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Abstract: The work is devoted to an analysis of interference torque of a gas-dynamic bearing
gyroscope, while a condition with uniformly changed specific force and carrier angular velocity
are taken into account. A five-degrees-of-freedom (5-DOF) model is established considering the
translation and tilt of the rotor, which solves dynamic rotor equations and the Reynolds equation
simultaneously. The model makes it possible to obtain the rotor trajectory under time-transient
specific force and carrier angular velocity. The interference torque of the gyroscope is analyzed
based on the rotor trajectory. Results indicate that the gas-dynamic bearings show a significant
hysteresis effect with a perturbation of bearing force or bearing moment, which indicates the necessity
of transient research. Interference torque is large when the carrier angular velocity starts to change or
stops to change, and when the specific force stops to change. When the specific force change rate is
less than 8.4 km/s3 with no change of the carrier angular velocity, the condition could be simplified as
a steady state, which is consistent with the previous study.

Keywords: gas-dynamic bearing gyroscope; interference torque; five-degrees-of-freedom model

1. Introduction

Gas-dynamic bearing gyroscopes have gained wide acceptance with high precision.
Their performance determines the precision of the inertial navigation system to a large extent [1–3].
They have been designed with gas-dynamic bearings to support the rotor. As gases are less viscous
than liquid, and the environmental temperature has only a little impact on it, the rotational speed of
gas-dynamic bearing gyroscopes could reach 10,000~100,000 rotations per minute (rpm) [4]. Moreover,
the high speed could greatly reduce the gyro error torque without increasing weight [5,6]. However,
the flexibility of gas-dynamic bearings may lead to the rotor-eccentric motion, with the action of the
specific force (the difference between acceleration vector and gravity acceleration vector) and the carrier
angular velocity. Moreover, an error will occur as a result of the eccentricity [7]. It is challenging to
reveal the mechanism of error transfer because of the nonlinear elasticity of the gas-dynamic bearings
and the complex five-degrees-of-freedom model (5-DOF) motion of the rotor. The key to correct
the error is to predict the interference torque through rotor dynamics research, based on the theory
described in the previous studies [7,8].

The dynamic characteristics of a rotor supported by gas-dynamic bearings have been investigated
by many scholars. As the gyroscope outputs in real time, it is an effective method to solve the transient
Reynolds equation and rotor dynamic equation simultaneously, which can accurately track the rotor
trajectory [9]. Meybodi et al. [10] analyzed the effect of mass unbalance on the characteristics of a
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gas-dynamic four-lobe bearing, with the Runge–Kutta method to track the rotor. Chen [11] applied the
Q-Z decomposition method to study the vibration of the stepped shaft supported by gas bearings,
dividing the stepped shaft into wheel disc and shaft segment. Bonello et al. [12–14] solved the Reynolds
equation in the frequency domain, which is applied in the simulation of gas-dynamic foil bearing
and rotor dynamics modeling of aero engines. Kim [15] solved the trajectory of the rotor with mass
eccentricity and analyzed the condition for stability with the trajectory. Pronobis [16] compared the
results obtained by the transient method and the linearized perturbation methods and applied the two
methods to calculate the stability limits of a gas foil bearing. Du et al. [17] investigated the nonlinear
whirl motion of a rotor supported by a gas-dynamic bearing, with the trajectories and phase portrait
being obtained. Wang et al. [18] developed a method incorporating the differential transformation
method with the finite difference method to study the coupling characteristics of rotor deformation
and gas film pressure. Nielsen et al. [19,20] investigated the transient behaviors of a gas-dynamic
foil bearing, including the harmonic vibrations with large journal unbalance. Liu et al. [21] adopted
the two-dimensional narrow theory to the model of herringbone grooved journal gas bearings to
analyze its stability. Zhang et al. [22] investigated the effects of temperature on the nonlinear dynamic
behavior of a gas journal bearing for microengine. Wang [23] analyzed the dynamic response of a
three-multilobe air bearing system for different rotor mass and bearing numbers using the differential
transformation method and the finite difference method. Hassini [24] developed a novel method to
lead a transient nonlinear calculation with linearized dynamic coefficients at different eccentricities,
which has a certain improvement in the calculation speed. However, Bouzidane et al. [25] compared
the linearized method with the method of solving the transient Reynolds equation and found that
the accuracy of the linearized method is obviously lower under the condition of large amplitude.
Zhang et al. [26] developed a method to track the rotor by predicting the rotor position in the next time
step with states in the previous two steps, which improves the calculation speed too, but the effect
of prediction is poor in the position of high nonlinearity, resulting to a divergence of the calculation.
Bailey et al. [27] analyzed the dynamic rotor behavior with Navier slip boundary conditions and
calculated the minimum clearance for various designs.

