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Abstract: The work is devoted to an analysis of interference torque of a gas-dynamic bearing 

gyroscope, while a condition with uniformly changed specific force and carrier angular velocity are 

taken into account. A five-degrees-of-freedom (5-DOF) model is established considering the 

translation and tilt of the rotor, which solves dynamic rotor equations and the Reynolds equation 

simultaneously. The model makes it possible to obtain the rotor trajectory under time-transient 

specific force and carrier angular velocity. The interference torque of the gyroscope is analyzed 

based on the rotor trajectory. Results indicate that the gas-dynamic bearings show a significant 

hysteresis effect with a perturbation of bearing force or bearing moment, which indicates the 

necessity of transient research. Interference torque is large when the carrier angular velocity starts 

to change or stops to change, and when the specific force stops to change. When the specific force 

change rate is less than 8.4 km/s3 with no change of the carrier angular velocity, the condition could 

be simplified as a steady state, which is consistent with the previous study. 
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1. Introduction 

Gas-dynamic bearing gyroscopes have gained wide acceptance with high precision. Their 

performance determines the precision of the inertial navigation system to a large extent [1–3]. They 

have been designed with gas-dynamic bearings to support the rotor. As gases are less viscous than 

liquid, and the environmental temperature has only a little impact on it, the rotational speed of gas-

dynamic bearing gyroscopes could reach 10,000~100,000 rotations per minute (rpm) [4]. Moreover, 

the high speed could greatly reduce the gyro error torque without increasing weight [5,6]. However, 

the flexibility of gas-dynamic bearings may lead to the rotor-eccentric motion, with the action of the 

specific force (the difference between acceleration vector and gravity acceleration vector) and the 

carrier angular velocity. Moreover, an error will occur as a result of the eccentricity [7]. It is 

challenging to reveal the mechanism of error transfer because of the nonlinear elasticity of the gas-

dynamic bearings and the complex five-degrees-of-freedom model (5-DOF) motion of the rotor. The 

key to correct the error is to predict the interference torque through rotor dynamics research, based 

on the theory described in the previous studies [7,8]. 

The dynamic characteristics of a rotor supported by gas-dynamic bearings have been 

investigated by many scholars. As the gyroscope outputs in real time, it is an effective method to 

solve the transient Reynolds equation and rotor dynamic equation simultaneously, which can 

accurately track the rotor trajectory [9]. Meybodi et al. [10] analyzed the effect of mass unbalance on 
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the characteristics of a gas-dynamic four-lobe bearing, with the Runge–Kutta method to track the 

rotor. Chen [11] applied the Q-Z decomposition method to study the vibration of the stepped shaft 

supported by gas bearings, dividing the stepped shaft into wheel disc and shaft segment. Bonello et 

al. [12–14] solved the Reynolds equation in the frequency domain, which is applied in the simulation 

of gas-dynamic foil bearing and rotor dynamics modeling of aero engines. Kim [15] solved the 

trajectory of the rotor with mass eccentricity and analyzed the condition for stability with the 

trajectory. Pronobis [16] compared the results obtained by the transient method and the linearized 

perturbation methods and applied the two methods to calculate the stability limits of a gas foil 

bearing. Du et al. [17] investigated the nonlinear whirl motion of a rotor supported by a gas-dynamic 

bearing, with the trajectories and phase portrait being obtained. Wang et al. [18] developed a method 

incorporating the differential transformation method with the finite difference method to study the 

coupling characteristics of rotor deformation and gas film pressure. Nielsen et al. [19,20] investigated 

the transient behaviors of a gas-dynamic foil bearing, including the harmonic vibrations with large 

journal unbalance. Liu et al. [21] adopted the two-dimensional narrow theory to the model of 

herringbone grooved journal gas bearings to analyze its stability. Zhang et al. [22] investigated the 

effects of temperature on the nonlinear dynamic behavior of a gas journal bearing for microengine. 

