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Abstract: Measuring respiration at home for cardiac patients, a simple method that can detect the
patient’s natural respiration, is needed. The purpose of this study was to develop an algorithm for
estimating the tidal volume (TV) and respiratory rate (RR) from the depth value of the chest and/or
abdomen, which were captured using a depth camera. The data of two different breathing patterns
(normal and deep) were acquired from both the depth camera and the spirometer. The experiment
was performed under two different clothing conditions (undressed and wearing a T-shirt). Thirty-nine
elderly volunteers (male = 14) were enrolled in the experiment. The TV estimation algorithm for each
condition was determined by regression analysis using the volume data from the spirometer as the
objective variable and the depth motion data from the depth camera as the explanatory variable. The RR
estimation was calculated from the peak interval. The mean absolute relative errors of the estimated
TV for males were 14.0% under undressed conditions and 10.7% under T-shirt-wearing conditions;
meanwhile, the relative errors for females were 14.7% and 15.5%, respectively. The estimation error
for the RR was zero out of a total of 206 breaths under undressed conditions and two out of a total
of 218 breaths under T-shirt-wearing conditions for males. Concerning females, the error was three
out of a total of 329 breaths under undressed conditions and five out of a total of 344 breaths under
T-shirt-wearing conditions. The developed algorithm for RR estimation was accurate enough, but the
estimated occasionally TV had large errors, especially in deep breathing. The cause of such errors in
TV estimation is presumed to be a result of the whole-body motion and inadequate setting of the
measurement area.

Keywords: tidal volume; respiratory rate; depth camera; respiratory motion

1. Introduction

Cardiovascular disease (CVD) is the leading cause of death around the world, with approximately
17.9 million deaths each year according to the World Health Organization [1]. Heart failure (HF) is
one of the outcomes of CVD, and it is estimated that there are approximately 26 million cases of HF
worldwide [2]. HF is a clinical syndrome, which occurs when the heart is unable to provide enough
blood flow to the body. HF is associated with repeated hospitalization caused by acute exacerbation,
which strains the healthcare economy and decreases the patient’s quality of life (QoL).

One of the solutions to this problem is to use telemonitoring. According to a study by Bernocch
et al. evidence from randomized trials confirms that telecommunication technologies have the best
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outcome in terms of prolonged survival and reduced hospital readmission rates for patients with
HF [3]. Thus, self-monitoring and telecommunication could be beneficial approaches to detect the
early warning signals of HF symptoms, although it can be difficult for elderly people to detect and
recognize the symptoms by themselves [4]. Therefore, to make telemonitoring as efficient as possible,
new measurement technologies should be available.

We focused on the assessment of dyspnea, as this is the most common symptom of HF and is,
along with lung gas exchange and control of ventilation, now recognized as a meaningful indicator
of disease severity and prognosis [5–7]. A study by Capucci et al. measured the breathing pattern
of 528 HF patients and concluded that the respiratory rate and the rapid shallow breathing index
changed significantly before an HF event. This suggests that these measures might be useful in the
early identification of worsening HF status [8]. Thus, it could be beneficial for an HF patient to measure
their tidal volume (TV) and respiratory rate (RR) daily to be able to detect the worsening of symptoms.
However, it is not easy for a patient to use measuring devices for spirometry, impedance pneumography,
or inductance plethysmography correctly, because they are primarily designed for clinical or research
centers. Hence, they are not applicable for everyday use for home monitoring due to the complexity
of the devices, their high cost, their need for skilled operators, and, in some cases, their limited
portability [9,10]. Additionally, these devices require the user to be in direct contact with the equipment
in an obtrusive manner, which interferes with natural respiration [10].

Therefore, to measure respiration at home for an HF patient, a simple method that can detect the
patient’s natural respiration is urgently needed. Our research aimed to develop a system that can
measure the TV and RR in the natural respiration of HF patients unobtrusively. We developed this
system across multiple steps and started by testing the system on healthy elderly patients and then on
cardiac patients.

