48.28%, and MAX by up to 72.85%. At 5 and 20 kpc, lower MAE
values are provided by the db13 wavelet and the Neigh STFT method, respectively, but only by a
small margin.

Table 1. Denoising results for the CCSN signal s20a1o05 at a distance of 5 kpc (SNR = 3.9 dB). The best
performance indices are marked in bold.

Perform.
Index

LPA-RICI
n = 0

Γ = 5.5,
Rc = 1

LPA-RICI
n = 1
Γ = 7,
Rc = 1

LPA-RICI
n = 2

Γ = 11,
Rc = 1

LPA-ICI
Γ = 0.75

TV
µ = 0.49

Neigh
STFT

sym5
Wavelet
SURE,
Level 6

db13
Wavelet
SURE,
Level 5

coif1
Wavelet
SURE,
Level 7

ISNR (db) 11.1639 11.8899 12.6307 8.9827 7.3205 5.7691 10.1766 12.1502 9.7551
PSNR (db) 30.3510 31.0770 31.8178 28.1813 26.5192 24.9562 29.3636 31.3373 28.9421

RMSE 0.0304 0.0279 0.0257 0.0390 0.0472 0.0565 0.0340 0.0271 0.0357
MAE 0.0225 0.0212 0.0195 0.0258 0.0310 0.0377 0.0246 0.0193 0.0255
MAX 0.1642 0.1293 0.1100 0.2377 0.3011 0.2972 0.3372 0.1719 0.4001

Table 2. Denoising results for the CCSN signal s20a1o05 at a distance of 10 kpc (SNR = −2.11 dB).
The best performance indices are marked in bold.

Perform.
Index

LPA-RICI
n = 0

Γ = 11.25,
Rc = 1

LPA-RICI
n = 1

Γ = 13,
Rc = 1

LPA-RICI
n = 2

Γ = 24,
Rc = 1

LPA-ICI
Γ = 1.25

TV
µ = 0.26

Neigh
STFT

sym4
Wavelet
SURE,
Level 6

db13
Wavelet
SURE,
Level 5

coif4
Wavelet
SURE,
Level 5

ISNR (db) 13.3754 13.4002 14.0397 11.6172 9.4346 10.2554 11.4397 12.6607 10.4296
PSNR (db) 26.5485 26.5733 27.2127 24.7953 22.6127 23.4284 24.6127 25.8338 23.6026

RMSE 0.0471 0.0469 0.0436 0.0576 0.0740 0.0674 0.0588 0.0511 0.0660
MAE 0.0364 0.0357 0.0326 0.0388 0.0439 0.0419 0.0379 0.0369 0.0421
MAX 0.2309 0.2200 0.2200 0.4277 0.4876 0.5204 0.7805 0.3323 0.8102
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Table 3. Denoising results for the CCSN signal s20a1o05 at a distance of 20 kpc (SNR = −8.13 dB).
The best performance indices are marked in bold.

Perform.
Index

LPA-RICI
n = 0

Γ = 20.5,
Rc = 1

LPA-RICI
n = 1

Γ = 20,
Rc = 1

LPA-RICI
n = 2

Γ = 28,
Rc = 1

LPA-ICI
Γ = 1.5

TV
µ = 0.31

Neigh
STFT

sym3
Wavelet
SURE,
Level 7

db3
Wavelet
SURE,
Level 7

coif1
Wavelet
SURE,
Level 7

ISNR (db) 15.5200 15.3378 15.6755 14.2550 12.5169 13.8119 13.1240 13.1240 11.4983
PSNR (db) 22.6734 22.4912 22.8289 21.4124 19.6743 20.9653 20.2774 20.2774 18.6518

RMSE 0.0735 0.0751 0.0722 0.0850 0.1038 0.0895 0.0969 0.0969 0.1168
MAE 0.0537 0.0570 0.0551 0.0547 0.0618 0.0471 0.0644 0.0644 0.0775
MAX 0.4227 0.4399 0.4399 0.6901 0.6482 1.0478 1.4032 1.4032 1.5769

Table 4. Relative performance improvement of the LPA-RICI-based (n = 2, Γ = 11, Rc = 1) denoising
over other tested methods, for the CCSN signal s20a1o05 at a distance of 5 kpc (SNR = 3.9 dB).