Liu [28] studied the interference torque of a gas-floated gyroscope with surface roughness
considered. He also assumed several manufacturing errors and analyzed the correlation between
manufacturing errors and interference torque. Liang et al. [29] investigated the effects of film thickness,
surface roughness, and slit width on the vortex torque of a gas-floated gyroscope. Li et al. [7,30]
established a static error model of a three-floated gyroscope with a rotor supported on gas-dynamic
bearings and calculated the transient interference torque under the assumption that the specific force
changes suddenly. However, the change of carrier angular velocity is ignored, which could lead to a
dynamic error. In addition, many changing conditions cannot be simplified as sudden changes, and it
is more general to decompose the changes into uniform changes.

In this paper, a model is established considering the 5-DOF motion, including translation and
tilt of the rotor. Rotor dynamic equations and the Reynolds equation are solved simultaneously to
track the rotor trajectory. Hysteresis effects of the gas-dynamic bearings are studied, which shows the
necessity to investigate the transient behavior with a nonlinear model. Transient interference torque
curves are obtained considering a uniform change of the specific force and the carrier angular velocity.

2. Mechanical Model

The configuration of the gas-dynamic bearing gyroscope is shown in Figure 1. An angular
displacement sensor, a torque converter and the coordinate system Obios are fixed on the carrier.
The gyro unit could only rotate around the o-axis with the limit of the o-axis bearing. A pair of conical
gas-dynamic bearings shown in Figure 2 are mounted oppositely inside the gyro unit. The rotor rotates
at high speed around the s-axis and is supported by the gas film in the clearance between the rotor
and the bearings. When the carrier rotates around the i-axis, the rotor generates a gyroscopic moment
around the o-axis, which turns the gyro unit around the o-axis and influence the current in the angular
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displacement sensor and the torque converter. The current is detected to estimate the angular velocity
of the carrier around the i-axis. Under the influence of the carrier transient motion, as shown in Figure 3,
the specific force f causes an apparent gravity Ff = −mf in the non-inertial reference frame Ob on the
rotor, whose mass is m. The carrier angular velocity ωc causes a gyroscopic moment Mg on the rotor,
and the angular acceleration of the rotor causes an inertial moment Min on the rotor. It is assumed
that the rotor and the bearing are both rigid. The 5-DOF eccentric motion of the rotor includes the
translation u = (ui, uo, us) and the tilting motion ϕi, ϕo, which are the components of rotationϕ = (ϕi,
ϕo, ϕs). The 5-DOF eccentric motion could change the clearance and produce bearing force F and
bearing moment Mb. It is determined by the combined action of the bearing force, the apparent gravity,
the bearing moment, the gyroscopic moment, and the inertial moment. As a result, an interference
torque M is produced by the 5-DOF eccentric motion, and its o-component Mo is expressed by

Mo = −Mbo − u× F · eo −Hrωci (1)

where eo is a unit vector in o-direction, Mbo is the o-component of Mb and ωci is the i-component of ωc.
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Figure 1. Schematic of a gas-dynamic bearing gyroscope.
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The schematic structure of a gas-dynamic bearing is shown in Figure 2. The rotor is designed to
be outside the bearings to get a larger polar moment of inertia, thereby increasing the sensitivity of the
gyroscope. The geometry of the bearings is characterized by the bottom radius R, the taper kt and
the width b. Grooves are carved on the surfaces in a spiral manner, characterized by groove depth hg

and groove angle βg. The clearance between the bearings and the rotor is c, the spacing between the
bearings is d, and the angular velocity of the rotor is ω.