Wang [23] analyzed the dynamic response of a three-multilobe air bearing system for different rotor 

mass and bearing numbers using the differential transformation method and the finite difference 

method. Hassini [24] developed a novel method to lead a transient nonlinear calculation with 

linearized dynamic coefficients at different eccentricities, which has a certain improvement in the 

calculation speed. However, Bouzidane et al. [25] compared the linearized method with the method 

of solving the transient Reynolds equation and found that the accuracy of the linearized method is 

obviously lower under the condition of large amplitude. Zhang et al. [26] developed a method to 

track the rotor by predicting the rotor position in the next time step with states in the previous two 

steps, which improves the calculation speed too, but the effect of prediction is poor in the position of 

high nonlinearity, resulting to a divergence of the calculation. Bailey et al. [27] analyzed the dynamic 

rotor behavior with Navier slip boundary conditions and calculated the minimum clearance for 

various designs. 

Liu [28] studied the interference torque of a gas-floated gyroscope with surface roughness 

considered. He also assumed several manufacturing errors and analyzed the correlation between 

manufacturing errors and interference torque. Liang et al. [29] investigated the effects of film 

thickness, surface roughness, and slit width on the vortex torque of a gas-floated gyroscope. Li et al. 

[7,30] established a static error model of a three-floated gyroscope with a rotor supported on gas-

dynamic bearings and calculated the transient interference torque under the assumption that the 

specific force changes suddenly. However, the change of carrier angular velocity is ignored, which 

could lead to a dynamic error. In addition, many changing conditions cannot be simplified as sudden 

changes, and it is more general to decompose the changes into uniform changes. 

In this paper, a model is established considering the 5-DOF motion, including translation and 

tilt of the rotor. Rotor dynamic equations and the Reynolds equation are solved simultaneously to 

track the rotor trajectory. Hysteresis effects of the gas-dynamic bearings are studied, which shows 

the necessity to investigate the transient behavior with a nonlinear model. Transient interference 

torque curves are obtained considering a uniform change of the specific force and the carrier angular 

velocity. 

2. Mechanical Model 

The configuration of the gas-dynamic bearing gyroscope is shown in Figure 1. An angular 

displacement sensor, a torque converter and the coordinate system Obios are fixed on the carrier. The 

gyro unit could only rotate around the o-axis with the limit of the o-axis bearing. A pair of conical 

gas-dynamic bearings shown in Figure 2 are mounted oppositely inside the gyro unit. The rotor 

rotates at high speed around the s-axis and is supported by the gas film in the clearance between the 

rotor and the bearings. When the carrier rotates around the i-axis, the rotor generates a gyroscopic 

moment around the o-axis, which turns the gyro unit around the o-axis and influence the current in 
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the angular displacement sensor and the torque converter. The current is detected to estimate the 

angular velocity of the carrier around the i-axis. Under the influence of the carrier transient motion, 

as shown in Figure 3, the specific force f causes an apparent gravity Ff=-mf in the non-inertial reference 

frame Ob on the rotor, whose mass is m. The carrier angular velocity ωc causes a gyroscopic moment 

Mg on the rotor, and the angular acceleration of the rotor causes an inertial moment Min on the rotor. 

It is assumed that the rotor and the bearing are both rigid. The 5-DOF eccentric motion of the rotor 

includes the translation u=(ui, uo, us) and the tilting motion φi, φo, which are the components of rotation 

φ=(φi, φo, φs). The 5-DOF eccentric motion could change the clearance and produce bearing force F 

and bearing moment Mb. It is determined by the combined action of the bearing force, the apparent 

gravity, the bearing moment, the gyroscopic moment, and the inertial moment. As a result, an 

interference torque M is produced by the 5-DOF eccentric motion, and its o-component Mo is 

expressed by 

b r co o o iM M H      u F e                       (1) 

where eo is a unit vector in o-direction, Mbo is the o-component of Mb and ωci is the i-component of ωc. 
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Figure 1. Schematic of a gas-dynamic bearing gyroscope. 
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Figure 2. Schematic structure of gas-dynamic bearings. 
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Figure 3. Forces and moments acting on the rotor. 