Perform.
Index

LPA-ICI
Γ = 0.75

TV
µ = 0.49

Neigh
STFT

sym5
Wavelet
SURE,
Level 6

db13
Wavelet
SURE,
Level 5

coif1
Wavelet
SURE,
Level 7

ISNR 40.61% 72.54% 118.94% 24.12% 3.95% 29.48%
PSNR 12.90% 19.98% 27.49% 8.36% 1.53% 9.94%
RMSE 34.10% 45.55% 54.51% 24.41% 5.17% 28.01%
MAE 24.42% 37.10% 48.28% 20.73% -1.04% 23.53%
MAX 53.72% 63.47% 62.99% 67.38% 36.01% 72.51%

Table 5. Relative performance improvement of the LPA-RICI-based (n = 2, Γ = 24, Rc = 1) denoising
over other tested methods, for the CCSN signal s20a1o05 at a distance of 10 kpc (SNR = −2.11 dB).

Perform.
Index

LPA-ICI
Γ = 1.25

TV
µ = 0.26

Neigh
STFT

sym4
Wavelet
SURE,
Level 6

db13
Wavelet
SURE,
Level 5

coif4
Wavelet
SURE,
Level 5

ISNR 20.85% 48.81% 36.90% 22.73% 10.89% 34.61%
PSNR 9.75% 20.34% 16.15% 10.56% 5.34% 15.30%
RMSE 24.31% 41.08% 35.31% 25.85% 14.68% 33.94%
MAE 15.98% 25.74% 22.20% 13.98% 11.65% 22.57%
MAX 48.56% 54.88% 57.72% 71.81% 33.79% 72.85%

Table 6. Relative performance improvement of the LPA-RICI-based (n = 2, Γ = 28, Rc = 1) denoising
over other tested methods, for the CCSN signal s20a1o05 at a distance of 20 kpc (SNR = −8.13 dB).

Perform.
Index

LPA-ICI
Γ = 1.5

TV
µ = 0.31

Neigh
STFT

sym3
Wavelet
SURE,
Level 7

db3
Wavelet
SURE,
Level 7

coif1
Wavelet
SURE,
Level 7

ISNR 9.96% 25.23% 13.49% 19.44% 19.44% 36.33%
PSNR 6.62% 16.03% 8.89% 12.58% 12.58% 22.40%
RMSE 15.06% 30.44% 19.33% 25.49% 25.49% 38.18%
MAE −0.73% 10.84% −16.99% 14.44% 14.44% 28.90%
MAX 36.26% 32.14% 58.02% 68.65% 68.65% 72.10%

The execution times were also calculated for each tested denoising method. The algorithm
execution times were obtained on a computer with the Intel Core i7-4720HQ CPU @ 2.60 GHz,
and 8 GB of RAM. The results were averaged over 1000 algorithm runs. The algorithm execution
times of each method applied to the denoising of the signal s20a1o05, at distances of 5, 10, and 20 kpc,
are given in Table 7. The presented results suggest that the proposed LPA-RICI method outperforms,
in terms of algorithm execution times, the original LPA-ICI method in all considered cases, and the
Neigh STFT method in most cases. However, it exhibits weaker performance when compared to the
TV-L1 method and wavelet-based techniques.
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Table 7. Algorithm execution times of the tested denoising methods, for the CCSN signal s20a1o05 at
distances of 5, 10, and 20 kpc.

Execution Time (s)

Distance
(kpc)

LPA-RICI
n = 0

LPA-RICI
n = 1

LPA-RICI
n = 2 LPA-ICI TV Neigh

STFT
Symlet
Wavelet

Daubechies
Wavelet

Coiflet
Wavelet

5 0.3245 0.4239 0.7288 3.0619 0.0154 0.7661 0.0061 0.0059 0.0046
10 0.4839 0.5923 1.3046 4.6105 0.0162 0.7967 0.0073 0.0086 0.0055
20 0.8352 0.8296 1.3178 7.3022 0.0160 0.7457 0.0058 0.0059 0.0058

3.4.2. Case Study—Signal s20a2o09

The denoising of the CCSN burst signal s20a2o09 was assessed for three different cases obtained
by placing the signal source at three different distances. Distances of 5, 10, and 20 kpc correspond to the
SNR levels of −4.54 dB, −10.09 dB, and −15.98 dB, respectively. Figure 3a shows the template signal
s20a2o09 at a distance of 5 kpc, while Figure 3b shows the same signal embedded in the detector noise.
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Figure 3. CCSN signal s20a2o09 at a distance of 5 kpc: (a) template signal; (b) noisy
signal (SNR = −4.54 dB).

