
sensors

Article

A Semi-Automated Method to Extract Green and
Non-Photosynthetic Vegetation Cover from RGB
Images in Mixed Grasslands

Dandan Xu 1,2,* , Yihan Pu 1 and Xulin Guo 3

1 Department of Ecology, College of Biology and the Environment, Nanjing Forestry University,
Nanjing 210037, China; pyh1997@njfu.edu.cn

2 Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University,
Nanjing 210037, China

3 Department of Geography and Planning, University of Saskatchewan, 117 Science Place,
Saskatoon, SK S7N5C8, Canada; xulin.guo@usask.ca

* Correspondence: dandan.xu@njfu.edu.cn

Received: 9 October 2020; Accepted: 30 November 2020; Published: 1 December 2020
����������
�������

Abstract: Green (GV) and non-photosynthetic vegetation (NPV) cover are both important biophysical
parameters for grassland research. The current methodology for cover estimation, including subjective
visual estimation and digital image analysis, requires human intervention, lacks automation, batch
processing capabilities and extraction accuracy. Therefore, this study proposed to develop a method
to quantify both GV and standing dead matter (SDM) fraction cover from field-taken digital RGB
images with semi-automated batch processing capabilities (i.e., written as a python script) for mixed
grasslands with more complex background information including litter, moss, lichen, rocks and soil.
The results show that the GV cover extracted by the method developed in this study is superior to
that by subjective visual estimation based on the linear relation with normalized vegetation index
(NDVI) calculated from field measured hyper-spectra (R2 = 0.846, p < 0.001 for GV cover estimated
from RGB images; R2 = 0.711, p < 0.001 for subjective visual estimated GV cover). The results also
show that the developed method has great potential to estimate SDM cover with limited effects of
light colored understory components including litter, soil crust and bare soil. In addition, the results
of this study indicate that subjective visual estimation tends to estimate higher cover for both GV and
SDM compared to that estimated from RGB images.
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1. Introduction

Fractional vegetation cover, defined as the percentage of vegetation that is vertically projected
in a unit area [1], is an important indicator of plant growth [2], vegetation status [3], crop health [4],
habitat selection [5] and ecosystem change [6]. Vegetation cover is also closely related to leaf area
index, net primary productivity, biomass, soil stability, photosynthesis and ecological processes [6–8].
In grassland ecosystems, systematic, accurate and repeatable surveys of vegetation cover are essential
for monitoring grassland condition, protection of soil erosion and grassland management [9–11].

Fractional cover estimation in grasslands relies on field measurements combined with remote
sensing technology [7]. Field measured cover data are fundamental for quantitative models using
remotely sensed images [12,13] and are necessary to validate empirical models to estimate grassland
cover [6,14]. Visual (i.e., non-destructive) estimation is a commonly used field method for grassland
vegetation cover [15]. This is a rapid and repeatable evaluation of vegetation cover [16] and is sufficiently
accurate for relative (as opposed to absolute) assessments of cover data [7]. However, visual estimation
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is subjective and prone to observer biases [5], which can lead to inconsistent data among observers and
observation periods [3,16]. Attempts have been made to reduce visual estimation bias in grassland
vegetation cover, including fishnet grids [9], cardboard cutouts of specific shapes and size, and observer
training [5]. However, trained observers are not able to distinguish cover intervals or changes less than
10% [16].

An alternative approach for field vegetation cover measurement is analysis of low altitude
RGB (true color composition: Red, Green, Blue) images taken with digital cameras in the field [7].
Because field-taken digital RGB images with high spatial resolution potentially provide more accurate
estimation of vegetation cover than visual methods by reducing the impact of human subjectivity [1,14].
They have been widely used for estimating forest canopy cover i.e., gap fraction analysis, [17,18],
forest understory cover [16], crop cover [4,19–22], crop residual cover [23] and grassland vegetation
cover [5,24].

Many studies have demonstrated the potential of field-taken digital RGB images to extract the
green vegetation (GV) coverage [10,24–26] or crop residuals from soil background [23]. However, there
has been less success separating GV and non-photosynthetic vegetation (NPV) using the RGB images.
In arid grasslands, green and senescent vegetation, important indicators of grassland managements,
are often intermixed and very difficult to differentiate [27]. The situation is even more complex in
mixed grasslands with more components, including standing dead matter (SDM), litter, soil crust
(moss and lichen), rocks and bare soil, in a heterogeneous mix [13].

