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Abstract: Whilst investigating student performance in design and arithmetic tasks, as well as during
exams, electrodermal activity (EDA)-based sensors have been used in attempts to understand cognitive
function and cognitive load. Limitations in the employed approaches include lack of capacity to
mark events in the data, and to explain other variables relating to performance outcomes. This paper
aims to address these limitations, and to support the utility of wearable EDA sensor technology
in educational research settings. These aims are achieved through use of a bespoke time mapping
software which identifies key events during task performance and by taking a novel approach to
synthesizing EDA data from a qualitative behavioral perspective. A convergent mixed method design
is presented whereby the associated implementation follows a two-phase approach. The first phase
involves the collection of the required EDA and behavioral data. Phase two outlines a mixed method
analysis with two approaches of synthesizing the EDA data with behavioral analyses. There is an
optional third phase, which would involve the sequential collection of any additional data to support
contextualizing or interpreting the EDA and behavioral data. The inclusion of this phase would turn
the method into a complex sequential mixed method design. Through application of the convergent or
complex sequential mixed method, valuable insight can be gained into the complexities of individual
learning experiences and support clearer inferences being made on the factors relating to performance.
These inferences can be used to inform task design and contribute to the improvement of the teaching
and learning experience.
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1. Introduction

Electrodermal activity (EDA), also referred to as galvanic skin response (GSR), relates to electrical
changes that occur in the skin [1–8]. EDA measurement gauges psychophysiological activity of the
sympathetic nervous system which is a part of the autonomic nervous system [3,9]. Sweating is
normally associated with thermoregulation of the body, however, in response to psychological
stimuli the body produces the physiological response of sweat through plantar and palmar sites [8].
This sweating causes an increase in the electrical conductance of the skin as part of the autonomic
response [10], leading to EDA being employed for evaluating autonomic function and assessing levels
of cognitive or emotional reaction to an arousing event [1–8]. Measuring EDA using wrist-worn sensors
provides an unobtrusive implicit indicator of these reactions experienced through engagement with
a task [8,9,11]. EDA measurement affords the capacity to gain understanding of how an individual
experiences an event without restricted movement where the authenticity of the activity is minimally
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affected. This has proven valuable in a number of disciplines including but not limited to biomedical
engineering [11], neuroscience [12], behavioral science [13] and education [14]. In education research,
the use and interpretation of EDA data has been conducted exclusively through quantitative approaches.
This article discusses the value that EDA data can provide via a mixed method mode of inquiry.

In the context of education, Thammasan et al. [1] have demonstrated the feasibility of monitoring
EDA signals in educational settings. EDA measurement has been used to investigate performance
during examinations and design activities with specific focus on cognitive function and response [14,15].
It has also been used in the identification of talented students [16] and in measuring cognitive load
during arithmetic and reading tasks [17]. As monitoring of EDA signals is feasible in educational
settings, it is timely to consider the insights that they can provide. This work aims to advance the
utility of monitoring EDA in education through presenting a novel method for the synthesis of EDA
data with behavioral data to gain insights into learners’ educational experiences.

To date, EDA research in education has focused on quantitative measurement and interpretation.
Previous works have evaluated measures of EDA via statistical means, with examples of such
approaches including correlation analyses, t-tests between datasets, multiple regression modelling and
event marking. Although such approaches address the fundamental research questions of existing
works, limitations were outlined by the authors including a lack of capacity to mark specific events in
the data and to explain other variables impacting on performance outcomes [14,15]. From the solely
numerical data output of EDA, there is no capacity to explain variables impacting on performance.
These limitations are addressed through the following aim of this paper.

The primary aim of this paper is to offer perspectives on how to advance the utility of physiological
sensors in educational research by detailing a novel two-phase convergent mixed methods approach
where quantitative EDA data are synthesized with qualitative behavioral data to obtain more in-depth
interpretations of a learner’s experiences. The overall method presented also includes an optional third
sequential explanatory phase, which changes the method into a complex mixed methods approach [18].
The outlined novel convergent mixed method aims to support in-depth analysis of cognitive load
experienced during problem solving in educational settings. It is intended that this approach could
be used as a means of advancing insight into learner performance and inform curriculum design,
specific task design and educational practice.

2. Research Context and Methodological Requirements

2.1. Cognitive Load in Education

“Cognitive load theory aims to explain how the information processing load induced by learning
tasks can affect students’ ability to process new information and to construct knowledge in long-term
memory” [19] (p. 261). The premise of the theory is that individuals’ limited working memory capacity,
their capacity to temporarily hold and process information, can constrain cognitive processing [19,20].
Cognitive load is a cognitive reaction that is increased when demands are placed on the cognitive
system. When this load becomes too high, it can hinder an individual’s capacity to learn and their
motivation to engage in similar situations in the future [19–22]. This load can be increased through
insufficient instructional methods and unnecessary distractions [19]. The goal of cognitive load theory
is for innovative and effective instructional procedures to be generated to manage the load imposed
on working memory and optimize information processing capacity [20]. In line with this goal and to
support learning, it is important that thorough investigations are conducted to provide detailed insight
into the effect of cognitive load on performance and to identify elements of educational tasks that cause
undesirable increases in cognitive load so that the potential for learning can be optimized. Measures of
cognitive load can be broadly divided into two categories, subjective or objective. According to Brünken
et al. [23], subjective measures of cognitive load include self-reported invested mental effort (indirect)
and self-reported difficulty of materials (direct), where objective measures include psychophysiological
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measures such as pupillometry or EDA (indirect), and brain activity and dual-task performance (direct).
Table 1 outlines the classification of these approaches to measuring cognitive load.