Figure 4 shows the results obtained by the LPA-RICI denoising of the noisy signal s20a2o09
at a distance of 5 kpc. Figure 4a,c,e displays the comparison between the template signal and the
signal obtained by the LPA-RICI denoising procedure with the LPA order set to the values of n = 0,
n = 1, and n = 2, respectively. The corresponding estimation errors are given in Figure 4b,d,f.
As seen in Figure 4, the denoised signals obtained by all three LPA-RICI variants are very close to
the templates. The main positive and negative peaks are well reconstructed, as well as subsequent
oscillations. Therefore, the presented results suggest that the LPA-RICI method efficiently removes
the noise from the noisy signal s20a2o09 at a distance of 5 kpc, while simultaneously preserving the
signal morphology.

Tables 8–10 provide the values of denoising performance indices obtained by the LPA-RICI
method and other tested methods applied to the noisy signal s20a2o09 at distances of 5, 10, and 20 kpc,
respectively. The presented results indicate that all three variants of the applied LPA-RICI method
provide good denoising performance, based on improving the noisy signal SNR and reducing the
estimation errors. The LPA-RICI method’s denoising performance somewhat deteriorates as the
distance is increased due to the very low SNR, but the obtained estimation results are still satisfactory.
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Figure 4. Results of applying the LPA-RICI denoising method to the noisy CCSN signal s20a2o09 at a
distance of 5 kpc (SNR = −4.54 dB): (a) template and LPA-RICI denoised signal (n = 0, Γ = 9, Rc = 1);
(b) LPA-RICI estimation error (n = 0, Γ = 9, Rc = 1); (c) template and LPA-RICI denoised signal
(n = 1, Γ = 13, Rc = 1); (d) LPA-RICI estimation error (n = 1, Γ = 13, Rc = 1); (e) template and
LPA-RICI denoised signal (n = 2, Γ = 16, Rc = 1); (f) LPA-RICI estimation error (n = 2, Γ = 16, Rc = 1).

Table 11 gives the relative change of the performance indices obtained by the second-order
LPA-RICI method compared to those obtained by other denoising methods applied to the signal
s20a2o09 at a distance of 5 kpc. As seen in Table 11, the LPA-RICI method outperforms the
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other tested denoising methods, except the TV method and the coif1 wavelet method. However,
the performances of these three methods are very close. The results presented in Table 12 suggest
that the second-order LPA-RICI method, applied to the denoising of the signal s20a2o09 at a distance
of 10 kpc, outperforms the other tested methods, with the exception of the performance index MAE,
which is slightly worse than those obtained by the LPA-ICI method and the TV method. Table 13
shows the comparison of performance indices obtained by the zero-order LPA-RICI method and
performance indices obtained by other methods applied to the denoising of the signal s20a2o09 at a
distance of 20 kpc. In this case, the LPA-RICI method outperforms the other methods, except the TV
method, which is slightly better for performance indices ISNR, PSNR, and RMSE, but only by a very
small margin.

To sum up, the LPA-RICI method applied to the denoising of the signal s20a2o09 at all three
distances provides a denoising performance close to the one obtained by the TV method. It outperforms
the other methods by increasing ISNR by up to 95.56% and PSNR by up to 132.60%, as well as by
reducing RMSE by up to 62.13%, MAE by up to 55.60%, and MAX by up to 83.31%.

Table 14 presents the algorithm execution times of each method applied to the denoising of the
signal s20a2o09, at distances of 5, 10, and 20 kpc. These results indicate that the LPA-RICI method is
outperformed by the TV-L1 method and wavelet-based techniques in terms of algorithm execution
times. However, it runs competitively with the Neigh STFT denoising method and significantly
reduces the execution time when compared to the original LPA-ICI approach.

Table 8. Denoising results for the CCSN signal s20a2o09 at a distance of 5 kpc (SNR = −4.54 dB).
The best performance indices are marked in bold.