3. Mathematical Model

3.1. Governing Equations

The translation and tilting motion of the rotor in the reference frame Obios are governed by the
following dynamic equations separately

mf− F + m
∂2u
∂t2 = 0 (2)

J

d2ϕ

dt2 +
dωc

dt

 = Mb + Jω×
(

dϕ
dt

+ωc

)
(3)

where J = diag(Jd, Jd, Jp) is the matrix for the moment of inertia, Jd is the moment of inertia of the rotor
around the i-axis or o-axis, Jp is the moment of inertia of the rotor around the s-axis. As the rotation
around s-axis ϕs is controlled by the current in the rotor winding, the 5-DOF motion of interest does
not include ϕs. However, ϕs is listed as a component ofϕ only for the convenience of calculation.

The bearing force and the bearing moment produced by the gas film are calculated from the
integration of the pressure in the gas film, which is governed by the Reynolds equation for compressible
gas. The gas film is assumed to be isothermal as a result of the temperature control system. The Knudsen
number is around 0.03 calculated with the clearance c = 2 µm, the ambient pressure Pa = 101.325 kPa
and the ambient temperature Ta = 293 K. Hence, the effect of gas rarefaction needs to be considered,
and the F-K model is adopted which is applicable for an arbitrary Knudsen number as a result of the
rotor movement. Considering all mentioned above, the following modified Reynolds Equation (4) for
the conical gas film is established in the coordinate system OθZ shown in Figure 4.

∂
∂Z

(
pQh3 ∂p

∂Z

)
+

1

(R + kbZ− kb)2
∂
∂θ

(
pQh3 ∂p

∂θ

)
= 6µω

∂(ph)
∂θ

+ 12µ
∂(ph)
∂t

(4)

where µ is the viscosity of the gas, p is the pressure, h is the film thickness, and Q is the flow rate
coefficient for the Poiseuille flow, calculated by:

Q = 1 +
6.0972

D
+

2.40804
D

ln
(
1 +

1.2477
D

)
, D =

ph

µ
√

2RgTa
(5)

where D is the inversed Knudsen number, with the gas constant Rg = 8.314 J/(mol·K).
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The film thickness is expressed as follows:

h = c + u · n + hg (6)

where n is the normal unit vector of the bearing surface, which points to the rotor obtained by

n =
(

cosθ, sinθ, (−1)ξk
)
/
√

1 + k2 (7)

where ξ is the number identifying the bearing, with ξ = 1 for the bearing in the positive s-axis and
ξ = 2 for the bearing in the negative s-axis.

Then the bearing force and the bearing moment is calculated by

F =
2∑
ξ=1

x

Ω

pndA (8)

Mb =
2∑
ξ=1

x

Ω

pn× xdA (9)

where Ω is the conical surface of the bearings, x = (i, o, s) is the position vector on the conical surface,
obtained by the following relationship between OθZ and Obios:

i = (R + ktbZ− ktb) cosθ
o = (R + ktbZ− ktb) sinθ
s = −(−1)ξ(bZ + d/2)

(10)

It could be obtained from Equations (7) and (10) that the vectors n, x and s-axis are always in
the same plane for any given point on the bearing surface. As a result, the s-component of Mb is 0,
and therefore the s-components of all the terms in Equation (3) are equal to 0 when the s-component of
ωc is ignored.

Combining the Equations (2), (3), (8) and (9), the 5-DOF motion is governed by the following
dynamic Equation

m
d2q
dt2 + G

dq
dt

= Qb + Qc (11)

where q = (ui, uo, us, ϕi, ϕo) is state vector of 5-DOF motion, including translation ui, uo, us, with the
unit m, and tilting motion ϕi, ϕo, with the unit rad. m is the mass matrix, G is the gyroscopic matrix,
Qb is the generalized bearing force vector, Qc is the generalized inertial force vector caused by the
5-DOF motion of the carrier. There is no control in this 5-DOF system. The matrixes and vectors are
expressed as follows