The heterogeneity of mixed grassland components is challenging not only for GV cover estimation
but also for SDM extraction from digital RGB images. Current analytical methods using digital RGB
images, include unsupervised classification, supervised classification with training sites, objected
oriented classification, RGB-based color indices and threshold algorithms [1,2,5,6,9,12,14,15,27]. Nearly
all methods require human intervention (e.g., the SamplePoint software requires user inputs of
classification for each sample point [28]), lack automation, batch processing capabilities and extraction
accuracy [1,3,18,29]. Therefore, there is an opportunity to develop a fast, objective, repeatable and
consistent analytical method to improve mixed grassland cover estimation, which would effectively
support fieldwork for collecting low-altitude cover data. We aimed to develop a digital image
analysis method to extract both GV and SDM fraction cover from field-taken digital RGB images with
semi-automated batch processing capabilities. Our specific objectives were to: (1) extract GV and SDM
cover separately from field-taken RGB images semi-automatically; (2) validate the extracted GV and
SDM cover using hyperspectral vegetation indices.

2. Materials and Methods

2.1. Study Area

This research is conducted in Grasslands National Park (GNP: West Block, 49◦ N, 107◦ W, Figure 1)
in the southern part of Saskatchewan, Canada. The study area is characterized as a semi-arid mixed
prairie ecosystem (i.e., annual precipitation: 340 mm; annual mean temperature: 3.4 ◦C) [13]. Three
main vegetation communities are upland (Figure 1b), sloped (Figure 1d) and valley (Figure 1c)
grasslands, including disturbed herbaceous communities (Figure 1e–g). The dominant species are
described in Table 1. In 1984, GNP was first acquired as a national park [30], at which time all larger
grazers were removed until 2006. This has led to approximately 30 years of accumulation of a large
amount NPV including SDM and litter, which brings a challenge to estimate GV and SDM cover using
field collected digital RGB images.
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Figure 1. Vegetation communities in Grassland National Park (GNP). (a) Vegetation communities in 
GNP first surveyed in 1983 and disturbed community data updated in 1995. (b) Upland grassland. (c) 
Valley grassland. (d) Sloped grassland. (e) Disturbed community with Smooth Brome (Bromus inermis 
Layss.). (f) Disturbed community with Crested Wheatgrass (Agropyron cristatum). (g) Disturbed 
community with Sweet Clover (Melilotus officinalis). 

  

Figure 1. Vegetation communities in Grassland National Park (GNP). (a) Vegetation communities in
GNP first surveyed in 1983 and disturbed community data updated in 1995. (b) Upland grassland.
(c) Valley grassland. (d) Sloped grassland. (e) Disturbed community with Smooth Brome (Bromus
inermis Layss.). (f) Disturbed community with Crested Wheatgrass (Agropyron cristatum). (g) Disturbed
community with Sweet Clover (Melilotus officinalis).
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Table 1. Dominant species in upland, sloped, valley and disturbed communities.

Vegetation Community Dominated Species

upland grassland
western wheatgrass (Agropyron smithii Rydb.)

blue grama grass (Bouteloua gracilis (HBK) Lang. ex Steud.)
needle-and-thread grass (Stipa comata Trin. and Rupr.)

valley grassland
northern wheatgrass (Agropyron dasystachym)
western wheatgrass (Agropyron smithii Rydb.)

with high density of shrub species

sloped grassland

northern wheatgrass (Agropyron dasystachym)
western wheatgrass (Agropyron smithii Rydb.)

needle-and-thread grass (Stipa comata Trin. and Rupr.)
blue grama grass (Bouteloua gracilis (HBK) Lang. ex Steud.)

disturbed communities
crested wheatgrass (Agropyron cristatum)

smooth brome (Bromus inermis Layss.)
sweet clover (Melilotus officinalis)

2.2. Field Data Collection

Fieldwork was performed during 20 June to 2 July 2014 in the peak growing season of GNP.
A stratified random sampling design was used to select 14 sites with consideration of accessibility
(Figure 1: 4 sites in upland grassland, 5 in sloped grassland, 3 in valley grassland and 2 in disturbed
communities). Two 100 m transects were surveyed perpendicular to one another and crossing in the
center at each site. Twenty, 50 cm × 50 cm quadrats at 10 m intervals (excluding the center point) were
surveyed along the transects.

