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Abstract: In prognostics and health management (PHM), the majority of fault detection and diagnosis
is performed by adopting segregated methodology, where electrical faults are detected using
motor current signature analysis (MCSA), while mechanical faults are detected using vibration,
acoustic emission, or ferrography analysis. This leads to more complicated methods for overall
fault detection and diagnosis. Additionally, the involvement of several types of data makes system
management difficult, thus increasing computational cost in real-time. Aiming to resolve that,
this work proposes the use of the embedded electrical current signals of the control unit (MCSA) as
an approach to detect and diagnose mechanical faults. The proposed fault detection and diagnosis
method use the discrete wavelet transform (DWT) to analyze the electric motor current signals in
the time-frequency domain. The technique decomposes current signals into wavelets, and extracts
distinguishing features to perform machine learning (ML) based classification. To achieve an acceptable
level of classification accuracy for ML-based classifiers, this work extends to presenting a methodology
to extract, select, and infuse several types of features from the decomposed wavelets of the original
current signals, based on wavelet characteristics and statistical analysis. The mechanical faults under
study are related to the rotate vector (RV) reducer mechanically coupled to electric motors of the
industrial robot Hyundai Robot YS080 developed by Hyundai Robotics Co. The proposed approach
was implemented in real-time and showed satisfying results in fault detection and diagnosis for the
RV reducer, with a classification accuracy of 96.7%.

Keywords: prognostics and health management (PHM); fault detection and diagnosis; feature
selection; machine learning

1. Introduction

With the advancement in the field of automation and control, modern industrial systems have
adopted programmed robotics arrangements to execute tasks autonomously with minimum human
interference. These robots act as basic building blocks in the automation of industrial systems,
and over time, their continuous operation in manufacturing processes causes the degradation of
constituent sub-systems and components. Without proper maintenance, this degradation can create
several faults in the system, which in turn causes unexpected shutdowns and production loss to
the manufacturers. To address this, researchers are creating novel health monitoring, diagnostics,
prognostic, and maintenance strategies that are collectively known as prognostics and health
management (PHM). PHM is a mechanism of preventive measures that deliver comprehensive and
tailored solutions for the industrial health system, management, and prediction. In industrial systems,
health refers to a certain industrial application or component’s condition, efficiency, and remaining
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useful lifetime (RUL). PHM can be seen as a systematic approach to effective and productive health
management systems [1]. PHM combines the detection of an initiating fault (fault detection), isolation,
recognition of its origin, fault type (fault diagnostics), and the prediction of the remaining useful life
(prognostics). Figure 1 shows the basic architecture of the PHM system. PHM has become a critical
method to identify system failures that can cause major damage to the environment and the user. It has
emerged as an integral means of delivering a competitive advantage in the international market by
enhancing efficiency, sustainability, security, and accessibility. In recent years, ideas and components
of the PHM under different names have been developed independently in various fields that include
mechanical, electrical engineering, and statistical science.
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PHM can be utilized at both the component and system levels. Generally, the component
level PHM focuses on monitoring the health of individual components (such as electrical and
electronic devices, mechanical reducers, and engines), taking into account environmental, operational,
and performance-related parameters to determine if the health of the monitored component is degraded
by the time [2,3]. Meanwhile, the system level PHM analyzes the overall system health by taking into
account the system architecture, system function, and process-related parameters [4]. Over the past
years, there has been sustained research activity in PHM, especially with the immense development in
the field of artificial intelligence (AI), to where it is now possible to create methodologies that utilize
the decision-making capabilities of AI tools, such as deep learning (DL) and machine learning (ML),
to develop a fault diagnostics and prognostics system in an efficacious way. Several researchers have
been working on the design of such a system at both component and system levels. PHM methods can
be categorized generally as either mathematical model-based or data-driven [5–7]. The mathematical
model-based methods include knowledge of the basic principles of the object under inspection, such as
material properties and structural features [8,9], whereas data-driven methods extract the information
from the empirical data, to predict the health of a certain component or system [10,11]. With the easy
availability of industrial data of different components and systems, data-driven methods, including DL
and ML, are gaining popularity among PHM applications.

In particular, DL is considered to be well equipped in providing solutions for issues such as
large-scale data processing [12] and the automatic derivation of meaningful features [13], as well as
transferring knowledge between operating conditions and results. As many researchers have applied DL
to PHM applications, they have significantly focused on fault diagnosis or prognosis [14,15], while others
focus on applications to a specific item, such as a bearing or electronic system [16–18]. However,
when it comes to commercialization and real-time implementation of DL methods, computational cost
becomes much higher than typical ML methods, because of the huge volume of data involved in the
extensive feature extraction and learning process. In a recent study published by MIT(Massachusetts
Institute of Technology) [19], the computational limits of DL were analyzed, resulting in a claim that
the computational requirements of DL have escalated rapidly. This increase in computational power
became critical to enhancing performance. The authors raised concerns that if the present development
persists, these computational criteria will soon become prohibitive both technically and economically.
The study indicated that DL development would be restricted by its evaluation metrics and that the
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ML society would either improve the performance of DL significantly or switch to more efficient
ML techniques.

On the other hand, ML has achieved equally significant results. It was effectively used to solve
the problems related to clustering, regression, classification, or data dimensionality reduction [20].
ML has demonstrated its tremendous capabilities in a variety of ways. ML was used to develop
several useful systems such as the Go-playing system [21], cars with the self-driving ability [22],
and image classification [23]. As a result, various aspects of our everyday life are driven by ML
algorithms, such as image and speech recognition [24,25], website searching [26], fraud detection [27],
email segregation [28], credit count [29], and many more. Data obtained from a computer by
different sensors under varying operating conditions are the basis of ML-based fault detection
and diagnosis systems. The output of the sensors is generally time series. Features are normally
derived using an analysis scheme based on time, frequency, or time-frequency domain analysis.
The techniques for studying the frequency domain encompass envelope analysis [30] and high-order
spectral analysis [31]. Whereas, techniques for the time-domain analysis include root medium square,
high-order statistics, and short-speed impulse [32,33]. Time-frequency domain analysis techniques
include Hilbert–Hung, short-time Fourier, and wavelet transforms [34,35]. ML’s key challenge is the
tedious and time-consuming process of manually extracting features that require expert knowledge.
ML-based classifier might be less accurate than DL without proper discriminant feature extraction
and selection. However, if the extraction and selection of the features are performed correctly with
knowledge about the type of input data being utilized, greater classification accuracy can be achieved.