m =


m

m
m

Jd

Jd


, G =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 Jpω
0 0 0 −Jpω 0


, Qc =



−m fi
−m fo
−m fs
Jd

dωci
dt + Jpωωco

Jd
dωco

dt − Jpωωci


,

Qb =
2∑
ξ=1

s

Ω

p
√

1+k2



cosθ
sinθ
(−1)ξk
−(−1)ξ(Rkt + k2

t bZ− k2
t b + bZ + d/2) + sinθ

(−1)ξ(Rkt + k2
t bZ− k2

t b + bZ + d/2) cosθ


dA

(12)
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3.2. Numerical Method

The rotor motion is influenced by the bearing force and the bearing moment, and vice versa.
In addition, the coupling between translation and tilting motion is not negligible considering the cross
stiffness and nonlinearity of gas-dynamic bearings. Therefore, Equations (4)–(6) and (12) need to be
solved simultaneously. An explicit scheme with a tiny time step is adopted considering the rotor
moves fast. The time step is set to 1 µs, scilicet 0.05% of a rotation period with rotating speed of rotor
nr = 30,000 r/min. The Reynolds Equation (4) is solved with the finite differential method in every
time step to obtain the gas film pressure. The grid system with 180 × 31 nodes and the coordinate
system OθZ for numerical calculation is shown in Figure 4. The boundary condition for Equation (4) is
expressed as Equation (13), scilicet adopting periodic boundary in the circumferential direction and
setting the pressures in both head faces equal to the ambient pressure.{

p(0, Z, t) = p(2π, Z, t)
p(θ, 0, t) = p(θ, 1, t) = pa

(13)

The initial condition is obtained by conducting a steady-state study with specific force f 1 and
carrier angular velocity ωc1. The following condition can be obtained for a steady state.

∂u
∂t
|t=0 =

∂2u
∂t2 |t=0 =

∂ϕ

∂t
|t=0 =

∂2ϕ

∂t2 |t=0 = 0 (14)

By plugging Equation (14) into Equations (2) and (3), the initial values are obtained as bearing
force F(0) = mf 1 and Mb(0) = −Jpω × ωc1. The steady-state equilibrium position corresponding to F(0)
and Mb(0) is solved by the iteration method to initialize the displacement and tilting angle. The initial
values of u and ϕ are guessed and compared with the corresponding bearing force and bearing
moment until they are equal to F(0) and Mb(0). The perturbation method is employed to estimate the
stiffness matrix and damping matrix and improve the efficiency of the iteration. The initial gas film
thickness and pressure are obtained by solving Equations (4) and (6) with the initial displacement and
tilting angle.

The steps to solve the govern Equations could be summed up based on all the aforementioned
theories, as shown in Figure 5.Sensors 2020, 20, x FOR PEER REVIEW 7 of 15 
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4. Results and Discussion

Based on the analytical theory, numerical procedures were programmed with MATLAB. The main
parameter values adopted for the numerical simulation are listed in Table 1.

Table 1. Parameters of the rotor-bearing system.

Parameter Value

Bearing
Bottom radius, R (mm) 7.5
Bearing taper, k 0.25
Bearing width, b (mm) 6
Bearing clearance, c (µm) 2
Spacing between the bearings, d (mm) 8
Groove depth, hg (µm) 1
Number of grooves on each bearing, Ng 6
Groove angle, βg (◦) 45

Rotor
Mass, m (g) 60
Rotating speed, nr (r/min) 30,000
Moment of inertia around i-axis or o-axis, Jd (kg·m2) 4.4533 × 10−6

Moment of inertia around s-axis, Jp (kg·m2) 5.308 × 10−6

Lubricants
Viscosity, µ [Pa·s] 1.79 × 10−5

Ambient pressure, Pa [Pa] 1.013 × 105

4.1. Hysteresis Loops of the Gas-Dynamic Bearings

The nonlinear and complex response characteristics of the gas-dynamic bearing gyroscope are
largely caused and reflected by the hysteresis effect of the gas-dynamic bearings. Four kinds
of one-directional perturbation were added, including triangular perturbation of the force
Fi(t) = Fmaxtri(νt), harmonic perturbation of the force Fi(t) = Fmax − Fmaxcos(2πνt), triangular
perturbation of the moment Mbi(t) = Mbmaxtri(νt) and harmonic perturbation of the moment Mbi(t)
= Mbmax −Mbmaxcos(2πνt). The function tri(*) is defined by tri(x) = 2{x} for 0 ≤ {x} < 0.5 and tri(x) =