This design is intended to collect the heterogeneity of biophysical parameters on the representative
grasslands. Percent ground cover, including grass, shrub, forb, SDM, litter, moss, lichen, rock and
bare soil coverage were visual estimated at each quadrat. The descriptive statistics of GV cover (i.e.,
sum of grass and forb cover), SDM and NPV cover (i.e., sum of SDM and litter cover) are shown in
Table 2. Nadir (i.e., downward facing) RGB images were taken by a commercially available digital
camera (Nikon S8000, Nikon Imaging Japan Inc., Tokyo, Japan) at each quadrat (i.e., the corresponding
RGB pictures for each quadrat in the 14 sites of Table 2 are listed in Supplementary S2) at 1 m above
the ground. A 0◦ camera angle enables fractional cover estimation when compared to oblique angles
tested [31]. Hyper-spectra (wavelength from 350 nm to 2500 nm) were also measured at each quadrat
with an Analytical Spectral Devices (ASD) field-portable FieldSpec® Pro Spectroradiometer between
10:00 a.m. and 14:00 p.m. under clear sky (i.e., without any cloud cover).

Table 2. Descriptive statistics for the coverage data based on visual estimation.

ID Vegetation Community
Green Cover (GV) Standing Dead

Matter (SDM) Cover
Non-Photosynthetic

Vegetation (NPV) Cover

Mean Standard
Deviation (STD) Mean STD Mean STD

1 upland grassland 48.85 13.02 7.75 8.50 39.60 8.77
2 upland grassland 42.15 14.72 31.85 9.18 51.85 11.89
3 upland grassland 48.24 6.91 7.14 5.82 45.90 6.36
4 upland grassland 40.55 9.61 16.50 9.75 39.40 19.37
5 valley grassland 42.85 14.04 24.75 11.97 27.30 12.21
6 valley grassland 37.95 12.39 24.75 11.53 34.10 14.97
7 valley grassland 45.71 16.30 26.52 18.90 40.71 20.08
8 sloped grassland 28.25 13.35 15.35 16.33 30.30 22.66
9 sloped grassland 35.35 10.92 26.45 14.33 44.65 20.05
10 sloped grassland 39.71 10.62 23.57 14.24 46.71 12.36
11 sloped grassland 44.95 7.35 15.95 8.75 39.90 11.71
12 sloped grassland 38.95 8.96 9.67 5.18 32.19 11.60
13 disturbed communities 62.40 18.86 12.50 7.86 12.50 7.86
14 disturbed communities 49.76 11.34 14.76 10.30 14.76 10.30
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2.3. Methods

The methodological workflow for the proposed semi-automatic method included preprocessing
digital RGB images, developing a python script to extract GV and SDM separately and calculating
GV and SDM percentage cover automatically (Figure 2). The result of semi-automatically estimated
GV and SDM cover with visual estimated cover data and vegetation indices were validated based on
hyperspectral remote sensing (Figure 2).Sensors 2020, 20, x 6 of 19 
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Figure 2. Flowchart of the methodology for this study.

2.3.1. Pre-Processing for the Field-Taken RGB Images

RGB images were first cropped to the quadrat area and then processed to their actual size (50 cm
× 50 cm) with 300 pixels/inch (dpi) using Adobe Photoshop CS6 (Figure 2).



Sensors 2020, 20, 6870 6 of 17

Because light conditions differed slightly among field-taken RGB images, blue, green and red
bands of cropped pictures were standardized independently to maintain consistency among study
sites (Equation (1)).

DNstd =
(
DN −DN

)
/std(DN) (1)

where DNstd is the standardized pixel value, DN is the original pixel value, DN is the mean value of
all the pixel values in a single band, and std(x) is the standard deviation for all the pixel values in a
single band.

After each band for all the pictures was standardized, all the pixel values fit in a range from −1
to 1. Standardized images were then normalized (Equation (2)) as images with pixel value range from
0 to 1023 (10 bit integer data format).

DNnor = 1023× (DNstd −min(DNstd))/(max(DNstd) −min(xDNstd)) (2)

where DNnor is the normalized pixel value, DNstd is standardized pixel value, min(xDNstd) is the
minimum value of all the pixel values in each standardized band, and max(DNstd) is the maximum of
all the pixel values in each standardized band.

2.3.2. Developing a Python Script to Semi-Automate GV and SDM Cover Extraction from
Preprocessed RGB Images

GV pixels in the RGB images were extracted based on the spectral characteristics of GV (i.e.,
reflectance for green leaves in the green band is larger than that in both red and blue bands; Equation (3)).
GV pixels were masked out before further process for extracting SDM pixels.(

DNG
nor −DNR

nor

)
> g1 and

(
DNG

nor −DNB
nor

)
> g2 (3)

where DNG
nor, DNR

nor, DNB
nor are the normalized pixel value for the green band, red band and blue band

of the field-taken RGB pictures, g1, g2 are constants (i.e., default values were set to 60 in this study).
The values of g1, g2 were determined after exploring the spectral characteristics of green leaves for
narrow leaved native grasses, shrubs, invasive species in disturbed communities (their values are
discussed in Section 3.1).