Subsequently, several methods for fault detection and diagnoses, such as vibration analysis [36–38],
electromagnetic field monitoring [39], MCSA analysis, chemical analysis, infrared signal analysis [40–43],
and partial release measurement, have been examined. These fault detection and diagnosis methods are
specifically limited to detect the electrical and mechanical faults related only to the electric motor. In an
industrial environment, the robots use electric motors coupled with some mechanical parts, such as
rotate vector (RV) reducer. This is an additional mechanical part rather than an integral motor part,
conjoined with the electric motor to increase or decrease the speed of rotation (rpm). The performance
of these reducers degrade over time, and cause the robotic system to work less efficiently with greater
power consumption. Normally this happens due to damaged gears inside of the reducer caused by
misaligned or cracked teeth. Previously, this type of reducer fault was detected through different
procedures, among which the most common use vibration signal analysis, ferrography, or acoustic
emission analysis. While vibration analysis has frequently been used, it requires the use of costly
vibration sensors. Furthermore, it is difficult to place and install sensors in specific locations to record
the vibration signals. The surrounding environment can also create noise, rendering the sensor readings
inaccurate. As an alternative, MCSA has several advantages over vibration analysis. MCSA uses the
motor control unit’s embedded current signal, requiring no additional sensors, which results in low
cost, and a less complex system. In addition, the current signals are unique, and are not easily affected
by the surrounding working environment. The problem with implementing MCSA for reducer fault
detection and diagnosis is that the reducer is not considered an integral part of the electric motor,
making it hard to implement such a technique to distinguish a faulty state. MCSA is typically used to
detect faults related to an electric motor. However, in this work we utilize the classification abilities of
ML-based classifiers, and present a holistic feature selection and feature extraction approach that is
integrated with MCSA, to detect and diagnose the faults related to the RV reducer for a component-level
PHM. Using the proposed methodology, the complexity involved in handling vibration signals for
such type of fault will be eliminated, and faults can be detected using only the three-phase electric
current of the motor. When it comes to real-time implementation, the fault detection system will
have a fast response with less computational time (compared to DL). The sensing components will be
enormously reduced, which will effectively decrease the cost of the overall system. Besides, we analyze
the procedures involved in developing such kinds of systems in real-time, and present practical results
obtained using an industrial robot.
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This paper is divided into the following sections: Section 1 provides an introduction, while Section 2
describes the materials and methods used. Section 3 then presents the results and discussion, and finally,
Section 4 concludes the study.

2. Materials and Methods

The experimental test bench used in this study has three key components: (1) the Hyundai Robot
YS080, (2) a controller device, and (3) a personal computer (PC). Figure 2 shows the components of
the experimental test bench. The proposed method is implemented on an industrial robot developed
by Hyundai Robotics. The robot model is YS080 and has a maximum payload capacity of 80 kgf.
The robot consists of six joints or axes. Each axis is equipped with an electric motor of different
specifications. With the help of electromechanical couplings, the robot can rotate 360 degrees along
each axis. Consequently, at each axis, the electric motors are coupled with reducers to increase or
decrease rotational speed. Figure 3 shows (a) the basic free-body diagram, and (b) an actual image of
the Hyundai Robot, YS080, identifying the six joints.
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The three-phase servo motors are mounted on each axis. The motors with different specifications
are mounted based on the amount of mechanical load that each axis holds. Axes 1, 2, and 3 are
composed of motors with electrical power higher than those of axes 4, 5, and 6. The motors have
different rotational speeds and frequencies. Table 1 summarizes the specifications of the electric
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motors on each axis. These electric motors are controlled by a controller device that is comprised of
three-phase servo motor drivers. The controller is further connected to a personal computer (PC) to
send commands to the robot to execute different types of tasks.

Table 1. Specifications of the electric motors.

Axes No. Power (kW) Speed (rpm) Voltage (V) Current (A) Frequency (Hz)

1, 2, 3 5.9 2000 200 25.1 166
4, 5, 6 2 3000 200 11.7 250

2.1. The Architecture of the Proposed Methodology

Figure 4 shows the basic flow chart of the proposed fault detection and diagnosis methodology
for the RV reducer based on MCSA with ML-based classification:

The proposed method is divided into the following steps:

1. Data acquisition
2. Data-preprocessing
3. Signal analysis
4. Deterministic analysis
5. Classification
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To implement the proposed method, an experimental test bench based on an industrial robot was
used. Initially, the data are recorded employing current sensors installed at each of the electric motors’
three-phases. Data are recorded for each motor installed at a specific point of the industrial robot.
The current signals data in three-phase is pre-processed, and data dimension reduction is performed
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to compress the data. The data dimension is reduced using the DQ0 transformation. The DQ0
transformation converts the three-phase current signals to two-phase current signals, without losing
any useful information. Using discrete wavelet transform (DWT), the two-phase current signals are
further analyzed in the time-frequency domain. DWT breaks down the signals into wavelets, which are
further used to extract features. Several features are extracted from the wavelets based on wavelet
characteristics and statistics. Then, these features are analyzed using feature selection algorithms
to select the most prominent and deterministic features. Upon determining the prominent features
among the extracted features, ML-based classifiers are trained to categorize among the various classes
of faults. A detailed description of each step is given in the subsequent subsections.

2.1.1. Data Acquisition

For MCSA, the motor current signals were recorded for each of the three phases of the electric
motor using current sensors. Figure 5 shows the basic block diagram of the data acquisition process
for one axis motor. The current sensors used for this purpose were the Hall Effect Base Linear Current
Sensors WCS6800. The current sensors are installed on each phase of the electric motors, i.e., 18 current
sensors in total to record 18 current signals for 6 electric motors. The current signals for each axis
motor are recoded using NI DAQ 9230 modules. This data acquisition module sends the recorded
data to a PC with LabView installed on it. The received signals are analyzed, and a final database
comprising of the signal information for each axis motor’s three-phase current signals is formed.
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The data are recorded simultaneously for each motor under different fault scenarios. In the first
scenario, an RV reducer eccentric bearing fault was inserted in the reducer coupled with the 4th axis
motor. In the second scenario, the fault was inserted by replacing the RV reducer with a deteriorated
one. The data were recorded for a total of three classes: normal, faulty (RV reducer eccentric bearing
fault), and faulty_aged (RV reducer aging fault). Figure 6 shows the location of the fault in the Hyundai
Robot with a detailed conceptual view. Figure 7 shows the fault modes with an example of a fault
specimen. The robot was made to operate in all directions along each axis of rotation for several cycles.
One cycle refers to the completion of one range of motion along one axis. The data were recorded for
10 cycles for each axis. Subsequently, the motors were operated at different speed profiles ranging
(10 to 100) % of the rated speed to observe the effect of the change on the speed of fault detection and
diagnosis system. Figure 8 shows the details of the equipment used in the data acquisition process.
The data are recorded for each axis motor, even though the fault is just inserted into the RV reducer at
axis 4, since due to mechanical coupling, a fault in the one axis might affect the operation and efficiency
of the other axis motors.
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2.1.2. Data Pre-Processing