Perform.
Index

LPA-RICI
n = 0
Γ = 9,
Rc = 1

LPA-RICI
n = 1

Γ = 13,
Rc = 1

LPA-RICI
n = 2

Γ = 16,
Rc = 1

LPA-ICI
Γ = 1.25

TV
µ = 0.24

Neigh
STFT

sym4
Wavelet
SURE,
Level 6

db6
Wavelet
SURE,
Level 6

coif1
Wavelet
SURE,
Level 7

ISNR (db) 12.1897 11.8699 12.2523 11.0513 12.4081 10.4299 11.2266 11.6597 12.2478
PSNR (db) 21.1651 20.8453 21.2277 20.0267 21.3835 19.4053 20.2021 20.6351 21.2232

RMSE 0.0596 0.0619 0.0592 0.0680 0.0582 0.0730 0.0666 0.0634 0.0592
MAE 0.0443 0.0428 0.0424 0.0416 0.0412 0.0438 0.0470 0.0439 0.0405
MAX 0.3201 0.3030 0.2913 0.3627 0.2985 0.5463 0.4402 0.3855 0.2391

Table 9. Denoising results for the CCSN signal s20a2o09 at a distance of 10 kpc (SNR = −10.09 dB).
The best performance indices are marked in bold.

Perform.
Index

LPA-RICI
n = 0

Γ = 13.5,
Rc = 1

LPA-RICI
n = 1

Γ = 20,
Rc = 1

LPA-RICI
n = 2

Γ = 28,
Rc = 1

LPA-ICI
Γ = 1.5

TV
µ = 0.27

Neigh
STFT

sym4
Wavelet
SURE,
Level 6

db13
Wavelet
SURE,
Level 5

coif1
Wavelet
SURE,
Level 7

ISNR (db) 13.7334 13.5924 14.2997 13.1394 13.9226 7.8194 11.1812 12.0025 12.5731
PSNR (db) 17.1611 17.0201 17.7275 16.5671 17.3504 11.2472 14.6089 15.4303 16.0009

RMSE 0.0946 0.0961 0.0886 0.1012 0.0925 0.1868 0.1269 0.1154 0.1081
MAE 0.0704 0.0667 0.0636 0.0581 0.0595 0.0802 0.0887 0.0870 0.0735
MAX 0.5082 0.5237 0.4489 0.5831 0.6238 2.3191 0.8801 0.6794 0.6437

Table 10. Denoising results for the CCSN signal s20a2o09 at a distance of 20 kpc (SNR = −15.98 dB).
The best performance indices are marked in bold.

Perform.
Index

LPA-RICI
n = 0
Γ = 5,

Rc = 0.9

LPA-RICI
n = 1

Γ = 26,
Rc = 1

LPA-RICI
n = 2

Γ = 30,
Rc = 1

LPA-ICI
Γ = 1.5

TV
µ = 0.28

Neigh
STFT

sym4
Wavelet
SURE,
Level 6

db13
Wavelet
SURE,
Level 5

coif1
Wavelet
SURE,
Level 7

ISNR (db) 17.2693 15.9216 15.8755 16.1431 17.3306 8.8306 13.2998 12.4740 13.8150
PSNR (db) 14.8028 13.4551 13.4090 13.6766 14.8641 6.3641 10.8333 10.0075 11.3485

RMSE 0.1241 0.1449 0.1456 0.1412 0.1232 0.3277 0.1959 0.2155 0.1846
MAE 0.0698 0.1012 0.1084 0.0769 0.0759 0.1072 0.1145 0.1572 0.1059
MAX 0.6685 0.9006 0.9006 0.9036 0.7929 4.0053 3.0110 1.3596 2.7521
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Table 11. Relative performance improvement of the LPA-RICI-based (n = 2, Γ = 16, Rc = 1) denoising
over other tested methods, for the CCSN signal s20a2o09 at a distance of 5 kpc (SNR = −4.54 dB).