The schematic structure of a gas-dynamic bearing is shown in Figure 2. The rotor is designed to 

be outside the bearings to get a larger polar moment of inertia, thereby increasing the sensitivity of 

the gyroscope. The geometry of the bearings is characterized by the bottom radius R, the taper kt and 

the width b. Grooves are carved on the surfaces in a spiral manner, characterized by groove depth hg 

and groove angle βg. The clearance between the bearings and the rotor is c, the spacing between the 

bearings is d, and the angular velocity of the rotor is ω. 

3. Mathematical Model 

3.1. Governing Equations 

The translation and tilting motion of the rotor in the reference frame Obios are governed by the 

following dynamic equations separately 

2

2
m m

t


  



u
f F 0                               (2) 

 
2

c
b c2

dd d

d dd t tt

   
           

ωφ φ
J M Jω ω                       (3) 

where J=diag(Jd, Jd, Jp) is the matrix for the moment of inertia, Jd is the moment of inertia of the rotor 

around the i-axis or o-axis, Jp is the moment of inertia of the rotor around the s-axis. As the rotation 

around s-axis φs is controlled by the current in the rotor winding, the 5-DOF motion of interest does 

not include φs. However, φs is listed as a component of φ only for the convenience of calculation. 

The bearing force and the bearing moment produced by the gas film are calculated from the 

integration of the pressure in the gas film, which is governed by the Reynolds equation for 

compressible gas. The gas film is assumed to be isothermal as a result of the temperature control 

system. The Knudsen number is around 0.03 calculated with the clearance c=2 μm, the ambient 

pressure Pa = 101.325 kPa and the ambient temperature Ta = 293 K. Hence, the effect of gas rarefaction 

needs to be considered, and the F-K model is adopted which is applicable for an arbitrary Knudsen 

number as a result of the rotor movement. Considering all mentioned above, the following modified 

Reynolds Equation (4) for the conical gas film is established in the coordinate system OθZ shown in 

Figure 4. 
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     (4) 



Sensors 2020, 20, 6852 5 of 16 

 

where μ is the viscosity of the gas, p is the pressure, h is the film thickness, and Q is the flow rate 

coefficient for the Poiseuille flow, calculated by: 

 
6.0972 2.40804 1.2477

1 ln 1Q
D D D

 
    

 
,   

g a2

ph
D

R T
            (5) 

where D is the inversed Knudsen number, with the gas constant Rg = 8.314 J/(molK). 
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Figure 4. Coordinate systems and grid system on the bearing surface. 

The film thickness is expressed as follows: 

 gh c h   u n                                (6) 

where n is the normal unit vector of the bearing surface, which points to the rotor obtained by 

   2cos , sin , ( 1) / 1k k   n                           (7) 

where ξ is the number identifying the bearing, with ξ = 1 for the bearing in the positive s-axis and ξ 

= 2 for the bearing in the negative s-axis. 

Then the bearing force and the bearing moment is calculated by 

 
2

1

p dA
  

 F n                               (8) 

 
2

b
1

p dA
  

 M n x                            (9) 

where Ω is the conical surface of the bearings, x = (i, o, s) is the position vector on the conical surface, 

obtained by the following relationship between OθZ and Obios: 

 

 
 

 

t t

t t
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( 1) / 2
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
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

  

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                       (10) 

It could be obtained from Equations (7) and (10) that the vectors n, x and s-axis are always in the 

same plane for any given point on the bearing surface. As a result, the s-component of Mb is 0, and 

therefore the s-components of all the terms in Equation (3) are equal to 0 when the s-component of ωc 

is ignored. 

Combining the Equations (2), (3), (8) and (9), the 5-DOF motion is governed by the following 

dynamic Equation 

 
2

b c2

d d

dd tt
  

q q
m G Q Q                         (11) 



Sensors 2020, 20, 6852 6 of 16 

 

where q=(ui, uo, us, φi, φo) is state vector of 5-DOF motion, including translation ui, uo, us, with the unit 

m, and tilting motion φi, φo, with the unit rad. m is the mass matrix, G is the gyroscopic matrix, Qb is 

the generalized bearing force vector, Qc is the generalized inertial force vector caused by the 5-DOF 

motion of the carrier. There is no control in this 5-DOF system. The matrixes and vectors are 

expressed as follows 

 

c c
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  (12) 