Several sorts of contactless motion sensors can be used for the measurement of respiration.
For example, a microwave Doppler sensor [11], a light coding 3D sensor [12], and a single camera [13]
were used for sensing the TV and the RR in previous studies. Reyes et al. developed a TV measuring
device by using a smartphone calibrated with an incentive spirometer (IS) that is commercially available.
They tested this setup on 12 healthy subjects, who had to perform some different breathing patterns
through the IS in front of a smartphone, which detected chest movements. The study concluded that
the smartphone and IS slightly underestimated the respiration, but that they had a lot of advantages,
such as being simple, fast, and affordable [9]. We used Microsoft Kinect for Xbox One (Microsoft Corp.,
WA, USA), a 3D Time-of-Flight (ToF) depth camera, because it is for home use and is a commercially
available sensor that can precisely record the 3D motion of a non-rigid object such as a human body.

There are several studies related to our work. For example, the study by Aoki and Nakamura
used a Kinect sensor to obtain the volume change due to respiration from six young male volunteers
during an exercise stress test. The calculated respiration based on the sensor was compared to an
expiratory gas analyzer, and the results suggested that by setting a region of interest (ROI) on the chest
and abdomen, it was possible to calculate the respiration [14]. The study by Seppänen et al. aimed to
estimate the respiratory airflow waveforms with a novel calibration method through a Kinect depth
camera. Eight subjects were included in the trial, in which they performed different breathing styles
while being measured using a depth camera and spirometer. The study concluded that it was possible
to measure the TV and the RR very accurately [10].

However, most of the previous works did not study elderly subjects or HF patients.
Moreover, subjects should be standing still or sitting with their back straight during measurements,
but it is difficult for HF patients to maintain such a posture. Our system only requires that subjects sit
on a chair naturally. The aim of this study was to develop an algorithm for the estimation of TV and
RR using a 3D depth camera and to assess its accuracy for elderly subjects.
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2. Methods

2.1. Ethical Aspects

This project was approved by the North Denmark Region Committee on Health Research Ethics
(N-20190017) and the Danish Data Protection Agency, and was carried out following the Helsinki
Declaration. All subjects signed an informed consent form before enrollment in the study.

2.2. Subjects

All of the subjects were 65 years of age or older, had no severe otolaryngitis, and had no history
of heart failure or chronic obstructive pulmonary disease. All of the inclusion and exclusion criteria
are shown in Table 1. All subjects were allowed to control the pace and depth of their breathing by
themselves. Prior to the commencement of the experiment, the purpose of the study was explained
verbally to the subject and written consent was obtained.

Table 1. Inclusion and exclusion criteria.

Healthy Elderly People

â Inclusion Criteria:

Age of 65–75 years
No chronic cough
No chronic sputum
No exertional dyspnea

â Exclusion Criteria:

Previous neurologic, musculoskeletal, or mental illnesses
Lack of ability to cooperate
Silicon allergy
Surgical history or currently under treatment for cardiopulmonary diseases
Aurinasal disease
Symptoms of nasal congestion (cannot breathe in the nose)
Suspected digestive organ diseases, liver diseases, renal diseases,
cardiovascular diseases, blood diseases, endocrine diseases, or malignant
neoplasms, or a history of any such conditions
Depressive symptoms or a depression diagnosis
Bronchial asthma
Diffuse panbronchiolitis
Congenital sinus bronchial syndrome
Bronchiolitis obliterans
Bronchial ectasia
Lung tuberculosis
Pneumoconiosis
Pulmonary lymphangioleiomyomatosis
Cold-like symptoms on the day of the examination

2.3. Experimental Setup and Measurement Procedure

Figure 1 shows the experimental system configuration. A Microsoft Kinect for Xbox One (Kinect)
was used as a 3D depth camera. The Kinect was connected to a Windows PC (PC-1: Dell Alienware 15-R2,
Windows10 Home (64 bit)) via a Kinect Adapter for Windows. As a spirometer, a pneumotachograph
SmartLab Data Acquisition System (Hans Rudolph, Inc., KS, USA) connected to a Windows PC (PC-2:
Dell Latitude E5430) was used. To synchronize the measurement in both the Kinect and the spirometer,
the software for Kinect on PC-1 sent a trigger signal of the Kinect measurement time to the spirometer
via an analog line. Therefore, the Kinect measurement time was recorded in the spirometer data.
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Figure 1. System configuration.