Perform.
Index

LPA-ICI
Γ = 1.25

TV
µ = 0.24

Neigh
STFT

sym4
Wavelet
SURE,
Level 6

db6
Wavelet
SURE,
Level 6

coif1
Wavelet
SURE,
Level 7

ISNR 10.87% −1.26% 17.47% 9.14% 5.08% 0.04%
PSNR 6.00% −0.73% 9.39% 5.08% 2.87% 0.02%
RMSE 12.94% −1.72% 18.90% 11.11% 6.62% 0.00%
MAE −1.92% −2.91% 3.20% 9.79% 3.42% −4.69%
MAX 19.69% 2.41% 46.68% 33.83% 24.44% −21.83%

Table 12. Relative performance improvement of the LPA-RICI-based (n = 2, Γ = 28, Rc = 1) denoising
over other tested methods, for the CCSN signal s20a2o09 at a distance of 10 kpc (SNR = −10.09 dB).

Perform.
Index

LPA-ICI
Γ = 1.5

TV
µ = 0.27

Neigh
STFT

sym4
Wavelet
SURE,
Level 6

db13
Wavelet
SURE,
Level 5

coif1
Wavelet
SURE,
Level 7

ISNR 8.83% 2.71% 82.87% 27.89% 19.14% 13.73%
PSNR 7.00% 2.17% 57.62% 21.35% 14.89% 10.79%
RMSE 12.45% 4.22% 52.57% 30.18% 23.22% 18.04%
MAE −9.47% −6.89% 20.70% 28.30% 26.90% 13.47%
MAX 23.01% 28.04% 80.64% 48.99% 33.93% 30.26%

Table 13. Relative performance improvement of the LPA-RICI-based (n = 0, Γ = 5, Rc = 0.9) denoising
over other tested methods, for the CCSN signal s20a2o09 at a distance of 20 kpc (SNR = −15.98 dB).

Perform.
Index

LPA-ICI
Γ = 1.5

TV
µ = 0.28

Neigh
STFT

sym4
Wavelet
SURE,
Level 6

db13
Wavelet
SURE,
Level 5

coif1
Wavelet
SURE,
Level 7

ISNR 6.98% −0.35% 95.56% 29.85% 38.44% 25.00%
PSNR 8.23% −0.41% 132.60% 36.64% 47.92% 30.44%
RMSE 12.11% −0.73% 62.13% 36.65% 42.41% 32.77%
MAE 9.23% 8.04% 34.89% 39.04% 55.60% 34.09%
MAX 26.02% 15.69% 83.31% 77.80% 50.83% 75.71%

Table 14. Algorithm execution times of the tested denoising methods, for the CCSN signal s20a2o09 at
distances of 5, 10, and 20 kpc.

Execution Time (s)

Distance
(kpc)

LPA-RICI
n = 0

LPA-RICI
n = 1

LPA-RICI
n = 2 LPA-ICI TV Neigh

STFT
Symlet
Wavelet

Daubechies
Wavelet

Coiflet
Wavelet

5 0.3427 0.5322 0.6698 4.7678 0.0231 0.7854 0.0054 0.0054 0.0058
10 0.4770 0.7887 1.2294 9.5808 0.0218 0.7553 0.0054 0.0071 0.0059
20 0.1670 1.0763 1.3092 12.6891 0.0231 0.7768 0.0042 0.0071 0.0058

3.4.3. Case Study—Signal s20a3o15

The denoising procedure for the signal s20a3o15 was conducted at three different signal source
distances: 5, 10, and 20 kpc, corresponding to the SNR levels of −2.18 dB, −8.17 dB, and −14.19 dB,
respectively. The considered template signal s20a3o15 at a distance of 5 kpc is shown in Figure 5a,
while Figure 5b shows the template signal corrupted by the LIGO detector noise.

The results obtained by applying the LPA-RICI method to the noisy signal s20a3o15 at a distance
of 5 kpc are displayed in Figure 6. Figure 6a,c,e provides the comparison between the template signal
and the denoised signal obtained by the LPA-RICI procedure with the LPA order set to the values
of n = 0, n = 1, and n = 2, respectively. Figure 6b,d,f shows the corresponding estimation errors.
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The denoised signals obtained by all three LPA-RICI variants fit the templates very well, indicating
successful removal of the noise from the noisy signal s20a3o15 at a 5 kpc distance.
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Figure 5. CCSN signal s20a3o15 at a distance of 5 kpc: (a) template signal; (b) noisy signal (SNR =−2.18 dB).