The recorded data were pre-processed to reduce the dimension in such a way that the useful
information from the obtained three-phase current signals would not be missed. The data dimension
reduction is performed to make the data compression compact, and more manageable. The DQ0
transformation was used for this purpose. The DQ0 transformation is a well-proven technique for
dimensional reduction, converting a three-phase current signal to a DQ0 rotating reference frame.
This transformation projects the information from a 3D space to a 2D space, without any loss of
information. For the sinusoidal balanced signal, the projected signal describes a circle in the projected
plane. This simplifies the frequency estimation, since the circle simply corresponds to the analytic
signal. The transformation preserves the amplitude of the electrical components (such as voltages
and currents), and is widely used in electrical engineering to implement and design the control
parameters of an electric motor. Figure 9 shows the signal representation of (a) three-phase, and (b) 2D,
DQ transformation. Figure 10 shows the conceptual representation of the three-phase (abc) and (DQ0)
reference frames.
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There are two types of DQ0 transformations: cosine-based, and sine-based. Cosine-based
transformation aligns the rotating DQ frame with A-axis at t = 0, and results in d = 0, q = −1,
zero = 0. Sine-based transformation aligns the rotating DQ frame 90 degrees behind A-axis at t = 0,
and results in d = 1, q = 0, zero = 0. Both of these transformations differ in the aligned reference axis.
In the cosine-based transformation, the d-axis is aligned with the A-axis, whereas in the sine-based
transformation, the q-axis is aligned with the reference A-axis. When it comes to data dimensionality
reduction, the results for each case are similar. Therefore, in this work, we utilized the sine-based
transformation given in Equation (1):
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2.1.3. Signal Analysis

The signals extracted from the sensors are stored in a database. Signal analysis is performed to
analyze the pattern, and the difference between normal and faulty conditions. Signal analysis is the
most important step of any fault detection and diagnosis. Different kinds of analysis schemes are
developed for this purpose. These schemes can be categorized into time-domain, frequency-domain,
and time-frequency domain analyses. In the time-domain analysis, statistical features summarizing
the useful information in the time-domain are extracted from the signal [44–46]. On the other
hand, frequency-domain analysis is believed to work well in distinguishing some faults with certain
characteristics. Fourier transform is the most commonly used tool for frequency-domain signal analysis.
It breaks down a time waveform into its frequencies. Fast-Fourier Transform (FFT) is commonly
used for the study of time continuum signals. This transform utilizes the spectral frequency analysis
scheme. At a certain frequency, the signature of a fault may be a high degree of vibration. When it
comes to the processing of non-stationary signals (typically in machine faults), the time, and frequency
domain analysis have specific limits. Time-frequency domain analysis, a blend of frequency and
time domains, has been developed to address these limitations [47]. A typical method used for this
purpose is called the short-time Fourier transform (STFT) [48], which divides the entire waveform
signal through short-time windows and Fourier transforms into several segments. Another common
approach with a similar aim is wavelet transformation. Wavelet Transform is an analytical method
that uses a definition of spectral decomposition by the scaling concept for time-varying or non-static
signals. Of the many techniques in the past that have been developed for different signal-processing
applications, wavelet theory offers a dedicated and compact framework [49,50]. Multi-resolution signal
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analysis with a good time- and the frequency-localization mechanism is one of its several features. It is
effective for both stationary and nonstationary signal processing. The most commonly used method
among the wavelet transform is the discrete wavelet transform (DWT). In numerical and functional
analyses, a discrete transform wavelet (DWT) is a transform that discreetly samples the wavelets.
In comparison to the other wavelet transforms, a crucial advantage it has over Fourier transforms
(frequency-domain analysis) is temporal resolution, capturing both frequency and location information
(location in time). Therefore, in this work, we selected time-frequency domain analysis using DWT
to analyze the signals recorded under different fault conditions. Figure 11 shows the decomposition
tree of the recorded current signals. The three-phase current signals Iabc are pre-processed using DQ0
transformation. The output of the Dq0 transformation is a two-phase signal Idq in the d-axis and q-axis.
This two-phase signal is decomposed into wavelets using DWT.
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Considering Id[n] and Iq[n] as the original signal sequence, after the convolution with h and g
quadrature mirror filters, the signal sequence is decomposed into the approximation A1[n] and detail
components D1[n] at level 1. Then, the approximation component A1[n] is further decomposed into
A2[n] and D2[n] at the next level. This process is repeated until a desired level of decomposition is
achieved. Mathematically, it can be represented by Equations (2)–(5):

Am[n] =
∞∑

k=−∞

g[n− k]Id[k] (2)

Dm[n] =
∞∑

k=−∞

h[n− k]Id[k] (3)

Am[n] =
∞∑

k=−∞

g[n− k]Iq[k] (4)

Dm[n] =
∞∑

k=−∞

h[n− k]Iq[k] (5)

where, m, n, and k represent the scale of decomposition, sample points, and translation coefficients,
respectively. There are several types of the wavelet transform, but among them all, the most widely used
series of discrete wavelet transforms was developed by the Belgian mathematician Ingrid Daubechies
in 1988. The Daubechies wavelet transform is based on the use of the recurrence relationships to yield
increasingly fine and distinct samples of an implicated mother wavelet function [51,52]. In this work,
we focus on using 6-level Daubechies wavelets. Levels are selected by observing the decomposition
state of the signal at different levels.
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2.1.4. Deterministic Analysis

Upon implementing the DWT on the DQ0 transformed current signals, several features were
extracted from the decomposed wavelet signals. The feature extraction and selection is the most
important part of any fault detection and diagnosis system. Especially when it comes to the ML,
improper feature extraction and selection can cause poor classification accuracy. As mentioned in the
introduction section of the manuscript, ML’s key challenge is its tedious process of manual feature
extraction. ML-based classifier might be less accurate than DL without proper discriminant feature
extraction and selection. However, if the extraction and selection of the features are performed correctly
with the knowledge about the type of input data being utilized, greater classification accuracy can
be achieved.