Table 1. Classification of approaches to measuring cognitive load with examples.

Causal Association

Objectivity Direct Indirect

Subjective Self-reported difficulty Self-reported mental effort
Objective Brain activity Pupillometry

Dual-task performance Electrodermal activity
Behavioral measures

In order to situate the synthesis of EDA and behavioral data relative to the measurement of
cognitive load, the following sections provide a brief overview of some subjective and objective
cognitive load measures and their advantages and disadvantages.

2.1.1. Subjective Measures

Subjective rating scales can be used to determine an individual’s level of agreement with a
statement or intensity of a feeling or emotion in response to an event [24]. Examples include
self-reporting Likert scales and semantic differential scales which have been commonly used to
measure cognitive load [22,25–29]. The number of points on the scale can vary. In certain approaches,
seven-point scales such as the NASA Task Load Index (NASA-TLX) are implemented whilst others
employ nine-point rating scales in cognitive load measurement [30]. NASA-TLX was developed with
the goal of providing a sensitive summary of variations of workload [31]. The rationale and process of
development of the scale are documented by Hart and Staveland [31]. NASA-TLX is a direct subjective
measure of cognitive load [25]. Paas [32] developed and validated a nine-point Likert-type item to
evaluate the mental effort experienced by an individual as they performed a task. The numbers on the
scale were assigned labels ranging from (1) very, very low mental effort to (9) very, very high mental
effort [32]. The difference between the two scales, apart from the number of points, is that the scale
developed by Paas [32] is a single item that solely measures mental effort. The NASA-TLX has multiple
items that measure various factors which contribute to workload such as mental demand, effort and
frustration [31]. Each approach offers a valid and reliable subjective measure of cognitive load [22].
The scales can be administered multiple times throughout an activity or once at the end of a series of
activities [27]. Research findings have indicated that a single retrospective measure yields a higher
response than the average of the multiple measures after each activity [27]. Rating scales, however,
have some limitations. There is no assumption of equal intervals between each of the ratings. There is
a tendency on five-point and seven-point scales for individuals to avoid selecting extreme values on
the scale, and there is no way of knowing if the individual completing it wished to add a comment on
what was being investigated [24]. It is also noted that frequent administration throughout a learning
experience can be intrusive [25]. However, some of these issues can be addressed through method
design, e.g., using a nine-point scale or adapting the standard format to include a comment section.

There are various subjective qualitative approaches suitable to support investigations of cognitive
load and for gaining understanding and insight of experiences from individual perspectives.
These include interviews such as stimulated recall interviews [33] (verbal data) and concurrent verbal
protocols such as think-aloud [34]. Each of these approaches have both strengths and weaknesses
associated with their application. Stimulated recall interviews have been used in cognitive load research
to gain an insight of thought processes and how they relate to different types of load experienced [33].
Cohen et al. [24] and Creswell and Creswell [18] discuss in detail, the advantages and disadvantages
of interview approaches. They outline that interview approaches, not specifically for the purpose of
cognitive load measurement, can be used to gather information directly relating to research questions or
objectives, to test or generate hypotheses, or in conjunction with other methods to examine and validate
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the methods or investigate the motivations and responses of individuals. However, some weaknesses
associated with interview approaches exist such as interviewer bias or interviewees becoming uneasy
with a line of questioning.

Think-aloud protocols provide a method for studying both behavioral and cognitive processes
during problem solving [35]. These protocols have been used with implicit measures of cognitive load
such as eye tracking to inform a detailed account of performance and performance parameters [33,35].
However, despite these protocols informing the approach being implemented in real-time, there are
some weaknesses to their implementation such as slowing participants down, which in turn makes
tasks take longer and changes the participant’s interaction with a task [35,36]. In addition, when used
simultaneously with eye-tracking measurement it can lead to an increased number of fixations [35].

In the context of this work, the selection of a subjective measurement method must primarily
be based on its capacity to reliably measure cognitive load and capacity to compliment the objective
measurement employed for triangulation.

2.1.2. Objective Measures

As detailed in Table 1, behavioral measures and physiological responses are examples of objective
measurement of cognitive load. Insights to behavior can be gained subjectively through approaches such
as think-aloud protocols [35], or objectively using approaches such as observation. Observations provide
capacity for the researcher to capture situations such as events and behaviors as they occur and afford
strong face validity through capturing rich contextual information [18,24]. Limitations in their use
include the researcher being seen as intrusive and there may be problems in gaining rapport with
certain participants [18]. Video recording can also be used as a means of observation to circumvent
limitations in building rapport. In video observations, the collection of footage by an observer may
be disruptive to the participant or affect responses [18]. However, recording equipment can be
discretely setup to minimize intrusiveness. Using video also affords capacity to observe behaviors
retrospectively. Audio–visual recordings can be used to support additional data collection through
interview techniques, such as video-stimulated recall interviews, to provide an in-depth understanding
of events [37].