The comparisons of the results obtained by the LPA-RICI method and other tested methods
for the denoising of the signal s20a3o15 at distances of 5, 10, and 20 kpc are given in Tables 15–17,
respectively. The results presented in these three tables suggest that all three variants of the LPA-RICI
method provide excellent denoising performance, significantly improving the SNR of the noisy signal
and reducing the estimation errors. The denoising performance of the LPA-RICI method deteriorates
slightly with the increasing distance due to the increased noise intensity, but this decline in estimation
accuracy is less pronounced than with other methods, and the LPA-RICI still provides good denoising
results even for a very low SNR value.

The percentage values of the relative estimation improvement of the LPA-RICI method over the
other tested techniques for the signal s20a3o15 at distances of 5, 10, and 20 kpc are given in Table 18
(the first-order LPA), Table 19 (the zero-order LPA), and Table 20 (the zero-order LPA), respectively.
The results presented in these tables suggest that the LPA-RICI method significantly outperforms the
other tested methods at each considered distance and SNR level, by increasing ISNR by up to 100.07%
and PSNR by up to 138.52%, as well as by reducing RMSE by up to 64.59%, MAE by up to 44.13%,
and MAX by up to 84.79%.

Table 15. Denoising results for the CCSN signal s20a3o15 at a distance of 5 kpc (SNR = −2.18 dB).
The best performance indices are marked in bold.

Perform.
Index

LPA-RICI
n = 0

Γ = 10.75,
Rc = 1

LPA-RICI
n = 1

Γ = 16,
Rc = 1

LPA-RICI
n = 2

Γ = 20,
Rc = 1

LPA-ICI
Γ = 1

TV
µ = 0.38

Neigh
STFT

sym4
Wavelet
SURE,
Level 6

db25
Wavelet
SURE,
Level 4

coif4
Wavelet
SURE,
Level 5

ISNR (db) 12.9255 12.9800 12.8344 10.7381 9.6876 7.2057 10.5605 11.8525 10.0418
PSNR (db) 22.4275 22.4820 22.3364 20.2401 19.1895 16.7077 20.0624 21.3545 19.5438

RMSE 0.0756 0.0751 0.0764 0.0973 0.1098 0.1461 0.0993 0.0856 0.1054
MAE 0.0590 0.0557 0.0546 0.0641 0.0774 0.0877 0.0679 0.0676 0.0671
MAX 0.3054 0.4222 0.3502 0.4744 0.4466 0.7650 1.0834 0.3646 1.2784
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ŝ
(t
)

×10−20

-3

-2

-1

0

1

2

3

Template
Denoised

(c)

t(s)

1.2 1.22 1.24 1.26 1.28 1.3

ε
(t
)

×10−20

-3

-2

-1

0

1

2

3

(d)

t(s)

1.2 1.22 1.24 1.26 1.28 1.3

s
(t
),
ŝ
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Figure 6. Results of applying the LPA-RICI denoising method to the noisy CCSN signal s20a3o15 at
a distance of 5 kpc (SNR = −2.18 dB): (a) template and LPA-RICI denoised signal (n = 0, Γ = 10.75,
Rc = 1); (b) LPA-RICI estimation error (n = 0, Γ = 10.75, Rc = 1); (c) template and LPA-RICI denoised
signal (n = 1, Γ = 16, Rc = 1); (d) LPA-RICI estimation error (n = 1, Γ = 16, Rc = 1); (e) template and
LPA-RICI denoised signal (n = 2, Γ = 20, Rc = 1); (f) LPA-RICI estimation error (n = 2, Γ = 20, Rc = 1).
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Table 16. Denoising results for the CCSN signal s20a3o15 at a distance of 10 kpc (SNR = −8.17 dB).
The best performance indices are marked in bold.

Perform.
Index

LPA-RICI
n = 0

Γ = 17.5,
Rc = 1

LPA-RICI
n = 1

Γ = 20,
Rc = 1

LPA-RICI
n = 2

Γ = 26,
Rc = 1

LPA-ICI
Γ = 1.25

TV
µ = 0.3

Neigh
STFT

sym8
Wavelet
SURE,
Level 5

db4
Wavelet
SURE,
Level 6

coif4
Wavelet
SURE,
Level 5

ISNR (db) 15.6555 15.4472 14.9058 12.9291 11.9438 10.3813 11.3717 12.6203 10.7677
PSNR (db) 19.1655 18.9571 18.4157 16.4390 15.4537 13.8912 14.8816 16.1303 14.2776

RMSE 0.1101 0.1128 0.1200 0.1507 0.1688 0.2020 0.1803 0.1561 0.1932
MAE 0.0845 0.0850 0.0890 0.1002 0.1123 0.1223 0.1102 0.1044 0.1194
MAX 0.6060 0.6680 0.6680 0.9034 0.6923 1.2354 2.1975 0.9295 2.3395

Table 17. Denoising results for the CCSN signal s20a3o15 at a distance of 20 kpc (SNR = −14.19 dB).
The best performance indices are marked in bold.