In this work, we adopt an approach where we extract two types of features from the decomposed
wavelets of the original current signals. The first type of features are solely based on the wavelet
characteristics, and focus on the wavelet domain, whereas the second type of features are extracted
based on statistical analysis. The reason for extracting different types of features is that in typical
analysis methodologies, either the first type of feature is utilized, or the second type. Also, it is
dependent on the type of fault being diagnosed. In the case of RV reducer fault detection and diagnosis,
due to the high sensitivity of the fault, the typical feature extraction methodologies fail to provide
higher classification accuracy. Therefore, we developed a method where we extract features based on
both of the above-mentioned types, and implement deterministic feature selection to choose the most
prominent features among them. Doing so provides the power to utilize the properties of wavelet and
statistical domain simultaneously in an efficacious way. We name these two types as (1) wavelet specific
features, and (2) wavelet-based statistical features. Wavelet specific features extracted from wavelets
are the wavelet energy and Shannon wavelet entropy. Wavelet-based statistical features extracted from
wavelets are the mean, standard deviation, variance, kurtosis, and skewness. Tables 2 and 3 define the
wavelet specific features and wavelet-based statistical features, respectively.

Table 2. Definition of Wavelet Specific Features.

Feature Definition

Wavelet Energy

Energy (Di) =
N∑

j=1

∣∣∣Di j
∣∣∣2

Energy (Ai) =
N∑

j=1

∣∣∣Ai j
∣∣∣2

Shannon Wavelet Entropy Entropy (s) = s2
i log(s2

i )

Table 3. Definition of Wavelet-based statistical features.

Feature Definition

Mean µ =
1
N

N∑
i=1

ni

Standard Deviation STD =

√√√
1
N

N∑
i=1

(ni − µ)
2

Variance VAR =

√√√
1

N − 1

N∑
i=1

(ni − n)2

Kurtosis KRT =

∑N
i=1 (ni − µ)

4

(N − 1)σ4

Skewness SKW =

∑N
i=1 (ni − µ)

3

(N − 1)σ3



Sensors 2020, 20, 6845 12 of 30

In Tables 2 and 3, Di and Ai are the detail and approximation components of the ith level
decomposed signal, respectively; s is the input signal, and si is the coefficient of s an an orthonormal
basis; n is the value of one observation, and N is the number of observations. We extracted the features
from each detail coefficient (D1 to D6) for both the Id and Iq components of the current signal. A total
of 24 wavelet specific features and 60 wavelet-based statistical features were extracted. Tables 4 and 5
show the details of the extracted features. These extracted features were further passed through some
feature selection algorithm based on the correlation analysis and chi-square tests to reduce the number
of features. The features with prominent patterns were distinguished and used for the classification of
the faults. Figure 12 shows the flow chart of the feature selection scheme.

Table 4. Detail of the extracted wavelet specific features.

Wavelet
Specific
Features

D1 D2 D3 D4 D5 D6

Id
Energy_Id_D1
Entropy_Id_D1

Energy_Id_D2
Entropy_Id_D2

Energy_Id_D3
Entropy_Id_D3

Energy_Id_D4
Entropy_Id_D4

Energy_Id_D5
Entropy_Id_D5

Energy_Id_D6
Entropy_Id_D6

Iq
Energy_Iq_D1
Entropy_Iq_D1

Energy_Iq_D2
Entropy_Iq_D2

Energy_Iq_D3
Entropy_Iq_D3

Energy_Iq_D4
Entropy_Iq_D4

Energy_Iq_D5
Entropy_Iq_D5

Energy_Iq_D6
Entropy_Iq_D6

Table 5. Detail of the extracted wavelet-based statistical features.

Wavelet-Based
Statistical
Features

D1 D2 D3 D4 D5 D6

Id

Mean_Id_D1
STD_Id_D1
VAR_Id_D1
KRT_Id_D1
SKW_Id_D1

Mean_Id_D2
STD_Id_D2
VAR_Id_D2
KRT_Id_D2
SKW_Id_D2

Mean_Id_D3
STD_Id_D3
VAR_Id_D3
KRT_Id_D3
SKW_Id_D3

Mean_Id_D4
STD_Id_D4
VAR_Id_D4
KRT_Id_D4
SKW_Id_D4

Mean_Id_D5
STD_Id_D5
VAR_Id_D5
KRT_Id_D5
SKW_Id_D5

Mean_Id_D6
STD_Id_D6
VAR_Id_D6
KRT_Id_D6
SKW_Id_D6

Iq

Mean_Iq_D1
STD_Iq_D1
VAR_Iq_D1
KRT_Iq_D1
SKW_Iq_D1

Mean_Iq_D2
STD_Iq_D2
VAR_Iq_D2
KRT_Iq_D2
SKW_Iq_D2

Mean_Iq_D3
STD_Iq_D3
VAR_Iq_D3
KRT_Iq_D3
SKW_Iq_D3

Mean_Iq_D4
STD_Iq_D4
VAR_Iq_D4
KRT_Iq_D4
SKW_Iq_D4

Mean_Iq_D5
STD_Iq_D5
VAR_Iq_D5
KRT_Iq_D5
SKW_Iq_D5

Mean_Iq_D6
STD_Iq_D6
VAR_Iq_D6
KRT_Iq_D6
SKW_Iq_D6
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3. Results and Discussion

Figure 13 shows the recorded waveforms of the current signals for each axis. The current signals
were recorded by operating each axis motor. The data were recorded for 10 cycles of rotation. For the
sake of simplicity, only one cycle’s data are presented. Figure 14 shows the recorded waveform when
only the 4th axis motor was operating.
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It is possible that because of the mechanical couplings between each axis of the robot, during the
normal and faulty states, the operation of one axis motor might affect the other axis motors, leading to
simultaneous current signature analysis. In the simultaneous current signature analysis, the current
signals of all motors should be analyzed, regardless of the fault location. This leads to more complex
fault detection and diagnosis system, but upon several experimental findings with the results presented
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in Figure 14, it is clear that for a robotic arm like the Hyundai Robot, the mechanical couplings along the
robotic arm do not affect the current signals of another motor. This gives the possibility of focusing on
only single-axis current signature analysis. In case there is some fault in an axis, only that axis current
signature analysis would be enough to distinguish the fault, without the worry of the mechanical
relation between the different axes of the robot. Based on this and the fault location (RV reducer of
the 4th axis), we focused only on the 4th axis current signature analysis. We recorded the current
signals for the 4th axis motor under three different fault scenarios: normal, faulty (RV reducer eccentric
bearing fault), and faulty_aged (RV reducer aging fault). Figure 15 shows the three-phase current
signal for the 4th axis motor under normal, faulty, and faulty_aged scenarios. These three-phase
current signals were converted to two-phase using DQ0 transformation to achieve the reduced data
dimensions. Figure 16 shows the DQ0 transformed two-phase current signals for the 4th axis motor
under each fault scenario.