Even though SDM has similar spectral characteristics such as litter, soil crust and bare soil, SDM
in the canopy have much brighter color tong in all the three visible bands in field-taken RGB images
because the understory components receive limited sunlight in comparison with the vegetation canopy.
Therefore, SDM is extracted based on the criteria that the SDM has higher pixel values than the
understory components in the normalized visible bands after GV pixels were removed (Equation (4)).

DNR
nor > d×DNR

nor and DNG
nor > d×DNG

nor and DNB
nor > d×DNB

nor (4)

where DNG
nor, DNR

nor, DNB
nor are the normalized pixel values for green, red and blue bands of the field-taken

RGB images, DNG
nor, DNR

nor, DNB
nor are the mean pixel values of the green, red and blue normalized bands

of the field-taken RGB images, d is a constant set as a default value of 1 for our study. The setting of
constant d was discussed in Section 3.2 when litter and soil background with light color tong challenging
the extraction of SDM.

After GV and SDM pixels were separated from the pre-processed RGB images, GV and SDM
cover were calculated. Both GV and SDM pixel counts were divided by total pixel counts for fractional
cover. These cover estimations were compared with field observed cover data by visual estimation.

All classification and cover estimation processes for both GV and SDM were conducted using
a python script developed in this study (see the stand-alone python script and ArcToolbox in the
Supplementary Materials and the description of ArcToolbox in Supplementary S1).
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2.3.3. Validation of Extracted GV and SDM Cover from RGB Images

Alternative methods for GV and NPV cover estimation (i.e., vegetation indices based on hyperspectral
remote sensing) were used to validate estimated GV and SDM cover from field-taken digital RGB
images. Normalized difference vegetation index (NDVI), an index strongly correlated to GV, has
been widely used to evaluate GV cover in grasslands [10]. The cellulose absorption index (CAI) is
effective for estimating NPV fractional cover (i.e., including SDM and litter cover) from GV and soil
background [32–34]. Therefore, NDVI calculated from field measured hyper-spectra (Equation (5))
was used to test the accuracy of GV cover extracted from field-taken RGB images based on linear
regression analysis in R software (i.e., it is written by John Chambers and his colleagues of the Bell
Laboratories, Murray Hill, NJ, USA). The CAI calculated from field-collected hyper-spectra (Equation
(6)) was used to validate the accuracy of SDM extraction from field-taken RGB images with linear
regression analysis in R software (i.e., the NPV cover used for linear regression with CAI is the sum of
RGB image extracted SDM cover and visual estimated litter cover).

NDVI = (ρ800 − ρ670)/(ρ800 + ρ670) (5)

where ρ800 and ρ670 are the reflectance in the wavelength of 800 nm and 670 nm from field-collected
hyper-spectra.

CAI = 100(0.5(ρ2030 + ρ2210) − ρ2100) (6)

where ρ2030, ρ2100 and ρ2210 are the reflectance in the wavelength of 2030 nm, 2100 nm and 2210 nm
from field-collected hyper-spectra.

3. Results

3.1. Determination of the Constants g1, g2 for GV Extraction

After data exploration of 25 sample RGB images for different species in different conditions
(Table 3, see the sample RGB photos in Supplementary S3), values of g1, g2 were found to exceed 60
when the photograph was taken without high exposure under strong light (normal light conditions).
Under normal light conditions, the minimum values of g1, g2 for broad-leaved vegetation (e.g., Sweet
Clover) was higher than narrow-leaved grasses (Table 3: id 5 and 6). When the RGB images were taken
with high exposure or when the vegetation had begun to senesce, constant g1 needed to be set at a
value lower than 60 (32.09–44.13; Table 3). The value of g2 was not affected by these conditions but
was affected by bluish leaves (i.e., dominated western wheat grass and sagebrush). In these instances,
the value of g2 needed to be set lower (i.e., 32.09–40.12; Table 3).

3.2. Setting of the Constant d for SDM Extraction

SDM, as one part of grassland canopy, has higher pixel values in all three bands of field-taken RGB
images than bare soil, litter and soil crust after GV pixels were masked out (Equation (4)). Therefore,
it is effectively extracted by default constant d (set at 1) when the understory background, including
soil, litter and soil crust, is dark (Figure 3a,a1,b,b1). When the percentage of the dead component in
the canopy is high (i.e., visual estimation of dead material for Figure 3c is 87% and for Figure 3d is
90%), SDM in the canopy is brighter than the lower layer (Figure 3c,d), including litter that has similar
spectral characteristics with SDM. In this situation, d must be set lower to extract more standing dead
material in the darker, lower canopy (Figure 3c,d). The extracted fraction of SDM is 41.7% (Figure 3c1),
61.5% (Figure 3c2) and 72.1% (Figure 3c3) when d was set as 1, 0.7 and 0.5, respectively (Figure 3c) and
the estimated percentage of SDM was 43.7% (Figure 3d1), 65.6% (Figure 3d2) and 80.3% (Figure 3d3)
when d was set as 1, 0.7 and 0.5, respectively (Figure 3d).
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Table 3. Data exploration for constant g1, g2 for different species and conditions.