Perform.
Index

LPA-RICI
n = 0

Γ = 22,
Rc = 1

LPA-RICI
n = 1

Γ = 25,
Rc = 1

LPA-RICI
n = 2

Γ = 44,
Rc = 1

LPA-ICI
Γ = 1.5

TV
µ = 0.29

Neigh
STFT

sym5
Wavelet
SURE,
Level 6

db6
Wavelet
SURE,
Level 6

coif1
Wavelet
SURE,
Level 7

ISNR (db) 18.0346 17.6215 17.6932 15.4138 15.7267 9.0143 12.0204 12.6513 11.3468
PSNR (db) 15.5324 15.1193 15.1910 12.9116 13.2245 6.5121 9.5182 10.1491 8.8446

RMSE 0.1673 0.1754 0.1740 0.2262 0.2182 0.4725 0.3343 0.3108 0.3612
MAE 0.1299 0.1335 0.1284 0.1415 0.1411 0.2302 0.2236 0.1835 0.2325
MAX 0.7221 1.3360 1.3360 1.4224 0.9131 3.1182 3.8350 3.7716 4.7470

Table 18. Relative performance improvement of the LPA-RICI-based (n = 1, Γ = 16, Rc = 1) denoising
over other tested methods, for the CCSN signal s20a3o15 at a distance of 5 kpc (SNR = −2.18 dB).

Perform.
Index

LPA-ICI
Γ = 1

TV
µ = 0.38

Neigh
STFT

sym4
Wavelet
SURE,
Level 6

db25
Wavelet
SURE,
Level 4

coif4
Wavelet
SURE,
Level 5

ISNR 20.88% 33.99% 80.14% 22.91% 9.51% 29.26%
PSNR 11.08% 17.16% 34.56% 12.06% 5.28% 15.03%
RMSE 22.82% 31.60% 48.60% 24.37% 12.27% 28.75%
MAE 13.10% 28.04% 36.49% 17.97% 17.60% 16.99%
MAX 11.00% 5.46% 44.81% 61.03% −15.80% 66.97%

Table 19. Relative performance improvement of the LPA-RICI-based (n = 0, Γ = 17.5, Rc = 1)
denoising over other tested methods, for the CCSN signal s20a3o15 at a distance of
10 kpc (SNR = −8.17 dB).

Perform.
Index

LPA-ICI
Γ = 1.25

TV
µ = 0.3

Neigh
STFT

sym8
Wavelet
SURE,
Level 5

db4
Wavelet
SURE,
Level 6

coif4
Wavelet
SURE,
Level 5

ISNR 21.09% 31.08% 50.80% 37.67% 24.05% 45.39%
PSNR 16.59% 24.02% 37.97% 28.79% 18.82% 34.23%
RMSE 26.94% 34.77% 45.50% 38.94% 29.47% 43.01%
MAE 15.67% 24.76% 30.91% 23.32% 19.06% 29.23%
MAX 32.92% 12.47% 50.95% 72.42% 34.80% 74.10%
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Table 20. Relative performance improvement of the LPA-RICI-based (n = 0, Γ = 22, Rc = 1) denoising
over other tested methods, for the CCSN signal s20a3o15 at a distance of 20 kpc (SNR = −14.19 dB).