The measurement of physiological responses as an indicator of cognitive load is based on the
premise that changes in cognitive load are reflected by physiological variables [22]. Various physiological
responses have been used as objective, but indirect, measures to investigate cognitive load experienced
by individuals throughout activities. These include eye-tracking, pupillometry, electroencephalography
(EEG), heart rate (HR) and EDA [3,22,23,38]. In using physiological responses as measures of cognitive
load, it is necessary to observe additional variables to triangulate the measurement to evaluate whether
it can be interpreted as an indication of cognitive load [25]. Physiological measures afford an objective
measure of cognitive load during the completion of a task. However, they often require the use of
invasive technologies, which themselves have been criticized due to the potential negative impact that
they can have on primary task performance and therefore the ecological validity of a study [22,29].
However, recent advances in technology have provided capacity to measure physiological responses
such as HR and EDA unobtrusively, e.g., wearable wristbands [8,9,11]. This increases the viability
of implicitly measuring cognitive load through engagement with a task, as significant movement
restrictions are no longer a concern.

The most important factor to consider is whether these physiological measures can be validly
interpreted to measure cognitive load. The validity of HR and HR variability to measure cognitive
load is contested. Paas and van Merriënboer [39] detailed these measures as invalid and insensitive to
slight fluctuations in cognitive load following a spectral-analysis technique of HR variability. Solhjoo
et al. [40], however, in conducting a correlation analysis between HR and HR variability and self-report
measures of cognitive load reported a strong positive correlation between these indirect measures
of cognitive load and HR variability. However, it is important to note the small sample size (n = 10)
included in that study.
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As mentioned, EDA measurement relates to changes in the skin in response to an event [1–8] where
it has been used in the implicit measurement of both cognitive and emotional reactions [3–5,11–14,39].
EDA signals can vary between two categories, tonic change or phasic change [7]. The phasic component
is referred to as skin conductance response (SCR) and is associated with short increases in EDA caused
by arousing events such as sound, sight or smell [1,7]. The tonic component is referred to as skin
conductance level (SCL) and is associated with slow change in skin conductance [1,3,7]. These changes
can be caused by an increase in cognitive activity [3,7]. Thammasan et al. [1] detail the process and
importance of differentiating between the tonic and phasic components in the analysis of EDA data.

In summary, the selection of a method of cognitive load measurement should be based on the
evaluation of its appropriateness to the subject under investigation [41]. In the context of this work,
to present a convergent mixed method to investigate cognitive load during performance on a task, it is
necessary that an individual’s movements would not be limited. From the perspective of objective
measurement of cognitive load, EDA would provide a suitable objective measure as it can be measured
using unobtrusive wrist-worn physiological sensors [8,9,11]. Simultaneously collecting behavioral
observations through video affords capacity to gain a further insight into the EDA data not previously
achieved. It would also increase the richness of the data and support further explanation of variations
in EDA and behaviors. A subjective measure, such as the self-report scale developed by Paas [32],
would be suitable to both measure cognitive load and triangulate with EDA and behavioral data as the
study seeks to examine cognitive load and not separate elements of workload which the NASA-TLX
would provide [31].

This paper offers further potential to the largely quantitative methods demonstrated in measuring
EDA in educational environments by including an additional qualitative perspective to form a novel
mixed methods synthesis of behavioral and EDA data.

3. The Mixed Methods Approach

EDA sensor data are typically analyzed in a quantitative manner [3,8,10,41]. When EDA
measurement is used in isolation there is no capacity for the numerical output to explain why any
changes occurred. Explaining why a change or reaction occurred requires supplementary and/or
additional data collection for triangulation [25].

Graphing EDA data in relation to performance over time affords the capacity for interpretation
and exploration of the causes of EDA fluctuations, and therefore changes in cognitive load, during a
task. This interpretation and exploration can include using behavioral analysis to explain changes in
EDA and to explore how fluctuations in EDA might manifest into behaviors. To conduct this form
of detailed inquiry, explanatory qualitative methods are required to explain periods of interest in
the data and provide detailed insights into the experience of individuals when engaging with a task.
Combining the EDA data as an indirect measure of cognitive load with complementary subjective
measures and subsequent qualitative analysis can lead to an in-depth investigation of the cognitive
load experienced by an individual during a task and add to the validity of causal inferences.

In the context of the work presented, to address limitations in existing approaches using EDA
measurement in education and expanding the utility of physiological sensors in educational settings,
the proposed convergent mixed method design can be considered in the initial two phases depicted in
Figure 1. In phase one, EDA and behavioral data are simultaneously collected. Phase two involves
the synthesis of the EDA and behavioral data. The optional phase three would act as an additional
sequential explanatory phase and focus on the collection of complementary data to contextualize
and explain the timepoints of interest identified in phase two. This additional phase, if included,
changes the overall method to a complex sequential mixed methods approach [18].



Sensors 2020, 20, 6857 6 of 13

Figure 1. Method description.

3.1. Phase 1—Convergent Data Collection

The convergent mixed method parallel design has both qualitative and quantitative data that are
collected independently and in parallel to each other [24]. These data converge and yield triangulation
which offers complementary data on the phenomenon in question [24,42]. In the context of this work,
it refers to the collection of behavioral observations and EDA data in parallel for insights into the effect
of cognitive load on educational performance.