3.2. Numerical Method 

The rotor motion is influenced by the bearing force and the bearing moment, and vice versa. In 

addition, the coupling between translation and tilting motion is not negligible considering the cross 

stiffness and nonlinearity of gas-dynamic bearings. Therefore, Equations (4)–(6) and (12) need to be 

solved simultaneously. An explicit scheme with a tiny time step is adopted considering the rotor 

moves fast. The time step is set to 1 μs, scilicet 0.05% of a rotation period with rotating speed of rotor 

nr = 30,000 r/min. The Reynolds Equation (4) is solved with the finite differential method in every 

time step to obtain the gas film pressure. The grid system with 180 × 31 nodes and the coordinate 

system OθZ for numerical calculation is shown in Figure 4. The boundary condition for Equation (4) 

is expressed as Equation (13), scilicet adopting periodic boundary in the circumferential direction and 

setting the pressures in both head faces equal to the ambient pressure. 

 
(0, , ) (2 , , )

( ,0, ) ( ,1, ) a

p Z t p Z t

p t p t p 

 


 
                          (13) 

The initial condition is obtained by conducting a steady-state study with specific force f1 and 

carrier angular velocity ωc1. The following condition can be obtained for a steady state. 

 
2 2

0 0 0 02 2t t t t
t tt t

   

   
   

  

u u φ φ
0                (14) 

By plugging Equation (14) into Equation (2) and (3), the initial values are obtained as bearing 

force F(0)=mf1 and Mb(0)=-Jpω×ωc1. The steady-state equilibrium position corresponding to F(0) and 

Mb(0) is solved by the iteration method to initialize the displacement and tilting angle. The initial 

values of u and φ are guessed and compared with the corresponding bearing force and bearing 

moment until they are equal to F(0) and Mb(0). The perturbation method is employed to estimate the 

stiffness matrix and damping matrix and improve the efficiency of the iteration. The initial gas film 

thickness and pressure are obtained by solving Equations (4) and (6) with the initial displacement 

and tilting angle. 

The steps to solve the govern Equations could be summed up based on all the aforementioned 

theories, as shown in Figure 5. 
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Figure 5. Calculation flow chart. 

4. Results and Discussion 

Based on the analytical theory, numerical procedures were programmed with MATLAB. The 

main parameter values adopted for the numerical simulation are listed in Table 1. 
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Table 1. Parameters of the rotor-bearing system. 

Parameter Value 

Bearing  

Bottom radius, R (mm) 7.5 

Bearing taper, k 0.25 

Bearing width, b (mm) 6 

Bearing clearance, c (μm) 2 

Spacing between the bearings, d (mm) 8 

Groove depth, hg (μm) 1 

Number of grooves on each bearing, Ng 6 

Groove angle, βg (°) 45 

Rotor  

Mass, m (g) 60 

Rotating speed, nr (r/min) 30,000 

Moment of inertia around i-axis or o-axis, Jd (kg·m2) 4.4533×10-6 

Moment of inertia around s-axis, Jp (kg·m2) 5.308×10-6 

Lubricants  

Viscosity, μ [Pas] 1.79×10−5 

Ambient pressure, Pa [Pa] 1.013×105 

4.1. Hysteresis Loops of the Gas-Dynamic Bearings 

The nonlinear and complex response characteristics of the gas-dynamic bearing gyroscope are 

largely caused and reflected by the hysteresis effect of the gas-dynamic bearings. Four kinds of one-

directional perturbation were added, including triangular perturbation of the force Fi(t) = Fmaxtri(νt), 

harmonic perturbation of the force Fi(t) = Fmax − Fmaxcos(2πνt), triangular perturbation of the moment 

Mbi(t) = Mbmaxtri(νt) and harmonic perturbation of the moment Mbi(t) = Mbmax − Mbmaxcos(2πνt). The 

function tri(*) is defined by tri(x) = 2{x} for 0 ≤ {x} < 0.5 and tri(x) = 2 − 2{x} for 0.5 ≤ {x} < 1, where {*} is 

the decimal part function. The hysteresis loops are presented in Figure 6, calculated with the 

maximum of the force Fmax = 10 N, the maximum of the moment Mbmax = 0.01 N·m and the frequency 