ID Vegetation Community Species Condition
g1 g2

MIN MAX MEAN STD MIN MAX MEAN STD

1 disturbed community smooth brome/forb normal condition 60.18 276.81 139.94 41.26 60.53 533.56 199.87 60.55
2 disturbed community smooth brome normal condition 60.23 268.79 133.36 38.97 60.24 517.52 192.35 65.15
3 disturbed community smooth brome/forb normal condition 60.18 260.76 124.73 36.37 60.33 577.69 226.32 67.68
4 disturbed community smooth brome high exposure 38.12 224.66 94.36 23.41 60.15 545.60 267.27 55.50
5 disturbed community sweet clover normal condition 64.22 649.91 198.42 74.89 66.13 1014.98 434.55 167.75
6 disturbed community sweet clover normal condition 64.11 328.96 170.97 51.25 66.03 776.71 333.94 98.38
7 sloped grassland needle and thread/northern wheat grass high exposure 32.09 577.69 119.27 50.33 60.47 774.27 201.43 83.10
8 sloped grassland western wheat grass/needle and thread high exposure 36.11 284.84 106.99 33.44 60.36 585.72 147.92 59.82
9 sloped grassland needle and thread senesced grass 40.12 196.58 79.25 18.26 60.33 469.38 180.69 63.62

10 sloped grassland needle and thread/western wheat grass high exposure 44.13 517.52 117.68 50.47 60.23 786.31 248.96 85.93
11 sloped grassland June grass/needle and thread/forb high exposure, senesced grass 44.13 244.72 96.79 27.01 60.34 625.84 256.16 81.21
12 sloped grassland June grass/western wheat grass normal condition 61.02 284.84 117.41 38.13 60.15 501.47 155.81 60.03
13 sloped grassland June grass/western wheat grass normal condition 60.39 280.82 129.48 41.20 61.11 509.49 165.86 63.25
14 sloped grassland June grass/western wheat grass/forb normal condition 61.54 252.74 106.01 33.76 60.02 469.38 132.68 54.99
15 upland grassland northern wheat grass high exposure, senesced grass 36.11 445.31 127.37 50.69 60.03 710.47 299.97 83.84
16 upland grassland June grass/northern wheat grass senesced grass 40.12 296.87 108.04 34.27 62.11 585.72 185.94 77.32
17 upland grassland northern wheat grass/needle and thread high exposure, senesced grass 36.11 240.71 100.90 28.54 63.12 557.64 264.67 60.56
18 upland grassland western wheat grass/needle and thread normal condition 61.27 629.85 132.76 55.72 60.01 826.42 281.67 96.35
19 valley grassland western wheat grass bluish leaves 61.22 224.66 86.35 22.01 32.09 453.33 120.11 43.96
20 valley grassland crested wheat grass bluish leaves 60.14 260.76 116.32 34.09 36.11 561.65 199.28 74.63
21 valley grassland western wheat grass/sagebrush bluish leaves 60.18 256.75 95.04 25.59 40.12 533.56 157.27 65.15
22 valley grassland smooth brome/forb normal condition 66.13 300.88 162.84 47.67 64.19 429.26 177.65 55.57
23 valley grassland northern wheat grass normal condition 61.22 276.81 114.85 36.49 60.23 485.42 137.31 55.02
24 valley grassland western wheat grass/Little blue steam normal condition 62.12 216.64 90.98 23.61 60.01 477.40 168.68 51.78
25 valley grassland western wheat grass/forb bluish leaves 60.28 232.68 90.59 22.40 40.12 272.80 125.49 41.29
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Figure 3. Extracted SDM from field-taken RGB images. (a) RGB image taken in valley grassland. (a1) extraction
of standing dead matter (SDM) from (a) with d = 1. (b) RGB image taken in disturbed communities.
(b1) Extraction of standing dead material from (b) with d = 1. (c) RGB image taken in valley grassland.
(c1–c3) Extraction of SDM from (c) with d = 1, 0.7, 0.5, respectively. (d) RGB image taken in sloped
grassland. (d1–d3) Extraction of SDM from (d) with d = 1, 0.7, 0.5, respectively. (e) RGB image taken in
sloped grassland. (e1–e3) Extraction of SDM from (e) with d = 1, 1.2, 1.5, respectively. (f) RGB image
taken in upland grassland. (f1–f3) Extraction of SDM from (f) with d = 1, 1.5, 2, respectively. (g) RGB
image taken in valley grassland. (g1–g3) Extraction of SDM from (g) with d = 1, 1.5, 2, respectively.
(h) RGB image taken in disturbed communities. (h1) Extraction of SDM from (h) with d = 1.5. (i) RGB
image taken in valley grassland. (i1) Extraction of SDM from (i) with d = 1.7.
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Light colored, undecomposed litter has a large effect on the extraction of standing dead material
(Figure 3e: visual estimation for standing dead materials is 40% and for litter is 20%) when the canopy
cover (i.e., sum of GV and SDM cover) is low, thus, d needs to be set higher than the default value of
one. The extracted SDM was 30.8% (Figure 3e1), 20.2% (Figure 3e2) and 6.5% (Figure 3e3) when d was
set at 1, 1.2 and 1.5, respectively. Light colored soil crust as the canopy background also has a strong
influence in SDM extraction in the study area (Figure 3f: visual estimation for standing dead materials
is 15%). In this case, d must be set higher to reduce the influence of soil crust (i.e., moss and lichen).
The extracted SDM was 27.8% (Figure 3f1), 8.6% (Figure 3f2) and 0.4% (Figure 3f3) when d was set at 1,
1.5 and 2, respectively. Light colored bare soil also influences the extraction of SDM with a default
value of d (Figure 3g: visual estimation for standing dead material is 10%). d must be set higher to
reduce the effects of bare soil (Figure 3g3: d was set at 2) providing high accuracy of standing dead
material extraction (0.8%, Figure 3g3) compared to 11.9% extraction where some bare soil pixels were
extracted (Figure 3g2: d was set at 1.5) and 25.9% extraction where a large amount of bare soil pixels
were present in the extraction results (Figure 3g1: d was set at 1). Especially when canopy cover is low,
light colored bare soil still has great effects on SDM extraction even though d is set appropriately for
extracting SDM pixels (Figure 3h1: d was set at 1.5; Figure 3i1: d was set at 1.7).