Perform.
Index

LPA-ICI
Γ = 1.5

TV
µ = 0.29

Neigh
STFT

sym5
Wavelet
SURE,
Level 6

db6
Wavelet
SURE,
Level 6

coif1
Wavelet
SURE,
Level 7

ISNR 17.00% 14.68% 100.07% 50.03% 42.55% 58.94%
PSNR 20.30% 17.45% 138.52% 63.19% 53.04% 75.61%
RMSE 26.04% 23.33% 64.59% 49.96% 46.17% 53.68%
MAE 8.20% 7.94% 43.57% 41.91% 29.21% 44.13%
MAX 49.23% 20.92% 76.84% 81.17% 80.85% 84.79%

The algorithm execution times of each technique applied to the denoising of the signal s20a3o15,
at distances of 5, 10, and 20 kpc, are provided in Table 21. The presented results show that the
wavelet-based techniques provide the best performance in terms of algorithm execution times,
followed by the TV-L1 method. However, the proposed LPA-RICI method provides execution
time performance that is in most cases competitive with the one obtained by the Neigh STFT
denoising technique and significantly reduces the algorithm execution time when compared to the
LPA-ICI approach.

Table 21. Algorithm execution times of the tested denoising methods, for the CCSN signal s20a3o15 at
distances of 5, 10, and 20 kpc.

Execution Time (s)

Distance
(kpc)

LPA-RICI
n = 0

LPA-RICI
n = 1

LPA-RICI
n = 2 LPA-ICI TV Neigh

STFT
Symlet
Wavelet

Daubechies
Wavelet

Coiflet
Wavelet

5 0.4498 0.7315 0.9687 3.8876 0.0163 0.7809 0.0054 0.0162 0.0051
10 0.6978 0.8143 1.1634 4.9161 0.0169 0.7755 0.0050 0.0054 0.0050
20 0.8756 1.0480 2.3415 10.5730 0.0169 0.7700 0.0054 0.0055 0.0058

To sum up the above discussion, we may point out that the proposed LPA-RICI method
outperforms other tested competitive methods (the approach combining LPA and the original ICI rule,
the TV-L1 method, the method based on the neighboring thresholding in the STFT domain, and the
three wavelet-based denoising techniques) in gravitational-wave denoising in low SNR scenarios.

4. Conclusions

In this paper, the LPA-RICI algorithm is proposed to denoise the gravitational-wave burst
signals from the CCSN. This data-driven, locally adaptive, and easy-to-implement method is
applied to denoising numerically generated burst signals injected into the real-life non-Gaussian
and non-stationary noise data obtained by the Advanced LIGO detector. The estimation accuracy of
the LPA-RICI denoising method is assessed for three different burst signals, with each being placed
at different distances corresponding to the different values of SNR. The analysis of the experimental
results obtained by these case studies indicates that the LPA-RICI method efficiently suppresses the
noise and simultaneously preserves the critical features (morphology) of the gravitational-wave burst
signals. The approach provides good denoising performance even for signals corrupted by the intensive
noise (very low SNR values). Moreover, the comparative analysis shows that the LPA-RICI method
outperforms several conventionally applied denoising techniques of similar complexity (the original
LPA-ICI approach, the TV-L1 method, the method based on the neighboring thresholding in the
STFT domain, and the three wavelet-based denoising techniques). Therefore, the results obtained
in this work suggest that the LPA-RICI method may be successfully applied in the preprocessing of
the noisy gravitational-wave data collected by the Advanced LIGO and Advanced Virgo detectors
and included as a part of the algorithm pipeline for the advanced detection and identification of
gravitational-wave events.



Sensors 2020, 20, 6920 24 of 28

The main challenges in this research field include detecting useful information and burst signals
in intensive noise environments (low SNRs). This problem may also be approached as a classification
problem, which can be solved by machine learning techniques. We plan to research this in the
near future; namely, instead of analyzing noisy time-series, we want to implement Cohen’s class of
time-frequency distributions and apply machine learning techniques to distinguish between signal and
noise in the quadratic time-frequency representations. According to the literature review, this approach
has not been used in the gravitational-waves field up to now.
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BNS binary neutron star
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EGO European Gravitational Observatory
ICI intersection of confidence intervals
ISI internal seismic isolation
ISNR improvement in the signal-to-noise ratio
LIGO Laser Interferometer Gravitational-Wave Observatory
LPA local polynomial approximation
MAE mean absolute error
MAX maximum absolute error
MSE mean squared error
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PCA principal component analysis
PSNR peak signal-to-noise ratio
RICI relative intersection of confidence intervals
RMSE root mean squared error
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SNR signal-to-noise ratio
STFT Short-time Fourier transform
SURE Stein’s unbiased risk estimator
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