ν = 250 Hz, 500 Hz, 1000 Hz, respectively. In general, the higher the frequency of excitation is, the 

bigger the area of the hysteresis loop is, which is consistent with the conclusion of reference [31]. The 

amplitude of rotor vibration is larger with the frequency ν = 250 Hz, the half of the rotating speed of 

the rotor, which could cause the superposition of the force vibration and half-frequency whirl. The 

hysteresis curves of triangular perturbation in Figure 6a,c show more tortuous and nonlinear 

compared with the curves of harmonic perturbation in Figure 6b,d. As the moment Moutput to 

determine the output current is expressed by Moutput = −Mo−u × F·e, the hysteresis effect of the gas-

dynamic bearing causes the hysteresis effect of the gyroscope. For harmonic perturbation with ν=1000 

Hz, the corresponding hysteresis loop of the gyroscope is shown in Figure 7, and it has a similar trend 

to Figure 6d. As a result, the output of the gyroscope is not only related to the current motion state 

but also to the previous motion state. Therefore, it is necessary to study the transient nonlinear 

behavior of gas-dynamic bearing gyroscope. 
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Figure 6. Hysteresis loops of the gas-dynamic bearings. (a) With a triangular perturbation of the force; 

(b) with a harmonic perturbation of the force; (c) with a triangular perturbation of the moment; (d) 

with a harmonic perturbation of the moment. 
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Figure 7. Hysteresis loops of the gyroscope. 

4.2. Response with Uniformly Changed Specific Force 

It is assumed that in time t < 0, a steady state of the rotor motion in the reference frame Obios is 

obtained with a constant specific force f1 and a constant angular velocity ωc1. In time 0 ≤ t < t1, the 

specific force and the angular velocity change with a constant rate. Until t = t1, the specific force is 

changed to f2, the angular velocity is changed to ωc1, and they maintained these values for t > t1. 

Results in Section 4.2–4.4 are obtained based on the assumption, the trajectory and the phase portrait 

of the rotor center are obtained, and the curves of the net force and the interference torque are plotted. 

Responses with uniformly changing specific force are shown in Figure 8, calculated with f1 = (−20 

−20 −20) m/s2, f2 = (0 −20 −20) m/s2, t1 = 1 ms and ωc1 = ωc2 = 0. When the specific force changes (before 

t1), the rotor moves smoothly to the new balance position, but mainly in the radial direction, while 

the axial displacement is small. When the specific force stops to change (after t1), the rotor whirls and 

spirals up along the axial direction and finally stops in the new equilibrium position. In Figure 8b, 

when the specific force changes, the speed of the rotor along the i-axis still fluctuates to a certain 

extent, which is always negative; that is, the rotor moves towards the balance position with speed 

fluctuating as a result of natural vibration. When the specific force stops changing, the phase 

trajectory of the rotor oscillates in a small range and tends to converge. In Figure 8c, the net force 
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fluctuates obviously, which shows a coincidence with the speed fluctuation in Figure 8b. The 

fluctuation decreases in intervals (0, t1) and (t1, ∞) and instantaneously increases at t1. In Figure 8d, 

the change of the specific force is nearly linear with time, while the specific force changes and 

fluctuates in a similar manner with the linear underdamping vibration when the specific force stops 

changing. The method to identify the linear underdamping vibration law is introduced in a previous 

study [8]. 

  
(a) (b) 

  
(c) (d) 

Figure 8. Response with uniformly changed specific force. (a) Trajectory of the rotor center; (b) phase 

portrait of the rotor center; (c) time response of the net force; (d) time response of the interference 

torque. 

The interference torque curves under different change rate of specific force are shown in Figure 

9, calculated with fixed f1 = (−20 −20 −20) m/s2 and f2 = (0 −20 −20) m/s2 and varying t1. The change rate 

of specific force is expressed by 
.
f =|f1−f2|/t1, and 

.
f = ∞ indicates the sudden change of specific force. 