Sensors 2020, 20, x F 14 of 31 

 

results presented in Figure 14, it is clear that for a robotic arm like the Hyundai Robot, the mechanical 
couplings along the robotic arm do not affect the current signals of another motor. This gives the 
possibility of focusing on only single-axis current signature analysis. In case there is some fault in an 
axis, only that axis current signature analysis would be enough to distinguish the fault, without the 
worry of the mechanical relation between the different axes of the robot. Based on this and the fault 
location (RV reducer of the 4th axis), we focused only on the 4th axis current signature analysis. We 
recorded the current signals for the 4th axis motor under three different fault scenarios: normal, faulty 
(RV reducer eccentric bearing fault), and faulty_aged (RV reducer aging fault). Figure 15 shows the 
three-phase current signal for the 4th axis motor under normal, faulty, and faulty_aged scenarios. 
These three-phase current signals were converted to two-phase using DQ0 transformation to achieve 
the reduced data dimensions. Figure 16 shows the DQ0 transformed two-phase current signals for 
the 4th axis motor under each fault scenario.  

 
Figure 15. Three-phase current signal for 4th Axis motor under Normal, Faulty, and Faulty_Aged 
scenario. 

 
Figure 16. The DQ0 transformed two-phase current signals under Normal, Faulty, and Faulty_Aged 
scenario. 

Figure 15. Three-phase current signal for 4th Axis motor under Normal, Faulty, and Faulty_Aged scenario.

Sensors 2020, 20, x F 14 of 31 

 

results presented in Figure 14, it is clear that for a robotic arm like the Hyundai Robot, the mechanical 
couplings along the robotic arm do not affect the current signals of another motor. This gives the 
possibility of focusing on only single-axis current signature analysis. In case there is some fault in an 
axis, only that axis current signature analysis would be enough to distinguish the fault, without the 
worry of the mechanical relation between the different axes of the robot. Based on this and the fault 
location (RV reducer of the 4th axis), we focused only on the 4th axis current signature analysis. We 
recorded the current signals for the 4th axis motor under three different fault scenarios: normal, faulty 
(RV reducer eccentric bearing fault), and faulty_aged (RV reducer aging fault). Figure 15 shows the 
three-phase current signal for the 4th axis motor under normal, faulty, and faulty_aged scenarios. 
These three-phase current signals were converted to two-phase using DQ0 transformation to achieve 
the reduced data dimensions. Figure 16 shows the DQ0 transformed two-phase current signals for 
the 4th axis motor under each fault scenario.  

 
Figure 15. Three-phase current signal for 4th Axis motor under Normal, Faulty, and Faulty_Aged 
scenario. 

 
Figure 16. The DQ0 transformed two-phase current signals under Normal, Faulty, and Faulty_Aged 
scenario. 

Figure 16. The DQ0 transformed two-phase current signals under Normal, Faulty, and Faulty_Aged scenario.



Sensors 2020, 20, 6845 15 of 30

The RV reducer fault is a mechanical fault, and if all the operating parameters, such as speed,
frequency, amplitude, and signal shape, are not considered properly, the use of MCSA for the detection
of such kind of fault can be a complicated task. Normally, when it comes to the detection of electrical
and electronic faults related to electric motors and their controller devices, the response of the current
signal shows a similar pattern under different operating parameters, due to which it becomes easy
to detect the fault by just observing the current signal response with selected parameters [53–55].
However, in the case of RV reducer, due to the fault nature and electromechanical relation between
the motor and reducer, it would be hard to achieve higher accuracy if a fault detection and diagnosis
system is not developed with consideration of all the operating parameters. Among these parameters,
the speed of the rotation of the motor is the most important parameter, due to its direct relation to
the reducer device. Considering this factor, we recorded the data for different operating speeds of
the motor, to observe the effect of speed change in each fault scenario. We selected a speed profile
where we recorded the signal response of the motor at the speed range (10 to 100) % of the rated speed.
This gave us an overall view of the faults. We present the current signal response for the speed of 20%,
60%, and 100%. Figure 17 shows the DQ0 transformed current signal for each fault scenario under
20%, 60%, and 100%. It can be observed that with the increase in the rotation speed of the motor (rpm),
the amplitude, frequency, and mechanical rotational speed of the robot along the axis also increase.
In Figures 13–16, the rpm was 10% of the rated speed. In Figure 17, one mechanical cycle corresponds
to the mechanical rotation of the robot along each axis. The robot moves clockwise (CW) to complete
one cycle, and returns to its starting position by moving counterclockwise (CCW). With the increase in
the rpm of the motor, the mechanical cycles of the robot also increase.
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After data acquisition and DQ0 transformation, we implemented DWT on components Id and
Iq of the current signal for all fault scenarios. The selection parameters, including the sampling
frequency and the number of samples, should be carefully selected to achieve the right resolution
for wavelet analysis. Few restrictions have been taken into account for this, including (1) signal
bandwidth, (2) wavelet spectral band decomposition, (3) frequency resolution, and (4) acceptable
level of decomposition. The use of the Shannon theorem provides a minimum sampling frequency of
1000 Hz. Equation (6) gives the total number of samples, Ns, required for an already given resolution
R [20–22].
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Ns =
fs
R

(6)

In our case, for the resolution of R = 0.1 Hz, we chose a sampling frequency fs = 12.8 kHz. Hence,
Ns = 128, 000 samples were acquired. Figures 18 and 19 show the output results of the DWT for Id and
Iq components of the current signal at a speed of 100% without any fault, whereas Figure 20 shows a
detailed view of the D6 decomposed wavelet coefficient for each fault scenario. In these figures, s is
the original signal, a is the approximation coefficient, and d is the detail coefficient extracted by the
decomposition of the original current signal using six-level Daubechies wavelets.