2 − 2{x} for 0.5 ≤ {x} < 1, where {*} is the decimal part function. The hysteresis loops are presented
in Figure 6, calculated with the maximum of the force Fmax = 10 N, the maximum of the moment
Mbmax = 0.01 N·m and the frequency ν = 250 Hz, 500 Hz, 1000 Hz, respectively. In general, the higher
the frequency of excitation is, the bigger the area of the hysteresis loop is, which is consistent with the
conclusion of reference [31]. The amplitude of rotor vibration is larger with the frequency ν = 250 Hz,
the half of the rotating speed of the rotor, which could cause the superposition of the force vibration and
half-frequency whirl. The hysteresis curves of triangular perturbation in Figure 6a,c show more tortuous
and nonlinear compared with the curves of harmonic perturbation in Figure 6b,d. As the moment
Moutput to determine the output current is expressed by Moutput = −Mo − u × F·e, the hysteresis effect
of the gas-dynamic bearing causes the hysteresis effect of the gyroscope. For harmonic perturbation
with ν = 1000 Hz, the corresponding hysteresis loop of the gyroscope is shown in Figure 7, and it has a
similar trend to Figure 6d. As a result, the output of the gyroscope is not only related to the current
motion state but also to the previous motion state. Therefore, it is necessary to study the transient
nonlinear behavior of gas-dynamic bearing gyroscope.
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Figure 6. Hysteresis loops of the gas-dynamic bearings. (a) With a triangular perturbation of the force;
(b) with a harmonic perturbation of the force; (c) with a triangular perturbation of the moment; (d) with
a harmonic perturbation of the moment.
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Figure 7. Hysteresis loops of the gyroscope.

4.2. Response with Uniformly Changed Specific Force

It is assumed that in time t < 0, a steady state of the rotor motion in the reference frame Obios
is obtained with a constant specific force f 1 and a constant angular velocity ωc1. In time 0 ≤ t < t1,
the specific force and the angular velocity change with a constant rate. Until t = t1, the specific force
is changed to f 2, the angular velocity is changed to ωc1, and they maintained these values for t > t1.
Results in Sections 4.2–4.4 are obtained based on the assumption, the trajectory and the phase portrait
of the rotor center are obtained, and the curves of the net force and the interference torque are plotted.

Responses with uniformly changing specific force are shown in Figure 8, calculated with f 1 = (−20
−20 −20) m/s2, f 2 = (0 −20 −20) m/s2, t1 = 1 ms and ωc1 = ωc2 = 0. When the specific force changes
(before t1), the rotor moves smoothly to the new balance position, but mainly in the radial direction,
while the axial displacement is small. When the specific force stops to change (after t1), the rotor whirls
and spirals up along the axial direction and finally stops in the new equilibrium position. In Figure 8b,
when the specific force changes, the speed of the rotor along the i-axis still fluctuates to a certain extent,
which is always negative; that is, the rotor moves towards the balance position with speed fluctuating
as a result of natural vibration. When the specific force stops changing, the phase trajectory of the
rotor oscillates in a small range and tends to converge. In Figure 8c, the net force fluctuates obviously,
which shows a coincidence with the speed fluctuation in Figure 8b. The fluctuation decreases in
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intervals (0, t1) and (t1,∞) and instantaneously increases at t1. In Figure 8d, the change of the specific
force is nearly linear with time, while the specific force changes and fluctuates in a similar manner with
the linear underdamping vibration when the specific force stops changing. The method to identify the
linear underdamping vibration law is introduced in a previous study [8].
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Figure 8. Response with uniformly changed specific force. (a) Trajectory of the rotor center; (b) phase
portrait of the rotor center; (c) time response of the net force; (d) time response of the interference torque.

The interference torque curves under different change rate of specific force are shown in Figure 9,
calculated with fixed f 1 = (−20 −20 −20) m/s2 and f 2 = (0 −20 −20) m/s2 and varying t1. The change
rate of specific force is expressed by

.
f = |f 1 − f 2|/t1, and

.
f =∞ indicates the sudden change of specific

force. The results are obtained by the following two methods: (1) the aforementioned transient
method (TM) solving the transient Reynolds equation and rotor dynamic equation simultaneously,
(2) the steady-state method (SM) ignoring the squeezing effect of the gas film proposed in a previous
study [7]. The fluctuation of the interference torque curve increases with the increase of the specific
force change rate. The sudden change of specific force causes larger fluctuation than the others,
while the uniform change of specific force will not cause severe vibration. Even if the specific force
change rate is as high as 40 km/s3, it should not be simplified as a sudden change. The interference
torque curve is approximately a straight line when the specific force changes uniformly and remains
constant when the specific force stops to change. The interference torque curves obtained by the two
methods almost coincide with

.
f < 8.4 km/s3, which is consistent with the deduction in reference [7].
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Figure 9. Interference torque under different change rates of specific force.