3.3. GV and SDM Cover Estimated from RGB Images

Compared to subjective visual estimation, GV cover is under-estimated by the method developed
in this study (Figure 4a). The difference between estimated GV cover and subjective visual estimated
GV cover is larger when GV cover is lower (Figure 4a). Estimated cover of SDM in this study is under-
estimated compared to that from subjective visual estimation. The underestimation becomes more
distinct when SDM cover is higher (Figure 4b).
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Figure 4. Comparing estimated green and dead cover with field observed cover (the red solid line is the
regression line; the blue line is 1:1). (a) Comparison between green vegetation (GV) cover from visual
estimation (i.e., field observed green cover) and that from GV extraction by the method developed in
this study. (b) Comparison between SDM from visual estimation (i.e., field observed standing dead
cover) and that from SDM extraction from the method of this study.

3.4. Validation of GV and NPV Estimated from RGB Images

Based on the relationship between GV cover and NDVI, the estimated GV cover (Figure 5b:
R2 = 0.846, p < 0.001) in this study is more precise than that from subjective visual estimation (Figure 5a:
R2 = 0.711, p < 0.001).

Theoretically, CAI can be used to evaluate NPV cover including cover of SDM and litter. There is
no significant linear relationship of CAI and estimated SDM cover. Therefore, cover used for validation
is comprised of total NPV including SDM and litter, thus, the estimated dead cover (Figure 6b) is the
sum of the estimated cover of SDM and field observed litter cover. The R square of estimated dead
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cover increased from 0.687 (p < 0.001) with subjective visual estimation to 0.734 (p < 0.001) with the
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Figure 6. Validation of RGB extracted standing dead cover. (a) The relationship between cellulose
absorption index (CAI) and visual estimated non-photosynthetic vegetation (NPV) cover (i.e., sum of
visual estimated SDM and litter cover). (b) The relationship between CAI and the estimated NPV cover
(i.e., sum of extracted cover of standing dead matter (SDM) by the method of this study and visually
estimated cover of litter in the field).