3.1.1. Observing Behaviors

Observation of behavior can include memo writing by a facilitator while visually observing, using
protocols such as think-aloud, or using imagery or audio–visual recordings to support retrospective
observations [18,24]. In using observations, capacity is provided to capture situations such as
behaviors or important events as they occur relative to each individual. This would be similar
to the approach employed by Cain and Lee [9], whereby images afforded the capacity to identify
engagements in a maker space that cause arousal across participants and engagements that caused
arousal in certain individuals. Observations afford strong face validity through capturing rich
contextual information [18,24]. Capturing this additional data also affords the capacity to triangulate
measurements [25]. There are advantages and limitations to observational approaches, as earlier
outlined. The selection of an observational method is ultimately dependent on the requirements of each
individual study. In the context of this work, collection of video observations affords the capacity to
retrospectively observe behaviors exhibited during a task and facilitate further sequential explanatory
investigation with approaches such as video-stimulated recall interviews. Recording equipment should
be set up discretely to minimize intrusiveness and protocols put in place to ensure ethical treatment
and storage of the data.

3.1.2. Collecting EDA Data

EDA is measured in micro Siemens (µS) and the rate that it is sampled at depends on the device
being used to collect the measurement. The Empatica E4, for example, samples EDA at 4 Hz [6] while
the Pip biosensor samples EDA at 8 Hz [7]. EDA data can be collected during performance on any
type of task depending on the requirements of the investigation. The collection of EDA data can
be complemented by using appropriate subjective measures of cognitive load, such as Likert scales,
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depending on the qualitative judgement of the investigator. For a comprehensive account of collecting
EDA data through wearable sensors, see Braithwaite et al. and Villanueva et al. [41,43].

In measuring physiological responses such as EDA, it is essential that baseline measurements
are obtained so that the EDA data during the task can be compared to an individual’s EDA when
they are in a relaxed state [3]. To obtain the baseline measurement, the sensor should be worn on an
individual’s non-dominant wrist with no movement for a specified period of time for calibration and
collection of the baseline data [44]. The recommended period of time for collecting baseline data varies
from 2 to 20 minutes across various studies and reports [3,7,41,45]. In their report on analyzing EDA
data, Braithwaite et al. [42] recommend a period for baseline measurement between 2 and 4 minutes for
quantitative analysis of the data, while Keighrey et al. [7] propose 5 minutes and Villanueva et al. [44]
state between 5 and 10 minutes.

Following the baseline period, the EDA of the individual is collected as they engage with a task
or problem. Some sensors that capture EDA automatically timestamp the data when the sensor is
connected to a computer for upload of the information. In this process the time is synchronized with
the operating system time data on the computer that the sensor is connected to. While this provides
the time that the measurement begins and finishes, it is important for the convergent method being
proposed, that the times of key events are also noted so that insights can be gained into performance.
The syncing of this critical data is discussed later in this section. An example of a key event may be
when an individual progresses to the next element of a task or problem or interacts with a task in a
way that is of interest to the study in question.

For this method, a bespoke time and movement mapping software was developed to track
relevant interactions as users progressed through the completion of the task at hand. This addresses
the lack of capacity in existing approaches using EDA in education to mark specific events in the
data, highlighted by Villanueva et al. [14]. The software records the period during which participant’s
baseline EDA measurements are obtained and has the capacity to note key moves/interactions through
monitoring and input by the investigator as the individual engages with the task. A visualization of
the outputted data after they have been cleaned can be seen in Figure 2. The cleaning of EDA data
is used to remove noise in the signal caused by either internal or external factors [45]. Each of the
points on the graph represent a key event, the time the event took place and recorded EDA at that
time. A critical element of this method is that the time and movement mapping software is running on
the same device that the EDA sensor is connected to. In doing this, the timestamps of key events are
synchronized with the operating system and sensor time data. This means that the time of the key
events can be accurately mapped onto the EDA data as the time of occurrence is captured by the same
device. It is this approach that enables the convergence of the collected data.

Figure 2. Electrodermal activity (EDA) variation from baseline at key events.
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3.2. Phase 2—Mixed Method Analysis

Traditionally, methods of processing EDA would be followed by a statistical analysis at this point.
This method initially involves graphing the cleaned EDA data for synthesis with qualitative behavioral
data to contribute to the valuable insights that this approach can provide. The data can be graphed
(as illustrated in Figure 2) providing a clear visual overview of the entire experience which can support
explanation of other variables impacting on performance outcomes. Subsequent qualitative coding of
the observed behaviors collected in Phase 1 can be used to examine EDA trends allowing for further
inquiry into associated behaviors. Examples of potential means of inquiry are presented below.

Graphical Interpretation of EDA Data

Recording progress with the problem and the time that it occurs affords the capacity to identify
periods of the problem where increases or decreases in EDA occurred. Figure 3 illustrates an example
of how these periods might be visually explored relative to the data. The red areas illustrate a positive
trend in EDA and blue areas illustrate a negative trend in EDA, similar to the arousing and unarousing
engagements explored by Cain and Lee [9]. In this instance, a trend is identified as three consecutive
points in a particular direction. Within this approach, the trends in the EDA data are identified, and the
behaviors causing the variations subsequently examined. In the context of cognitive load, if there was
a specific element of the problem that caused a long delay (relative to the duration of the individuals’
other moves) and adverse increases in cognitive load for several individuals solving the problem at
that same point, factors such as instructional design of the problem might be considered to address
this. For further insights of the effects of instructional design on cognitive load, see Sweller et al. [19].
This is not to say that all periods where progress is not visibly being made are adverse delays or are
directly caused by instruction or presentation of the problem. These periods can also represent where
thinking and decision making are taking place.

Figure 3. Exploring increases and decreases in EDA in the data.