Sensors 2020, 20, x F 16 of 31 

 

𝑁𝑠 =  𝑓𝑅  (6) 

In our case, for the resolution of 𝑅 =  0.1 𝐻𝑧, we chose a sampling frequency 𝑓 =  12.8 𝑘𝐻𝑧. 
Hence, 𝑁𝑠 =  128,000 samples were acquired. Figures 18 and 19 show the output results of the DWT 
for 𝐼  and 𝐼  components of the current signal at a speed of 100 % without any fault, whereas Figure 
20 shows a detailed view of the 𝐷6 decomposed wavelet coefficient for each fault scenario. In these 
figures, 𝑠 is the original signal, 𝑎 is the approximation coefficient, and 𝑑 is the detail coefficient 
extracted by the decomposition of the original current signal using six-level Daubechies wavelets. 

 
Figure 18. Output results of the DWT for Id component of the current signal at a speed of 100 %. 

 
Figure 19. Output results of the DWT for Iq component of the current signal at a speed of 100 %. 

Figure 18. Output results of the DWT for Id component of the current signal at a speed of 100%.

Sensors 2020, 20, x F 16 of 31 

 

𝑁𝑠 =  𝑓𝑅  (6) 

In our case, for the resolution of 𝑅 =  0.1 𝐻𝑧, we chose a sampling frequency 𝑓 =  12.8 𝑘𝐻𝑧. 
Hence, 𝑁𝑠 =  128,000 samples were acquired. Figures 18 and 19 show the output results of the DWT 
for 𝐼  and 𝐼  components of the current signal at a speed of 100 % without any fault, whereas Figure 
20 shows a detailed view of the 𝐷6 decomposed wavelet coefficient for each fault scenario. In these 
figures, 𝑠 is the original signal, 𝑎 is the approximation coefficient, and 𝑑 is the detail coefficient 
extracted by the decomposition of the original current signal using six-level Daubechies wavelets. 

 
Figure 18. Output results of the DWT for Id component of the current signal at a speed of 100 %. 

 
Figure 19. Output results of the DWT for Iq component of the current signal at a speed of 100 %. Figure 19. Output results of the DWT for Iq component of the current signal at a speed of 100%.



Sensors 2020, 20, 6845 17 of 30
Sensors 2020, 20, x F 17 of 31 

 

 
Figure 20. Detailed view of the D6 decomposed wavelet coefficient for each fault scenario. 

These decomposed wavelets were utilized for further deterministic analysis. Several features 
presented in Tables 3 and 4 were extracted from each decomposed wavelet coefficient. Figure 21 
shows the response of the wavelet specific features, while Figure 22 shows the response of the 
wavelet-based statistical features extracted at different speeds of rotation of the motor. The presented 
results are for the detailed coefficient 𝐷6. It is apparent that among these features, some features 
show a very clear difference between the fault categories at some certain speed, though devoid of an 
overall constant pattern for all of the speed profiles, due to the natural operating phenomenon of the 
motor. During the operation of the motor, the amount of current flowing through the windings 
increases or decreases, depending on the rotation speed. This causes analytical uncertainties for 
classification systems that rely on the MCSA. The classification systems function by autonomously 
discovering the patterns in data. In the cases of features with less prominent patterns, the accuracy 
of the systems falls drastically. In particular, in RV reducer fault detection and diagnosis, it is hard to 
find some prominent patterns among several features. For this, we utilized the feature selection 
scheme presented in Figure 12 for prominent feature selection, citing some case studies for each type 
of feature and classification accuracy. We used four main types of ML-based algorithms for 
classification, namely (1) linear discriminant analysis (LDA), (2) fine tree (FT), (3) naïve Bayes (NB), 
and (4) support vector machine (SVM). Figure 23 shows the flowchart of the case study for this paper. 

 
Figure 21. Response of the wavelet specific features at different speeds. 

Figure 20. Detailed view of the D6 decomposed wavelet coefficient for each fault scenario.

These decomposed wavelets were utilized for further deterministic analysis. Several features
presented in Tables 3 and 4 were extracted from each decomposed wavelet coefficient. Figure 21 shows
the response of the wavelet specific features, while Figure 22 shows the response of the wavelet-based
statistical features extracted at different speeds of rotation of the motor. The presented results are
for the detailed coefficient D6. It is apparent that among these features, some features show a very
clear difference between the fault categories at some certain speed, though devoid of an overall
constant pattern for all of the speed profiles, due to the natural operating phenomenon of the motor.
During the operation of the motor, the amount of current flowing through the windings increases
or decreases, depending on the rotation speed. This causes analytical uncertainties for classification
systems that rely on the MCSA. The classification systems function by autonomously discovering the
patterns in data. In the cases of features with less prominent patterns, the accuracy of the systems
falls drastically. In particular, in RV reducer fault detection and diagnosis, it is hard to find some
prominent patterns among several features. For this, we utilized the feature selection scheme presented
in Figure 12 for prominent feature selection, citing some case studies for each type of feature and
classification accuracy. We used four main types of ML-based algorithms for classification, namely
(1) linear discriminant analysis (LDA), (2) fine tree (FT), (3) naïve Bayes (NB), and (4) support vector
machine (SVM). Figure 23 shows the flowchart of the case study for this paper.
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3.1. Case 1: Wavelet Specific Features

In this case, the 24 wavelet specific features presented in Table 4 were used to train the
aforementioned four types of classifiers. We implemented five-fold cross-validation in this work
to prevent the model overfitting. The available data were segregated into five disarticulated folds.
Among these five folds, four folds were utilized as training samples and one-fold as a testing sample
under every training iteration. Every data sample was utilized precisely once as a testing sample. On all
folds, the average test error is determined. Using this training and validation scheme, the predictive
precision and accuracy of the final model trained with all the data are measured. Figure 24 shows
the classification results for the wavelet specific features. The results are presented in the form of a
confusion matrix. The rows refer to the predicted output class, whereas columns refer to the true
target class. The diagonal cells refer to the classes that are accurately classified. The off-diagonal cells
refer to the classes that are inaccurately classified. Each cell presents the number of observations and
their percentage. The far-right column in the confusion matrix presents the percentages of all the
observations predicted for each class, classified correctly and incorrectly. These matrices are called
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the precision and false discovery rate. The overall accuracy of the classifier is given in the cell at the
bottom right. The accuracy is calculated using Equation (7):

Accuracy =
TP

TP + FN
(7)

where TP is true positive and FN is false negative. In this case, the maximum accuracy of 73.3% was
achieved for the SVM, followed by 66.7%, 50%, and 46.7% for LDA, FT, and NB, respectively.
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3.2. Case 2: Wavelet-Based Statistical Features