4. Discussion

4.1. GV and SDM Cover Estimation Based on RGB Images and Visual Estimation

Our semi-automated method to classify RGB images predicts lower GV cover than visual estimates
(Figure 4a). The difference between visual estimation and extraction of GV coverage from RGB images
is higher when the GV coverage is relatively low (Figure 4a). Previous research also suggests that
subjective visual estimation tends to predict higher cover (i.e., overestimation) than GV cover estimates
from digital image analysis based on field-taken RGB pictures [8,35]. Macfarlane and Ogden’s results
show that subjective visual estimation accuracy is±10–20% [16]. This indicates that green cover collected
by visual estimation may consistently overestimate real GV cover. Moreover, the linear regression of
GV cover and NDVI, an alternative method based on remote sensing imagery for GV cover estimation,
indicates that GV cover extracted from field-taken RGB images (Figure 5b: R2 = 0.846, p < 0.001) in
this study is superior to the GV cover from the subjective visual estimation in the field (Figure 5a:
R2 = 0.711, p < 0.001). We also compared our GV extraction with the extraction results from Canopeo
(http://www.canopeoapp.com), a powerful tool for measuring GV cover in grassland [36] which has

http://www.canopeoapp.com
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been proven to show good performance for measuring GV cover of narrow-leaved vegetation [11].
The comparison results show that the extracted GV cover with our semi-automated method is consistent
with that of Canopeo (R2 = 0.86, p < 0.001) and GV cover by Canopeo also has high linear relationship
with NDVI (R2 = 0.85, p < 0.001). It indicates that the method developed in this study has high potential
to assess GV cover effectively and accurately. Moreover, this method has batch capacity, which would
effectively support field data collection.

The results of linear regression between NPV cover and CAI (an alternative method for NPV
cover estimation based on remote sensing approaches) show that cover estimates from RGB images
in this study (Figure 6b: R2 = 0.734, p < 0.001) are superior to subjective visual estimates (Figure 6a:
R2 = 0.687, p < 0.001). Estimated cover of SDM based on field-taken RGB images in this study is lower
than subjective visual estimates. The difference between visual estimation and extraction from RGB
pictures for SDM cover becomes larger when SDM cover increases. When SDM cover is larger, SDM in
the lower layer is darker than in the top layer, which challenges the extraction of SDM from field-taken
RGB images. Therefore, SDM cover might be underestimated by RGB images when the cover of SDM
is very high. However, SDM cover might be overestimated from RGB images when SDM cover is low
with background soil that has a light tone.

4.2. Estimated Green Cover from RGB Pictures

After standardizing and normalizing red (band 1), green (band 2) and blue (band 3) from the
RGB images (Equations (1) and (2)), we found that the green band had the highest pixel value for
green vegetation. Therefore, the constants g1, g2 (Equation (3)) can be used as thresholds to separate
green vegetation from SDM, litter, soil crust (moss and lichen), rocks and bare soil. In this study, green
vegetation was extracted accurately in most cases when g1, g2 were set to the default value of 60
(Figure 7a–d).

However, default values of g1, g2 should be tied to vegetation type, phenology stage, soil crust
and the light conditions when taking RGB pictures. Previous research indicates that GV cover extracted
from field-taken RGB images is influenced by resolution, exposure and ground complexity [3]. In our
study area, sagebrush and western wheatgrass are a pale blue color (Figure 7e,f). For this case, we
adjusted g2 lower (32) and moved g1 to be lower than 60 to capture more sage leaves (Figure 7e,f;
g1, g2 were set as 40 and 32, respectively). When soil crust, especially moss with green color, influences
green vegetation extraction from RGB pictures, g1 could be set higher than g2 because the difference
between normalized green band and normalized blue band is far greater than the difference between
normalized green band and normalized red band for green moss (Figure 7g; g1, g2 were set as 60 and
40, respectively). Because the python script is designed to extract GV and SDM pixels separately to
quantify ground cover of GV and SDM (Figure 7h; g1, g2 were set as 30 and 60, respectively). If the
vegetation is in early or late senescence, g1 should be set as a lower value than the default 60 to extract
more GV pixels which are not completely senesced.

When RGB photographs were taken near noon, the issue of high exposure reduced the greenness
in the green band. Therefore, g1 should be set lower than 60 (32, Table 3). Even though it improves the
accuracy to extract green vegetation from RGB images by changing the parameters g1, g2 in the python
script we developed, the effects of sage and green moss are still not eliminated. They are, however,
reduced. Green vegetation is effectively extracted by our method when GV was overlapping in the
original RGB images (Figure 7) and compared with the GV extraction from Canopeo. When green
moss was present, this principle did not necessarily hold (Figure 7g). For all these limitations of GV
cover estimation, we suggest taking RGB pictures of each quadrat in the maximum growing season to
avoid the senesced vegetation issue and avoid high exposure issue at noon.
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Figure 7. Extracted green vegetation from RGB images. (a) RGB image taken in disturbed communities;
extraction of green vegetation (GV) with g1 = 60 and g2 = 60. (b) RGB image taken in upland grassland;
extraction of GV with g1 = 60 and g2 = 60. (c) RGB image taken in valley grassland; extraction of GV
with g1 = 60 and g2 = 60. (d) RGB image taken in sloped grassland; extraction of GV with g1 = 60 and
g2 = 60. (e,f) RGB image taken in valley grassland; extraction of GV with g1 = 40 and g2 = 32. (g) RGB
image taken in sloped grassland; extraction of GV with g1 = 60 and g2 = 40. (h) RGB image taken in
upland grassland; extraction of GV with g1 = 30 and g2 = 60.