Before the measurements, the procedure was explained to the subject by a project nurse and
the subject signed informed consent. His/her weight, height, chest circumference, and abdominal
circumference were recorded. The subject was instructed to sit in front of the Kinect (Figure 1). The face
mask for the spirometer was placed over the subject’s mouth. The TV was recorded by the spirometer.
The depth images and the initial infrared (IR) image captured by the Kinect were recorded while the
subject was breathing through the spirometer.

The subject was told to perform two different types of breathing patterns: (a) Normal breathing
for 1 min and (b) five deep breaths at his/her own pace. The experiments were conducted under two
different clothing conditions: undressed and in a T-shirt.

2.4. Estimation Method

Since depth motion in breathing is found both in the chest and/or the abdomen, the ROI was
set as a rectangle area passing through the subject’s shoulders and abdomen. The procedure for ROI
determination consisted of the following steps (Figures 2–4):
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Figure 4. Determination of the proper bottom position of the ROI.

1. The detection of the upper body area: Haar cascade classifier in OpenCV [15] was used.
2. The detection of the position of both shoulders: Since the subject was sitting on a chair and

had his/her arms lowered, the shoulder positions could easily be detected as the vertices in the
polygonal approximated line of the contour of the upper body. We did not use the body tracking
function in the Kinect for Windows SDK (Kinect SDK) [16] and also did not use a pose estimation
library such as OpenPose [17]. This is because Kinect SDK is sometimes unstable when a subject
is sitting, or because the pose estimation library requires a powerful computer with a graphics
processing unit (GPU).

3. The determination of the tentative ROI: An example of a tentative ROI is shown as the blue
rectangle area in Figure 2. The top of the ROI was set at the lowest position of the two shoulders.
The left and right ends of the ROI were at the position corresponding to the inside the approximate
arm’s width from both shoulders. The bottom position of the ROI was tentatively decided as the
lower end of the image. Here, we employed a unit area of 19 × 19 pixels to reduce the random
error of the depth measurements. Since there was a strong correlation among the depth values of
close pixels [18], the size of the unit was decided by trial and error. The units that covered the
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tentative ROI area were slid every 10 pixels to acquire the respiratory signal. The obtained depth
signals in each unit area were sampled at a rate of 30 Hz and were averaged in the area.

4. The determination of the final ROI: Since there is a difference in the contribution of the motion of
the thoracic compartment or the abdomen to TV among sex and ages [19], we developed a unique
algorithm to obtain the proper position of the bottom of the ROI. The algorithm was as follows:

(A) The depth waveform of each row (Wi) was calculated by averaging all of the depth
waveforms (Wi,1, Wi,2, . . . , Wi,n) of the unit areas in each row. The depth amplitude of
each row was calculated by averaging the depth amplitude of each breath in waveform
Wi (Figure 3).

(B) The amplitude ratio of each row was calculated from the sum of the depth amplitude of
all rows.

(C) The amplitude ratio was integrated from the top of the ROI, and the position where it
reached 90% was defined as the bottom of the ROI (Figure 4). A value of 90% was decided
by trial and error.

Figure 5 shows the final ROI (red solid box), the tentative ROI (blue dashed line box), and the
depth waveforms in some rows (green area). The depth waveforms in the final ROI are much clearer
than that outside of the final ROI. This means that the algorithm can properly omit the inadequate area
in the tentative ROI.
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Once the ROI was set, the depth signal of the ROI was averaged, resampled with a rate of 30 Hz,
and smoothed. The depth amplitude, namely, the displacements of respiratory motion, were obtained
by finding the peaks and the valleys from the processed depth signal (Figure 6a). The volume data from
the spirometer were also processed in the same way to calculate the TV. The TV estimation equation was
obtained by single linear regression analysis using the TV from the spirometer as the objective variable
and the amplitude from the depth camera as the explanatory variable. Concerning the RR estimation,
the time for each respiration was calculated from the peak interval (Figure 6b). The estimated RR
for each breath (breaths per minute (BPM)) was its reciprocal value and compared to the value from
the spirometer.