The results are obtained by the following two methods: (1) the aforementioned transient method 

(TM) solving the transient Reynolds equation and rotor dynamic equation simultaneously, (2) the 

steady-state method (SM) ignoring the squeezing effect of the gas film proposed in a previous study 

[7]. The fluctuation of the interference torque curve increases with the increase of the specific force 

change rate. The sudden change of specific force causes larger fluctuation than the others, while the 

uniform change of specific force will not cause severe vibration. Even if the specific force change rate 

is as high as 40 km/s3, it should not be simplified as a sudden change. The interference torque curve 

is approximately a straight line when the specific force changes uniformly and remains constant 

when the specific force stops to change. The interference torque curves obtained by the two methods 

almost coincide with 
.
f < 8.4 km/s3, which is consistent with the deduction in reference [7].  
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Figure 9. Interference torque under different change rates of specific force. 

4.3. Response with Uniformly Changed Angular Velocity 

Responses with uniformly changing carrier angular velocity around i-axis and fixed specific 

force are shown in Figure 10, calculated with f1 = f2 = 0, t1 = 2 ms, ωc1 = (0 0 0) rad/s and ωc2 = (1 0 0) 

rad/s. When angular velocity begins to increase in the positive direction around i-axis, the rotor 

rotates in the negative direction around the i-axis relative to the carrier due to inertia. The relative 

angular velocity increases with the increase of the carrier angular velocity, for the period of time 0~t01 

shown in Figure 10a,b). The angular velocity of the rotor around the i-axis relative to the inertial 

reference frame causes the gyroscopic moment around the o-axis, which makes the rotor start to move 

around the o-axis for the period of time t01~t02. When the angular velocity of the rotor exceeds the 

angular velocity of the carrier because of the elasticity of the gas film, the gyro moment around the 

o-axis increases, and then the angular velocity of the rotor around the o-axis also increases, resulting 

in the gyroscopic moment around negative i-axis. Therefore, the angular velocity of the rotor relative 

to the carrier around the i-axis quickly returns to a negative value for t02~t03. The rotor repeatedly 

adjusts and approaches a dynamic balance state gradually. In this state, the relative angular 

displacement of the rotor is always ahead of the quasi-equilibrium position under the angular 

velocity of the carrier so as to provide the acceleration relative to the inertial reference frame, while 

the constantly changing bearing torque around the o-axis keeps balance with the gyro moment, for 

t03~t1. When the angular velocity of the carrier stops changing, the angular velocity of the rotor 

continues to increase around the i-axis under the action of the bearing moment, but the decrease of 

the bearing moment makes the angular acceleration decrease rapidly. After repeated adjustment, the 

rotor trajectory finally converges to the quasi-equilibrium position corresponding to ωc2. Therefore, 

when the angular velocity of the carrier changes, the angular motion of the rotor is influenced by 

unequal elasticity, whirl and gyroscopic precession, and the angular motion trajectory of the rotor is 

more complex. In the inertial reference frame, the gyro precession and half-frequency whirl directions 

caused by small perturbation are both consistent with the rotation direction. However, for the 

gyroscope with a non-inertial reference frame fixed on the carrier, the direction of gyro precession 

and half-frequency whirl may be inconsistent. For example, in the period of time t01~t02, the precession 

of the gyroscope makes the rotor rotate positively around the o-axis while the whirl makes the rotor 

rotate negatively around the o-axis. 

Without the influence of specific force, only the reaction moment of the bearing moment acts 

directly on the gyro unit and produces the feedback control current to estimate the carrier angular 

velocity, which is plotted to be compared with the theoretical value Mt = Hrωci in Figure 10c. The curve 

of –Mbo fluctuates around the curve of Mt, and they are merged together a few microseconds after the 

angular velocity stops changing, which also indicates that the output of the gyroscope is influenced 

by the previous motion state. The interference torque curve is shown in Figure 10d. The reaction 

moment of bearing moment fluctuates around the theoretical value. The amplitude of the interference 

torque increases suddenly when the carrier begins to rotate and stops accelerating but decreases 

gradually in the period when the angular velocity changes uniformly or no longer. 
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Figure 10. Response with uniformly changed angular velocity. (a) Tilting motion track; (b) phase 

portrait of tilting motion; (c) the reaction moment of the bearing moment and its theoretical value; (d) 

time response of the interference torque. 