4.3. Response with Uniformly Changed Angular Velocity

Responses with uniformly changing carrier angular velocity around i-axis and fixed specific force
are shown in Figure 10, calculated with f 1 = f 2 = 0, t1 = 2 ms, ωc1 = (0 0 0) rad/s and ωc2 = (1 0 0)
rad/s. When angular velocity begins to increase in the positive direction around i-axis, the rotor rotates
in the negative direction around the i-axis relative to the carrier due to inertia. The relative angular
velocity increases with the increase of the carrier angular velocity, for the period of time 0~t01 shown in
Figure 10a,b). The angular velocity of the rotor around the i-axis relative to the inertial reference frame
causes the gyroscopic moment around the o-axis, which makes the rotor start to move around the
o-axis for the period of time t01~t02. When the angular velocity of the rotor exceeds the angular velocity
of the carrier because of the elasticity of the gas film, the gyro moment around the o-axis increases,
and then the angular velocity of the rotor around the o-axis also increases, resulting in the gyroscopic
moment around negative i-axis. Therefore, the angular velocity of the rotor relative to the carrier
around the i-axis quickly returns to a negative value for t02~t03. The rotor repeatedly adjusts and
approaches a dynamic balance state gradually. In this state, the relative angular displacement of the
rotor is always ahead of the quasi-equilibrium position under the angular velocity of the carrier so as to
provide the acceleration relative to the inertial reference frame, while the constantly changing bearing
torque around the o-axis keeps balance with the gyro moment, for t03~t1. When the angular velocity of
the carrier stops changing, the angular velocity of the rotor continues to increase around the i-axis
under the action of the bearing moment, but the decrease of the bearing moment makes the angular
acceleration decrease rapidly. After repeated adjustment, the rotor trajectory finally converges to the
quasi-equilibrium position corresponding to ωc2. Therefore, when the angular velocity of the carrier
changes, the angular motion of the rotor is influenced by unequal elasticity, whirl and gyroscopic
precession, and the angular motion trajectory of the rotor is more complex. In the inertial reference
frame, the gyro precession and half-frequency whirl directions caused by small perturbation are both
consistent with the rotation direction. However, for the gyroscope with a non-inertial reference frame
fixed on the carrier, the direction of gyro precession and half-frequency whirl may be inconsistent.
For example, in the period of time t01~t02, the precession of the gyroscope makes the rotor rotate
positively around the o-axis while the whirl makes the rotor rotate negatively around the o-axis.

Without the influence of specific force, only the reaction moment of the bearing moment acts
directly on the gyro unit and produces the feedback control current to estimate the carrier angular
velocity, which is plotted to be compared with the theoretical value Mt = Hrωci in Figure 10c. The curve
of –Mbo fluctuates around the curve of Mt, and they are merged together a few microseconds after the
angular velocity stops changing, which also indicates that the output of the gyroscope is influenced by
the previous motion state. The interference torque curve is shown in Figure 10d. The reaction moment
of bearing moment fluctuates around the theoretical value. The amplitude of the interference torque
increases suddenly when the carrier begins to rotate and stops accelerating but decreases gradually in
the period when the angular velocity changes uniformly or no longer.
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Figure 10. Response with uniformly changed angular velocity. (a) Tilting motion track; (b) phase
portrait of tilting motion; (c) the reaction moment of the bearing moment and its theoretical value;
(d) time response of the interference torque.

Figure 11 shows the interference torque curves influenced by a variety of angular acceleration,
obtained with f 1 = f 2 = 0, ωc1 = (0 0 0) rad/s, ωc2 = (1 0 0) rad/s and t1 = 1, 3, 4 ms, i.e.,

.
ωc = 1000,

333.3, 250 rad/s2, which indicates that a smaller angular acceleration causes a smaller fluctuation of
interference torque.
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Figure 11. Rotor angular trajectory and interference torque under different angular acceleration.