Qualitative coding of the observed behaviors represents another potential method of synthesizing
the EDA data and factors that cause fluctuations in activity during problem solving. Through this
approach, the behaviors are coded first and then mapped onto the EDA data. There are several
approaches that can be considered for coding the data such as descriptive or process coding or theming
the data [46], depending on the focus of each individual study. The coding process will be based on the
qualitative judgement of the investigators. Saldaña [46] provides an overview of different considerations
for approaches to coding different types of data. The complexity of qualitative inquiry requires rigorous
and methodical approaches for valid and trustworthy results [47]. For other researchers to evaluate
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the trustworthiness of the coding process, it is important to be clear about what was done, why it
was done and provide a description of the analysis methods [44,46]. As with assessment criteria in
quantitative research for validity and reliability, there are criteria for trustworthiness. These criteria
include credibility, transferability, dependability, and confirmability [47]. Nowell et al. [47] outline
an exemplar study for achieving these criteria in a thematic analysis. Triangulation (of both data
collection and researcher), documenting of the process, peer debriefing, an audit trail and rationale for
theoretical, methodological and analytical decisions made are core components of achieving the criteria
for trustworthiness [47]. Therefore, it is imperative that the entire coding process is documented in
detail at all stages for transparency and clarity around the decision-making process.

With the use of the collected video observations, the behavioral codes associated with solving the
problem can be produced retrospectively. The time in the problem-solving process when each of these
behaviors are exhibited by the individual can be coded and mapped on to the EDA data, as illustrated
in Figure 4. These codes could also be considered with respect to other physiological responses that
a sensor might gather along with EDA, such as HR. Mapping the behavioral codes on to the EDA
data can support further exploration and investigation of the impact of these behaviors on cognitive
load experienced during problem solving. Viewing the coded data from a positivist perspective,
the frequency of occurrence of behaviors might be considered [48]. In this regard, the frequency of
occurrence of categories of behaviors could be investigated to determine whether the occurrence of
certain categories might be associated with increases or decreases in EDA, i.e., if certain categories
of behavior are associated with increases or decreases in cognitive load. Should an association be
identified, in observing problem solving in the same context in future, these observable behaviors
could be extrapolated as an indication of an increase or decrease in cognitive load. In viewing the
data from an interpretivist perspective, one might investigate the reason for the behavior from the
viewpoint of the individual being observed [48]. To conduct this form of investigation, additional data
collection becomes critical to gain insights from the perspective of the subject being observed.

Figure 4. Exploring behaviors of individuals relative to EDA.

3.3. Phase 3 (Optional)—Sequential Explanatory Data Collection

The selection of an appropriate complementary method(s) to collect data to contextualize and
explain key phases and delays is ultimately reliant on the aim, questions and variables being considered
in a specific study. Questions that might be considered depending on the perspective being taken
include: Why is EDA increasing at a specific stage of a problem for several individuals? What behaviors
are influencing EDA and why these particular behaviors? Are there any additional effects on the
individual and are these positive or negative? How did the problem solver feel about the experience?
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The questions to be addressed from the data will again be a qualitative judgement made by the
individual implementing the method in the context of their own work. As previously indicated,
there are a broad range of options available to obtain these additional insights. Some examples of these
include interviews, video and concurrent verbal protocols [18,24].

The use of audio–visual equipment to record an individual’s engagement with a problem when
EDA is being measured, as outlined in this method, can support understanding of the psychological
meaning of fluctuations in the data when it is being analyzed [10]. These recordings can be coupled
with interview approaches, such as video-stimulated recall interviews, which can contribute to an
in-depth understanding of events of interest from the perspective of the problem solver and produce
meaningful explanations [37]. With the presented mixed methods approach, video-stimulated recall
interviews would provide suitable complementary perspectives to the qualitative inferences that can
be made from the EDA data. The utilization of video-stimulated recall interviews would also be
suitable as it would afford capacity to focus on critical timepoints of interest in the EDA and behavioral
data, such as trends or delays, while providing the capacity to ask open-ended questions to afford
participants the opportunity to express their own views on the situation. This additional phase would
change the approach from a convergent mixed method to a complex mixed methods approach.

The collection of complementary data is essential in gaining insight into the problem-solving
experience from the perspective of the problem solver. While the quantitative EDA data can be
synthesized with the qualitative behavioral data, the addition of interviews or video-stimulated recall
interviews in the context of this method affords capacity to move beyond assumptions and speculations
of what is happening so that inferences can be made around performance factors in problem solving
in education.

4. Added Research Value and Conclusions

This work aims to address limitations in existing approaches to using EDA to evaluate cognitive
load in educational settings and to advance the utility and remit of sensor technology in education
research. Existing limitations included lack of capacity to identify and mark critical events throughout
a data set and to explain additional variables impacting on performance outcomes. The purpose of the
work is achieved through the detailing of a novel approach to synthesize EDA data with behavioral
data through a two-phase convergent or three-phase complex mixed method design. An example of
the implementation of this method would be where EDA and behavior could be monitored during a
problem-solving activity to support the identification of elements or stages of a problem that caused
increases in cognitive load. This form of investigation could impact on research for instructional or
task design. The method could also be employed to evaluate the effect of performance factors such as
cognitive abilities or levels of expertise on cognitive load experienced throughout problem solving.
Using the method in this manner could contribute towards educational research agendas aiming
to develop critical learner competencies through experiences such as problem-orientated learning.
Although this method is set in the context of education research, the outlined broad methodological
approach of synthesizing EDA and behavioral data sets is envisaged to be relevant and impactful in
other areas of social and behavioral science research.