Figure 11 shows the interference torque curves influenced by a variety of angular acceleration, 

obtained with f1 = f2 = 0, ωc1 = (0 0 0) rad/s, ωc2 = (1 0 0) rad/s and t1 = 1, 3, 4 ms, i.e., 
.

ω c = 1000, 333.3, 

250 rad/s2, which indicates that a smaller angular acceleration causes a smaller fluctuation of 

interference torque. 

Figure 12 shows the interference torque curves caused by an o-axis change of carrier angular 

velocity, obtained with f1 = f2 = 0, ωc1 = 0, ωc2 = (0 1 0) rad/s and t1 = 2 ms. The Δωc around the o-axis 

will produce a negative interference torque around the o-axis, which is caused by the inertia moment 

of the rotor, estimated by −Jd 

.
ω co = −2.25 N·mm.  
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Figure 11. Rotor angular trajectory and interference torque under different angular acceleration. 
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Figure 12. Transient interference torque with carrier angular velocity uniformly changing along o-

axis. 

4.4. Response with Uniformly Changed Specific Force and Angular Velocity 

If the specific force and angular velocity of the carrier change uniformly at the same time, 

response is presented in Figure 13, calculated with f1 = 0, f2 = (0 0 10) m/s2, t1 = 2 ms, ωc1 = 0 and ωc2 = 

(1 0 0) rad/s. The results show that the trajectory of the rotor has a similar trend with the case of only 

specific force change, while the rotor angular motion track has a similar trend with the case of only 

the carrier angular velocity change. However, the characteristics of coupling between the two factors 

are still obvious. For example, after t1 in Figure 13b, the center of the track circle caused by half-

frequency whirl shifts to one side with time. Because of the coupling effect of translation and tilt, part 

of the gas film becomes very thin, resulting in significantly nonlinear elasticity. The larger the radius 

of the whirl track is, the greater the difference of stiffness for each point on the trajectory circle is, and 

the greater the offset of the trajectory circle is, which causes the center of the trajectory circle to shift 

with time. With the decrease of whirl radius, the center of the trajectory circle gradually returns to 

the quasi-equilibrium position. 
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Figure 13. Response with specific force and carrier angular velocity changing simultaneously and 

uniformly. (a) Trajectory of the rotor center; (b) tilting motion track; (c) motion of the rotor centerline; 

(d) time response of the interference torque. 

5. Conclusions 

(1) The gas-dynamic bearings show a significant hysteresis effect with a perturbation of bearing 

force or bearing moment, which results in the hysteresis effect of the gyroscope. As a result, the 

output of the gyroscope is not only related to the current motion state but also to the previous motion 

state. 

(2) The change of the specific force is nearly linear with time, while the specific force changes 

and fluctuates in a similar manner with the linear underdamping vibration when the specific force 

stops changing. Even if the specific force change rate is up to 40 km/s3, it should not be simplified as 

a sudden change. The interference torque curves obtained by TM and SM almost coincide when the 

specific force change rate is less than 8.4 km/s3, which is consistent with the applicable domain of SM 

deducted in the previous study. 

(3) The amplitude of the interference torque increases suddenly when the carrier begins to rotate 

and stops accelerating but decreases gradually in the period when the angular velocity changes 

uniformly or no longer. An o-axis change of carrier angular velocity will produce a negative 

interference torque. 

For engineering practice, the linear and quadratic error should be tested by experiment first. 

Then, the method in this paper could be used to explore the trend of the nonlinear error caused by 

the flexibility of the gas-dynamic bearing. Moreover, finally, an experiment is needed to verify the 

numerical results. The advantage of using this method rather than only experiments is to accurately 

reveal the complex trend of the nonlinear error with fewer experiments. 
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