4.3. Estimated SDM from RGB Images

SDM has high pixel values in all three normalized visible bands. Equation (4) was designed
based on this concept. Green vegetation was masked out for the normalized RGB images before
extracting SDM to completely eliminate effects from green canopy, but the averaged pixel values of each
normalized band were calculated before the green cover was masked out (Equation (4)). The parameter
d is designed to separate standing dead cover from litter and a light soil background (Equation (4)).
In this way, SDM was extracted accurately under moderate and high canopy cover (Figure 3a,b; d was
set as default value 1).
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Undecomposed litter has similar spectral characteristics as SDM. When the canopy cover (sum
of GV and SDM cover) is low, litter has large effects on the accuracy for extracting SDM pixels.
In normalized RGB images, litter is slightly darker than SDM in all the three bands because light
exposure differs for the canopy and understory, and the color tone of litter becomes darker when it
begins to decompose. To reduce the impact of litter when extracting SDM, the constant d was set
higher (in the range one to two in this study) than the default value of one (Figure 3e3; d was set as 1.5).

Dry bare soil with light color tone is another issue for extracting SDM when the canopy cover is low.
The errors caused by light soil background can be reduced by setting the constant d to a higher value
(Figure 3g3; d was set as two). When the actual SDM cover is high, SDM cover may be underestimated
(Figure 3c,d) with our method. SDM in the lower canopy has a darker color tone than that in the upper
canopy when the SDM cover is high. Thus, the SDM in the lower canopy will be treated as litter to
be excluded in the output of SDM cover (Figure 3c1,d1). In this specific case, we set the parameter d
lower than the default value 1 (Figure 3c1,d1 when d was set as default value 1; Figure 3c2,d2 when
d was set as 0.7; Figure 3c3,d3 when d was set as 0.5). In addition, the extracted results of SDM were
overestimated due to the influence of soil crust covering the ground surface (Figure 3f; Figure 3f1
with d set as one). The effects of soil crust were reduced when d was set to 1.5 (Figure 3f2). However,
cover was underestimated when d was set to two to eliminate the effects of soil crust (Figure 3f3).
Flowers, especially white flowers in the mixed grassland, have large effects on extracting SDM (Figure 3f,
Figure 8a,b). However, the effect of flowers cannot be eliminated by using higher d values (Figure 8b1:
d = 1; Figure 8b2: d = 1.5; Figure 8b3: d = 1.7; Figure 8b4: d = 1.8; Figure 8b5: d = 1.9).
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from the method developed in this study (R2 = 0.846, p < 0.001) is superior to that from subjective 
visual estimation in the field (R2 = 0.711, p < 0.001), and the extracted GV cover is consistent with that 

Figure 8. Flower effects on the extraction of standing dead matter (SDM) from RGB images. (a) RGB
image taken in valley grassland. (a1) Extraction of SDM from (a) with d = 1. (b) RGB image taken in
disturbed communities. (b1–b5) Extraction of standing dead materials from (b) with d = 1, 1.5, 1.7, 1.8
and 1.9, respectively.

5. Conclusions

Our main conclusions are: (1) based on the linear relationship with NDVI, GV cover extracted
from the method developed in this study (R2 = 0.846, p < 0.001) is superior to that from subjective
visual estimation in the field (R2 = 0.711, p < 0.001), and the extracted GV cover is consistent with
that estimated by Canopeo (i.e., a powerful tool for measuring GV cover in grassland). (2) The semi-
automatic method of this study has high potential to extract SDM cover when the canopy cover
(including both GV and SDM cover) is high or when the understory including the effects of litter, soil
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crust and bare soil, is limited. (3) Subjective visual estimation in the field tended to predict higher
cover for both GV and SDM compared to that estimated from RGB images in this study.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/23/6870/s1,
Supplementary S1: explanation of the parameters in the python script for extracting green cover and standing dead
cover from field–taken RGB images; Supplementary S2: RGB pictures for each quadrat in 14 sites; Supplementary
S3: Sample RGB pictures for data exploration of constants g1, g2 in Table 3; Python script, ArcToolbox.
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