In the context of education, where learners are consistently engaging with tasks and problems,
understanding factors relating to performance is essential as experiencing excessive cognitive load
can influence both learning and willingness to engage in similar tasks in the future [21,22]. EDA has
previously been evaluated for its capacity to effectively measure cognitive load [3]. The presented
convergent/complex mixed method advances on the capacity to use EDA to measure cognitive load,
and the feasibility of using wearable sensors in educational settings [1], to expand the remit of research
questions which can be addressed in both education and cognitive load research. The convergence
of EDA data and behavioral observation, supported by video-stimulated recall interviews, allows
for further interpretations of the synthesized data to be developed. Collection of such data and
gaining understanding of the problem-solving experience in this manner would support moving
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beyond assumption and speculation towards making clearer inferences about the factors relating to
performance. These inferences could support the improvement of the educational experience for
individual learners while also contributing to the wider research community by maximizing the use of
physiological sensors to enhance the understanding of how pertinent factors relate to problem-solving
performance. The approach could also be used as a means of informing curriculum design, specific task
design and educational practice.

Author Contributions: Conceptualization, C.R., J.B. and R.D.; methodology, C.R., C.K., N.M., R.D. and J.B.;
software, C.K. and N.M.; resources, N.M.; data curation, C.R.; writing—original draft preparation, C.R.;
writing—review and editing, C.R., C.K., N.M., R.D. and J.B.; supervision, N.M., R.D. and J.B. All authors
have read and agreed to the published version of the manuscript.

Funding: This publication has emanated from research conducted with the financial support of Athlone
Institute of Technology under the President’s Doctoral Scheme and Science Foundation Ireland (SFI) under Grant
Number 16/RC/3918.

Acknowledgments: The authors would like to thank the anonymous reviewers for their valuable feedback
throughout the review process.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Thammasan, N.; Stuldreher, I.V.; Schreuders, E.; Giletta, M.; Brouwer, A.M. A usability study of physiological
measurement in school using wearable sensors. Sensors 2020, 20, 5380. [CrossRef]

2. Son, J.; Park, M. Estimating cognitive load complexity using performance and physiological data in a
driving simulator. In Proceedings of the Automotive User Interfaces and Interactive Vehicular Applications
Conference, Salzburg, Austria, 29 November–2 December 2011.

3. Setz, C.; Arnrich, B.; Schumm, J.; la Marca, R.; Tr, G.; Ehlert, U. Discriminating stress from cognitive load
using a wearable EDA device. Technology 2010, 14, 410–417. [CrossRef]

4. Paletta, L.; Pittino, N.M.; Schwarz, M.; Wagner, V.; Kallus, K.W. Human Factors Analysis Using Wearable
Sensors in the Context of Cognitive and Emotional Arousal. Procedia Manuf. 2015, 3, 3782–3787. [CrossRef]

5. Henriques, R.; Paiva, A.; Antunes, C. On the need of new methods to mine electrodermal activity in
emotion-centered studies. In Agents and Data Mining Interaction; Cao, L., Zeng, Y., Symeonidis, A.L.,
Gorodetsky, V.I., Yu, P.S., Singh, M.P., Eds.; Springer: Berlin, Germany, 2013; Volume 7607, pp. 203–215.

6. Gjoreski, M.; Luštrek, M.; Gams, M.; Gjoreski, H. Monitoring stress with a wrist device using context.
J. Biomed. Inform. 2017, 73, 159–170. [CrossRef]

7. Keighrey, C.; Flynn, R.; Murray, S.; Murray, N. A Physiology-based QoE Comparison of Interactive Augmented
Reality, Virtual Reality and Tablet-based Applications. IEEE Trans. Multimed. 2020. [CrossRef]

8. Posada-Quintero, H.F.; Chon, K.H. Innovations in electrodermal activity data collection and signal processing:
A systematic review. Sensors 2020, 20, 479. [CrossRef] [PubMed]

9. Cain, R.; Lee, V.R. Measuring Electrodermal Activity in an Afterschool Maker Program to Detect Youth
Engagement. In Cognitive and Affective Perspectives on Immersive Technology in Education; Zheng, R.Z., Ed.;
IGI Global: Hershey, PA, USA, 2020; pp. 128–150.

10. Boucsein, W.; Fowles, D.C.; Grimnes, S.; Ben-Shakhar, G.; Roth, W.T.; Dawson, M.E.; Filion, D.L. Publication
recommendations for electrodermal measurements. Psychophysiology 2012, 49, 1017–1034. [PubMed]

11. Poh, M.Z.; Swenson, N.C.; Picard, R.W. A wearable sensor for unobtrusive, long-term assesment of
electrodermal activity. IEEE Trans. Biomed. Eng. 2010, 57, 1243–1252.