Table 5 shows the 60 features we used in this case, while Figure 25 shows the classification
results for the wavelet-based statistical features. The number of features used is based only on the
statistics (Table 5). The maximum accuracy of 50% was achieved for the LDA, followed by (43.3%,
36.7%, and 30.0% for SVM, NB, and FT, respectively. The accuracy achieved was very poor, and this is
because the statistical features, such as mean, standard deviation, variance, kurtosis, and skewness,
somehow relate to one another in statistical characteristics. While using these kinds of features,
there are more chances for the classifier to become confused among several parameters. Regardless of
this fact, these features were not ignored and eliminated from performing any kind of classifications;
rather, we implemented a feature selection and infusion scheme to distinguish meaningful features,
which will be discussed in cases 3, 4, and 5.
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3.3. Case 3: Feature Infusion and Selection Using Chi-Square Test

In this case, we utilized the typically used statistical features selection algorithm, univariate feature
ranking for classification, using chi-square tests fscchi2 for the selection of prominent features among
the features presented in Tables 4 and 5. fscchi2 explores if all predictor variables are independent of
response variables, by utilizing individual chi-square tests.

The chi-square test of independence decides if there is a relation among categorical variables
(i.e., if the variables are independent, or associated). A nonparametric test is commonly used to test
the statistical independence or relation among two or more categorical variables. This test uses a
contingency table to evaluate the data. A contingency table is a structure in which data are categorized
according to two categorical variables. It is also known as a cross-tabulation or a two-way table.
For one variable, the categories appear in rows, while for the other variable, they appear in columns.
Two or more categories should be used with each variable. Each cell in the table represents the total
number of cases for a certain category pair. Equation (8) gives the mathematical representation of
the fscchi2:

X2 =
R∑

i=1

C∑
J=1

(oi j − ei j)
2

ei j
(8)

where oi j are the observed cell count in the ith row and jth column of the table, and ei j is the expected
cell count in the ith row and jth column of the table. This can be calculated as in Equation (9):

ei j =
row i total ∗ col j total

grand total
(9)

Using the above equations, the number of features was reduced from 84 to 20 (combined features
of Tables 4 and 5). The 20 most valuable features with high importance scores were selected,
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and classification was performed. Figure 26 shows an example of the categorization of features
based on importance. Table 6 gives the details of the 20 most prominent features selected with high
importance score. Figure 27 shows the classification results for feature infusion and selection using
chi-square test. The maximum accuracy of 73.3% was achieved for the LDA and FT, followed by 70%
and 36.7% for SVM and NB, respectively.
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Table 6. Prominent features for Case 2.

No. Feature

1 SKW_Iq_D6
2 VAR_Id_D6
3 VAR_Iq_D6
4 Mean_Id_D1
5 Mean_Id_D5
6 Mean_Iq_D3
7 STD_Id_D3
8 STD_Iq_D5
9 VAR_Id_D5

10 VAR_Iq_D4
11 Entropy_Id_D6
12 Energy_Iq_D6
13 Entropy_Iq_D6
14 Entropy_Iq_D3
15 Energy_Id_D5
16 Energy_Id_D6
17 Energy_Iq_D4
18 Entropy_Id_D5
19 Energy_Iq_D2
20 Entropy_Id_D1
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3.4. Case 4: Feature Infusion and Selection Using Correlation Analysis

Only categorical variables can be compared in the chi-square independence test. It cannot equate
continuous variables or continuous variables with categorical variables. Moreover, it assesses only
the associations between categorical variables, and cannot provide any inferences about causation.
This can be observed also by the accuracy results achieved in the previous case (case 3).

In this case, to evaluate the difference in performance between the chi-square test and correlation
analysis, we utilized the correlation analysis, rather than chi-square tests, to select the prominent
features from both the wavelet specific and wavelet-based statistical features. The correlation analysis
is used to determine the correlation between two variables. These variables can be two independent
or a dependent and independent variable. We measure the Pearson product moment coefficient of
correlation, in particular, as a sample correlation. The sample correlation coefficient is represented by ρ
and its values range from −1 to +1. There can be a positive or negative correlation between the two
variables. The positive correlation means that the variables are highly correlated to each other and vice
versa for the negative correlation. The sign of the coefficient of correlation shows the orientation of the
relationship. The magnitude of the coefficient of correlation shows the strength of the relationship.
Mathematically, it is given in Equation (10):

ρxy =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
√∑n

i=1(yi − y)2 (10)

where n is the sample size, xi, yi are the individual sample points indexed with i, and x = 1
n
∑n

i=1 xi is
the sample mean. We selected the 20 most prominent features presented in Table 7. These features were
carefully selected by analyzing the correlogram. Figure 28 shows an example of one of the correlograms
used to select features. The features that had the lowest values for the correlation coefficients were
selected. The features with a higher correlation coefficient value of more than 90% mean that these
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features show similarities, and can be neglected, to avoid confusion in the training and testing of
ML-based classifiers. Figure 29 shows the classification results for feature infusion and selection using
chi-square test. The maximum accuracy of 86.7% was achieved for the SVM, followed by 80%, 60%,
and 36.7% for LDA, FT, and NB, respectively.

Table 7. Prominent features for Case 4.

No. Feature

1 Mean_Id_D1
2 Mean_Id_D2
3 STD_Id_D6
4 VAR_Id_D1
5 VAR_Id_D2
6 KRT_Id_D6
7 SKW_Id_D1
8 SKW_Id_D2
9 VAR_Id_D3

10 Mean_Id_D3
11 Energy_Id_D1
12 Energy_Id_D3
13 Energy_Id_D4
14 Energy_Id_D5
15 Energy_Id_D6
16 Energy_Iq_D1
17 Entropy_Id_D3
18 Entropy_Id_D5
19 Entropy_Id_D6
20 Entropy_Iq_D1
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3.5. Case 5: Proposed Feature Infusion Method

The correlation analysis performed well in the process of feature selection then chi-square tests, but
the accuracy achieved with a high number of features was still low. Generally, for ML-based classification,
the number of features is indirectly proportional to the number of observations (Equation (11)):

Number o f Features =
1

Number o f Observations
(11)

The less the number of observations, the more the number of features. In our case, the total
number of observations for each class is 10. A lesser number of observations requires more features
to achieve higher classification accuracy. On the other hand, a high number of features might also
confuse the classifier among several classes, and a good classification accuracy might still not be
achieved. Therefore, we combined both chi-square tests and correlation analysis to obtain a balance
between the number of features and observations for higher classification accuracy. Figure 23 shows
that the proposed method works in two steps of feature selection. First, the chi-square tests were
performed to get the importance score of all the features; and among these features, the 20 most
prominent features were selected. These selected features were further analyzed, using correlation
analysis. Figure 30 shows the correlogram of these features. From these 20 features, we selected the
10 features with a correlation of less than 80%. Table 8 presents these 10 features. Figure 31 shows the
classification results for the proposed feature infusion method. The maximum accuracy of 96.7% was
achieved for the LDA, followed by 93.3%, 70%, and 33.3% for SVM, FT, and NB, respectively.
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Table 8. Selected prominent features for Case 5.