Figure 12 shows the interference torque curves caused by an o-axis change of carrier angular
velocity, obtained with f 1 = f 2 = 0,ωc1 = 0,ωc2 = (0 1 0) rad/s and t1 = 2 ms. The ∆ωc around the o-axis
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will produce a negative interference torque around the o-axis, which is caused by the inertia moment
of the rotor, estimated by −Jd

.
ω co = −2.25 N·mm.
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4.4. Response with Uniformly Changed Specific Force and Angular Velocity

If the specific force and angular velocity of the carrier change uniformly at the same time,
response is presented in Figure 13, calculated with f 1 = 0, f 2 = (0 0 10) m/s2, t1 = 2 ms, ωc1 = 0 and
ωc2 = (1 0 0) rad/s. The results show that the trajectory of the rotor has a similar trend with the case of
only specific force change, while the rotor angular motion track has a similar trend with the case of
only the carrier angular velocity change. However, the characteristics of coupling between the two
factors are still obvious. For example, after t1 in Figure 13b, the center of the track circle caused by
half-frequency whirl shifts to one side with time. Because of the coupling effect of translation and tilt,
part of the gas film becomes very thin, resulting in significantly nonlinear elasticity. The larger the
radius of the whirl track is, the greater the difference of stiffness for each point on the trajectory circle
is, and the greater the offset of the trajectory circle is, which causes the center of the trajectory circle to
shift with time. With the decrease of whirl radius, the center of the trajectory circle gradually returns to
the quasi-equilibrium position.
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Figure 13. Response with specific force and carrier angular velocity changing simultaneously and
uniformly. (a) Trajectory of the rotor center; (b) tilting motion track; (c) motion of the rotor centerline;
(d) time response of the interference torque.
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5. Conclusions

(1) The gas-dynamic bearings show a significant hysteresis effect with a perturbation of bearing
force or bearing moment, which results in the hysteresis effect of the gyroscope. As a result, the output
of the gyroscope is not only related to the current motion state but also to the previous motion state.

(2) The change of the specific force is nearly linear with time, while the specific force changes
and fluctuates in a similar manner with the linear underdamping vibration when the specific force
stops changing. Even if the specific force change rate is up to 40 km/s3, it should not be simplified as a
sudden change. The interference torque curves obtained by TM and SM almost coincide when the
specific force change rate is less than 8.4 km/s3, which is consistent with the applicable domain of SM
deducted in the previous study.

(3) The amplitude of the interference torque increases suddenly when the carrier begins to rotate and
stops accelerating but decreases gradually in the period when the angular velocity changes uniformly
or no longer. An o-axis change of carrier angular velocity will produce a negative interference torque.

For engineering practice, the linear and quadratic error should be tested by experiment first.
Then, the method in this paper could be used to explore the trend of the nonlinear error caused by
the flexibility of the gas-dynamic bearing. Moreover, finally, an experiment is needed to verify the
numerical results. The advantage of using this method rather than only experiments is to accurately
reveal the complex trend of the nonlinear error with fewer experiments.
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31. Tkacz, E.; Kozanecki, Z.; Kozanecka, D.; Łagodziński, J. A self-acting gas journal bearing with a flexibly
supported foil—Numerical model of bearing dynamics. Int. J. Struct. Stab. Dyn. 2017, 17, 1740012. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.cnsns.2011.04.012
http://dx.doi.org/10.1016/j.jsv.2014.03.001
http://dx.doi.org/10.1016/j.jsv.2017.10.036
http://dx.doi.org/10.1177/0954406211412319
http://dx.doi.org/10.1115/1.1792676
http://dx.doi.org/10.1016/j.jsv.2019.06.034
http://dx.doi.org/10.1080/10402004.2015.1103924
http://dx.doi.org/10.1016/j.na.2008.02.108
http://dx.doi.org/10.1177/1350650117689985
http://dx.doi.org/10.1016/j.ymssp.2020.106983
http://dx.doi.org/10.1080/10402004.2015.1124305
http://dx.doi.org/10.1080/10402004.2013.788238
http://dx.doi.org/10.1177/0954410012468688
http://dx.doi.org/10.1017/jfm.2017.142
http://dx.doi.org/10.1016/S1000-9361(11)60011-3
http://dx.doi.org/10.1142/S0219455417400120
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Mechanical Model 
	Mathematical Model 
	Governing Equations 
	Numerical Method 

	Results and Discussion 
	Hysteresis Loops of the Gas-Dynamic Bearings 
	Response with Uniformly Changed Specific Force 
	Response with Uniformly Changed Angular Velocity 
	Response with Uniformly Changed Specific Force and Angular Velocity 

	Conclusions 
	References