Sensors 2020, 20, 6901 7 of 12

Sensors 2020, 20, x FOR PEER REVIEW 7 of 12

Figure 6. Data captured from the spirometer volume and depth camera.

2.5. Statistical Analysis 

Bland–Altman analysis [20] was performed on the spirometer volume and the estimated TV to 

calculate the 95% confidence intervals (95% Cis) and the Pearson correlation, which were used to 

evaluate the presence of constant bias and proportional bias. The significance level was 5%. The mean 

absolute relative error against the spirometer volume was calculated to evaluate the estimation error.

Concerning the estimation error in RR, the error was counted if the difference between the 

corresponding RRs exceeded 1 bpm. Then, the frequency at which the error appeared was used as 

the estimation error. Microsoft Excel (2016) (Microsoft Corp., WA, USA) was used for statistical 

analysis.

3. Results 

Table 2 shows the baseline characteristics of the subjects. 

Table 2. Baseline characteristics of the subjects. 

Male (n = 14) Female (n = 25) 

Avg. SD Avg. SD 

Age (years) 69.9 2.85 68.6 8.93 

Height (cm) 179.3 6.01 166.7 4.06 

Weight (kg) 87.2 12.10 71.1 15.34 

Chest (cm) 103.5 10.20 87.4 13.37 

Abdomen (cm) 105.6 11.83 93.4 16.19 

Figure 7 shows the relationship between the estimated TV and the TV obtained by the spirometer 

under undressed conditions for the male subjects. The mean absolute relative error was 14.0%, there 

was no fixed bias (95% CI, −0.044 to 0.084), and there was proportional bias (correlation, −0.209; p < 

0.05). Figure 8 shows a graph for the female subjects under undressed conditions; the average relative

error was 14.7%, there was no fixed bias (95% CI, −0.035 to 0.045), and there was proportional bias 

(correlation, −0.244, p < 0.05). 

( (

Figure 6. Data captured from the spirometer volume and depth camera.

2.5. Statistical Analysis

Bland–Altman analysis [20] was performed on the spirometer volume and the estimated TV to
calculate the 95% confidence intervals (95% CIs) and the Pearson correlation, which were used to
evaluate the presence of constant bias and proportional bias. The significance level was 5%. The mean
absolute relative error against the spirometer volume was calculated to evaluate the estimation
error. Concerning the estimation error in RR, the error was counted if the difference between the
corresponding RRs exceeded 1 bpm. Then, the frequency at which the error appeared was used as the
estimation error. Microsoft Excel (2016) (Microsoft Corp., WA, USA) was used for statistical analysis.

3. Results

Table 2 shows the baseline characteristics of the subjects.

Table 2. Baseline characteristics of the subjects.

Male (n = 14) Female (n = 25)

Avg. SD Avg. SD

Age (years) 69.9 2.85 68.6 8.93
Height (cm) 179.3 6.01 166.7 4.06
Weight (kg) 87.2 12.10 71.1 15.34
Chest (cm) 103.5 10.20 87.4 13.37

Abdomen (cm) 105.6 11.83 93.4 16.19

Figure 7 shows the relationship between the estimated TV and the TV obtained by the spirometer
under undressed conditions for the male subjects. The mean absolute relative error was 14.0%,
there was no fixed bias (95% CI, −0.044 to 0.084), and there was proportional bias (correlation, −0.209;
p < 0.05). Figure 8 shows a graph for the female subjects under undressed conditions; the average
relative error was 14.7%, there was no fixed bias (95% CI, −0.035 to 0.045), and there was proportional
bias (correlation, −0.244, p < 0.05).
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Figures 9 and 10 display the results under T-shirt-wearing conditions for the male and female
subjects, respectively. For the male subjects, the average relative error was 10.7%, there was no fixed
bias (95% CI, −0.030 to 0.067), and there was no proportional bias (correlation, −0.136; p > 0.05). For the
female subjects, the average relative error was 15.5%, there was no fixed bias (95% CI, −0.028 to 0.053),
and there was proportional bias (correlation, −0.239; p < 0.05).
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Figure 10. Bland–Altman plot for TV obtained using the spirometer and the estimated TV under
T-shirt-wearing conditions (female subjects).