No. Feature

1 SKW_Iq_D6
2 VAR_Id_D6
3 VAR_Id_D6
4 Mean_Id_D1
5 STD_Iq_D5
6 VAR_Iq_D4
7 Entropy_Id_D6
8 Energy_Iq_D6
9 Entropy_Iq_D6

10 Entropy_Iq_D3

3.6. Comparative Study for Different Cases and Other Methods

Table 9 compares the results among different cases. The results in Table 9 prove that the proposed
method works well in detecting and diagnosing the RV reducer fault with high accuracy and a lesser
number of features. The average accuracy score calculated (Equation (12)) for the proposed method is
73.3, which is much higher than the score of all the other feature selection and infusion cases. Notice that
not all the selected classifiers are suitable for fault diagnosis as different classifiers works based on
different algorithms. The choice of classifiers can be made based on the type of problem. In our case,
the NB performs poorly in the classification of faults because NB works on an algorithm based on
Bayes’ theorem. Whereas the LDA shows the best case, and its because LDA is a commonly used
multi-variate classification method that aims to find a linear combination of features for class separation
which suits perfectly for the type of problem and data we had to deal with in this work. The rightmost
side of Table 9 presents the classifier’s average performance score (Equation (13)), based on each case.
Among the four classifiers, the LDA and SVM performed better than the FT and NB.

Table 9. Performance Comparison.

Classifiers Case 1 Case 2 Case 3 Case 4 Case 5
(Proposed)

Average
Performance Score

LDA 66.7% 50% 73.3% 80% 96.7% 73.34
Fine Tree 50% 30% 73.3% 60% 70% 56.66

Naïve Bayes 46.7% 36.7% 36.7% 36.7% 33.3% 38.02
SVM 73.3% 43.3% 70% 86.7% 93.3% 73.32

Average Accuracy Score 59.175 40 63.325 65.85 73.325
Number of Features 24 60 20 20 10

Average Accuracy Score =
∑N

i=1 Accuracy
N

(12)

Classi f ier Average Per f ormance Score =

∑K
j=1 Accuracy

K
(13)

In Equations (12) and (13), N is the total number of classifiers and is given as
N = 1 (LDA), 2 (FT), 3 (NB), 4 (SVM), while K is the total number of cases, and is given as K = 1, 2, 3, 4, 5.

The comparison results among different methods used to detect and diagnose faults are presented
in the Table 10. We present a comparison among different techniques and methodologies related
to chi-square features [56], discrete wavelet transform with ANN [57], statistically locally linear
embedding with SVM [58]. Viney et al. [56], proposed methods where chi-square features were
used to classify the faults. Different classifiers with a different number of features were used for
this purpose. The accuracy achieved was different for the different number of features. For eight
features, the accuracy was 93.33% but for seven features the accuracy reduced to 92%. Just reducing
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one feature reduced the accuracy by 1%. Compared to our proposed methodology, we presented
a consolidated approach for feature extraction and selection giving us the advantage to reduce the
number of features and achieve higher classification accuracy at the same time. On the other hand,
Konar et al. [57], used DWT with an artificial neural network (ANN) as a classifier. The accuracy
achieved for this method was 93.33%. Also, the use of ANN is computationally heavy as compared to
other classifying algorithms such as LDA, SVM, etc. Wang et al. [58], utilized statistical locally linear
embedding with SVM as a classifier. The accuracy was recorded as 94.07% which is higher than the
other methods. The SVM performed well for the classification of the faults but still, the accuracy is
not that good enough. Our proposed methodology utilizes the advantages of signal processing and
statistical analysis together to form a consolidated approach for the detection and diagnosis of faults.
the accuracy achieved was 96.7% which is considerably high than the other methods. The proposed
methodology is suitable for the ML-based classifiers and can help reduce the hard work and labor
involved in the feature extraction and selection.

Table 10. Comparison among proposed and other methods.

Methods Accuracy

8 Chi-Square Features +Random Forest 93.33%
7 Chi Square Features +SVM 92%

Discrete Wavelet Transform + ANN 93.33%
Statistical Locally Linear Embedding +SVM 94.07%

DWT + Chi square + Correlation Analysis +LDA (Proposed) 96.7%

4. Conclusions

In an electromechanical system, generally, two types of faults can occur. These faults are electrical
faults and mechanical faults. The electrical faults can be categorized into further three categories:
(1) power source faults, (2) inverter/converter faults, and (3) machine faults (electric motors faults).
The mechanical faults can be categorized as (1) faults related to electric machines and (2) faults related
to coupled mechanical components. In the case of electrical faults and mechanical faults related to
electrical machines, electric current signal is used to find the abnormality in the related components.
On the other hand, the faults related to coupled mechanical components are detected using vibration,
acoustic emission, or ferrography analysis. This leads to segregated and more complex ways for
any fault detection and diagnosis system. Therefore, in this work, we focused on the detection of
the faults related to coupled mechanical components (which is RV reducer in this case) using the
electrical current signals rather than typically used vibration, acoustic, or ferrography analysis schemes.
We presented an approach to detect and diagnose mechanical faults mainly related to the rotate vector
(RV) reducer for an industrial robot. The proposed approach utilizes the embedded current signals
of the electric motor’s controller to detect the faults, and it provides advantages over typical fault
detection and diagnosis methodologies consisting of vibrational, acoustic emission, and ferrography
analysis, by (1) eliminating the need to install costly sensors at several locations, and (2) reducing the
amount of data involved in the classification process of the faults. Furthermore, this work introduces a
feature infusion scheme that focuses on the time-frequency domain analysis of the recorded current
signals using DQ0 and DWT with prominent feature selection for ML-based classification. Real-time
analysis was performed on an experimental test bench comprising a Hyundai Robot. The classification
accuracy achieved for classifying the faults was 96.7%. The results obtained for the proposed approach
show that it works well in classifying the faults for RV reducer. In the future, we are working towards
the addition of more mechanical components such as strain wave gear and to find a general approach
for the fault detection and diagnosis for an industrial robot using AI.
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