12. Benedek, M.; Kaernbach, C. A continuous measure of phasic electrodermal activity. J. Neurosci. Methods 2010,
190, 80–91. [CrossRef]

13. Liu, Y.; Du, S. Psychological stress level detection based on electrodermal activity. Behav. Brain Res. 2018,
341, 50–53. [CrossRef]

14. Villanueva, I.; Campbell, B.D.; Raikes, A.C.; Jones, S.H.; Putney, L.A.G. A Multimodal Exploration of
Engineering Students’ Emotions and Electrodermal Activity in Design Activities. J. Eng. Educ. 2018,
107, 414–441. [CrossRef]

http://dx.doi.org/10.3390/s20185380
http://dx.doi.org/10.1109/TITB.2009.2036164
http://dx.doi.org/10.1016/j.promfg.2015.07.880
http://dx.doi.org/10.1016/j.jbi.2017.08.006
http://dx.doi.org/10.1109/TMM.2020.2982046
http://dx.doi.org/10.3390/s20020479
http://www.ncbi.nlm.nih.gov/pubmed/31952141
http://www.ncbi.nlm.nih.gov/pubmed/22680988
http://dx.doi.org/10.1016/j.jneumeth.2010.04.028
http://dx.doi.org/10.1016/j.bbr.2017.12.021
http://dx.doi.org/10.1002/jee.20225


Sensors 2020, 20, 6857 12 of 13

15. Khan, T.H.; Villanueva, I.; Vicioso, P.; Husman, J. Exploring relationships between electrodermal activity,
skin temperature, and performance during engineering exams. In Proceedings of the 2019 IEEE Frontiers in
Education Conference (FIE), Covington, KY, USA, 16–19 October 2019.

16. Anvari, F.; Tran, H.M.T.; Kavakli, M. Using Cognitive Load Measurement and Spatial Ability Test to Identify
Talented Students in Three-Dimensional Computer Graphics Programming. Int. J. Inf. Educ. Technol. 2013,
3, 94–99. [CrossRef]

17. Nourbakhsh, N.; Wang, Y.; Chen, F.; Calvo, R.A. Using galvanic skin response for cognitive load measurement
in arithmetic and reading tasks. In Proceedings of the 24th Australian Computer-Human Interaction
Conference, Melbourne, Australia, 26–30 November 2012; pp. 420–423.

18. Creswell, J.W.; Creswell, J.D. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches, 5th ed.;
Sage Publication: Thousand Oaks, CA, USA, 2018.

19. Sweller, J.; van Merriënboer, J.J.G.; Paas, F. Cognitive Architecture and Instructional Design: 20 Years Later.
Educ. Psychol. Rev. 2019, 31, 261–292. [CrossRef]

20. Chen, O.; Kalyuga, S. Cognitive Load Theory, Spacing Effect, and Working Memory Resources Depletion:
Implications for Instructional Design. In Form, Function, and Style in Instructional Design: Emerging Research
and Opportunities; IGI Global: Hershey, PA, USA, 2020; pp. 1–26.

21. Paas, F.; Renkl, A.; Sweller, J. Cognitive load theory: Instructional implications of the interaction between
information structures and cognitive architecture. Instr. Sci. 2004, 32, 1–8. [CrossRef]

22. Paas, F.; Renkl, A.; Sweller, J. Cognitive Load Theory and Instructional Design: Recent Developments.
Educ. Psychol. 2003, 38, 1–4. [CrossRef]

23. Brünken, R.; Plass, J.L.; Leutner, D. Direct measurement of cognitive load in multimedia learning. Educ. Psychol.
2003, 38, 53–61. [CrossRef]

24. Cohen, L.; Manion, L.; Morrison, K. Research Methods in Education, 8th ed.; Routledge: Oxford, UK, 2018.
25. Kalyuga, S.; Plass, J.L. Cognitive Load as a Local Characteristic of Cognitive Processes: Implications for

Measurement Approaches. In Cognitive Load Measurement and Application: A Theoretical Framework for
Meaningful Research and Practice; Zheng, R.Z., Ed.; Routledge: New York City, NY, USA, 2017; pp. 73–88.

26. Leppink, J.; Paas, F.; van der Vleuten, C.P.M.; van Gog, T.; van Merriënboer, J.J.G. Development of an
instrument for measuring different types of cognitive load. Behav. Res. Methods 2013, 45, 1058–1072.
[CrossRef]

27. Leppink, J.; van Merrienboer, J.J.G. The Beast of Aggregating Cognitive Load Measures in Technology-Based
Learning. Educ. Technol. Soc. 2015, 18, 230–245.

28. Paas, F.; Tuovinen, J.E.; Tabbers, H.; van Gerven, P.W.M. Cognitive load measurement as a means to advance
cognitive load theory. Educ. Psychol. 2003, 38, 63–71. [CrossRef]

29. Van Merriënboer, J.J.G.; Sweller, J. Cognitive load theory and complex learning: Recent developments and
future directions. Educ. Psychol. Rev. 2005, 17, 147–177. [CrossRef]

30. Leppink, J.; Paas, F.; van Gog, T.; van der Vleuten, C.P.M.; van Merriënboer, J.J.G. Effects of pairs of problems
and examples on task performance and different types of cognitive load. Learn. Instr. 2014, 30, 32–42.
[CrossRef]

31. Hart, S.G.; Staveland, L.E. Development of NASA-TLX (Task Load Index): Results of Empirical and
Theoretical Research. Adv. Psychol. 1988, 52, 139–183.

32. Paas, F.G.W.C. Training Strategies for Attaining Transfer of Problem-Solving Skill in Statistics:
A Cognitive-Load Approach. J. Educ. Psychol. 1992, 84, 429–434. [CrossRef]

33. Beers, P.J.; Boshuizen, H.P.A.; Kirschner, P.A.; Gijselaers, W.; Westendorp, J. Cognitive load measurements
and stimulated recall interviews for studying the effects of information and communications technology.
Educ. Technol. Res. Dev. 2008, 56, 309–328. [CrossRef]

34. Jenkinson, J. Measuring the Effectiveness of Educational Technology: What are we Attempting to Measure?
Electron. J. e-Learn. 2009, 7, 273–280.