The estimation error for the RR was zero out of a total of 206 breaths under undressed conditions
and two out of a total of 218 breaths under T-shirt-wearing conditions for the males. Concerning the
females, the error was three out of a total of 329 breaths under undressed conditions and five out of a
total of 344 breaths under T-shirt-wearing conditions.

4. Discussion

This study mainly aimed to test and evaluate the functions of TV and RR estimation using
the Kinect camera on healthy elderly subjects. There were weak negative correlations in breathing
conditions except for the case of males wearing a T-shirt. In the Bland–Altman plots (Figures 7–10),
the vertical distribution spread toward the right, which means that the TV estimation of deep breathing
included more errors than normal breathing. Furthermore, in most of the cases, the errors were
caused by the underestimation of TV. There are two possible reasons for this: (1) the motion of
bending backward on exhalation timing in deep breathing, which leads to a smaller depth value
because the backward motion of the whole body cancels the chest motion of exhalation; (2) the motion
asynchronization between the chest and the abdomen in some subjects. In such cases, the developed
algorithm estimated a smaller TV than when the chest and the abdomen were synchronously moved.

In the software used in the experiment, the ROI for obtaining the depth signal was set only
at the beginning of the measurement. However, the fixed ROI setting was not suitable when the
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subject breaths deeply. This is because the chest and the abdomen might have been moving not
only in the posterior or anterior direction but also in the other directions in such cases. At the time
of exhalation during deep breathing, there were some cases where the upper part of the body was
omitted. Aoki et al. proposed a method for extracting the motion of the parts of the body (chest and
abdomen) likely to exhibit respiratory movements using the respiratory cycle. The results showed
that by using the thoraco-abdominal region, it is possible to improve the accuracy of quasi-tidal
volume variation rather than using the entire upper body [21]. Their other study reported that by
updating the ROI frame by frame, breathing can be measured in a non-contact manner even with large
body movements during pedaling [14]. In our algorithm, the determination of ROI is considered to
contribute greatly to the estimation accuracy. In this experiment, there was not body movement as
much as pedaling motion, but it was necessary to update the ROI in every frame to take into account
the body movement during deep breathing. Moreover, in our current algorithm, is assumed that there
is not much difference in the motion and shape between the left and the right side of the thorax and
abdomen. Therefore, our method cannot be applied to subjects with imbalanced thoracic motion such
as pectus excavatum. For such subjects, different methods will be necessary [22].

In this study, the error under undressed conditions was larger than the error under clothed
conditions in the case of male. This might have been caused by vertical body movement. Since there
is large unevenness in the chest and abdomen under undressed conditions compared to that under
clothed conditions, vertical body motion might cause noise in the measurement. This might have
also caused the RR errors. If the uneven part of the body moves not only in a depth direction but
also in a vertical direction in each breath, the phase of the breathing waveform may not be stable.
Therefore, it is necessary to correct the respiratory motion by measuring the horizontal and vertical
movements. This research, however, is subject to a couple of limitations:

A. The deep breathing outlier data could not be omitted since we set the minimum number of deep
breaths as five in the protocol. This might have affected the accuracy of the TV estimation since
there was relatively large motion during the deep breathing.

B. There was only one set of trials for each subject, meaning that we could not confirm the
reproducibility of the measurements for one person, which is important for tracking the change
of HF pathology. Thus, future research is needed.

5. Conclusions

The algorithm for estimating the TV and RR from the depth motion of the chest and/or the
abdomen captured by a depth camera was developed for both undressed and T-shirt-wearing
conditions. The accuracy of the estimated TV and RR was evaluated by comparison with those
acquired using a spirometer. The experimental result showed that the RR estimation of our algorithm
had a maximum error rate of 1.5% (five errors out of a total of 344 breaths), but the estimated TV
occasionally had large errors, especially during deep breathing. Furthermore, we evaluated how much
the presence or absence of clothing affected the estimation accuracy, and found that the error tended to
be larger under undressed conditions than under T-shirt-wearing conditions. The cause of such errors
is considered to be based on the ROI settings and the vertical motion in the chest and abdomen.
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