35. Prokop, M.; Pilař, L.; Tichá, I. Impact of think-aloud on eye-tracking: A comparison of concurrent and
retrospective think-aloud for research on decision-making in the game environment. Sensors 2020, 20, 2750.
[CrossRef]

36. Barkaoui, K. Think-aloud protocols in research on essay rating: An empirical study of their veridicality and
reactivity. Lang. Test. 2011, 28, 51–75. [CrossRef]

http://dx.doi.org/10.7763/IJIET.2013.V3.241
http://dx.doi.org/10.1007/s10648-019-09465-5
http://dx.doi.org/10.1023/B:TRUC.0000021806.17516.d0
http://dx.doi.org/10.1207/S15326985EP3801_1
http://dx.doi.org/10.1207/S15326985EP3801_7
http://dx.doi.org/10.3758/s13428-013-0334-1
http://dx.doi.org/10.1207/S15326985EP3801_8
http://dx.doi.org/10.1007/s10648-005-3951-0
http://dx.doi.org/10.1016/j.learninstruc.2013.12.001
http://dx.doi.org/10.1037/0022-0663.84.4.429
http://dx.doi.org/10.1007/s11423-006-9020-7
http://dx.doi.org/10.3390/s20102750
http://dx.doi.org/10.1177/0265532210376379


Sensors 2020, 20, 6857 13 of 13

37. Paskins, Z.; Sanders, T.; Croft, P.R.; Hassell, A.B. Exploring the Added Value of Video-Stimulated Recall in
Researching the Primary Care Doctor–Patient Consultation: A Process Evaluation. Int. J. Qual. Methods
2017, 16. [CrossRef]

38. Paas, F.G.W.C.; van Merriënboer, J.J.G. Variability of Worked Examples and Transfer of Geometrical
Problem-Solving Skills: A Cognitive-Load Approach. J. Educ. Psychol. 1994, 86, 122–133. [CrossRef]

39. Solhjoo, S.; Haigney, M.C.; McBee, E.; van Merrienboer, J.J.G.; Schuwirth, L.; Artino, A.R.A., Jr.; Battista, A.;
Ratcliffe, T.A.; Lee, H.D.; Durning, S.J. Heart Rate and Heart Rate Variability Correlate with Clinical Reasoning
Performance and Self-Reported Measures of Cognitive Load. Sci. Rep. 2019, 9, 14668. [CrossRef]

40. Nourbakhsh, N.; Wang, Y.; Chen, F. GSR and blink features for cognitive load classification. In Proceedings
of the IFIP Conference on Human-Computer Interaction, Cape Town, South Africa, 2–6 September 2013;
pp. 159–166.

41. Flick, U. An Introduction to Qualitative Research, 5th ed.; Sage: London, UK, 2014.
42. Braithwaite, J.; Watson, D.; Robert, J.; Mickey, R. A Guide for Analysing Electrodermal Activity (EDA) & Skin

Conductance Responses (SCRs) for Psychological Experiments; Technical report; University of Birmingham:
Birmingham, UK, 2013.

43. Creswell, J.W.; Clark, V.L.P. Designing and Conducting Mixed Methods Research, 2nd ed.; Sage: Thousand Oaks,
CA, USA, 2011.

44. Villanueva, I.; Valladares, M.; Goodridge, W. Use of galvanic skin responses, salivary biomarkers, and
self-reports to assess undergraduate student performance during a laboratory exam activity. J. Vis. Exp. 2016.
[CrossRef] [PubMed]

45. Villanueva, I.; Husman, J.; Christensen, D.; Youmans, K.; Khan, M.T.; Vicioso, P.; Lampkins, S.; Graham, M.C.
A cross-disciplinary and multi-modal experimental design for studying near-real-time authentic examination
experiences. J. Vis. Exp. 2019. [CrossRef] [PubMed]

46. Saldaña, J. The Coding Manual for Qualitative Researchers, 2nd ed.; SAGE Publication: London, UK, 2013.
47. Nowell, L.S.; Norris, J.M.; White, D.E.; Moules, N.J. Thematic Analysis: Striving to Meet the Trustworthiness

Criteria. Int. J. Qual. Methods 2017, 16, 1–13. [CrossRef]
48. Kivunja, C.; Kuyini, A.B. Understanding and Applying Research Paradigms in Educational Contexts. Int. J.

High. Educ. 2017, 6, 26. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1177/1609406917719623
http://dx.doi.org/10.1037/0022-0663.86.1.122
http://dx.doi.org/10.1038/s41598-019-50280-3
http://dx.doi.org/10.3791/53255
http://www.ncbi.nlm.nih.gov/pubmed/26891278
http://dx.doi.org/10.3791/60037
http://www.ncbi.nlm.nih.gov/pubmed/31545315
http://dx.doi.org/10.1177/1609406917733847
http://dx.doi.org/10.5430/ijhe.v6n5p26
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Research Context and Methodological Requirements 
	Cognitive Load in Education 
	Subjective Measures 
	Objective Measures 


	The Mixed Methods Approach 
	Phase 1—Convergent Data Collection 
	Observing Behaviors 
	Collecting EDA Data 

	Phase 2—Mixed Method Analysis 
	Phase 3 (Optional)—Sequential Explanatory Data Collection 

	Added Research Value and Conclusions 
	References

