Supplementary Materials

Ultra-Sensitive Isopropanol Biochemical Gas Sensor (Bio-Sniffer) for Monitoring of Human Volatiles

Po-Jen Chien ¹, Takuma Suzuki ², Ming Ye ³, Koji Toma ³, Takahiro Arakawa ³, Yasuhiko Iwasaki ⁴ and Kohji Mitsubayashi ^{2,3,*}

- ¹ Institute of Chemistry, Academia Sinica, No. 128, Sec. 2, Academia Rd., Nankang, Taipei 115, Taiwan; wizgx@gate.sinica.edu.tw
- ² Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8549, Japan; sensinglabo@gmail.com
- ³ Department of Biomedical Devices and Instrumentation, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan; ym@fujiclinic.jp (M.Y.); toma.bdi@tmd.ac.jp (K.T.); arakawa.bdi@tmd.ac.jp (T.A.)
- ⁴ Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35 Yamate-Cho, Suita-Shi, Osaka 564-0836, Japan; yasu.bmt@kansai-u.ac.jp
- * Correspondence: m.bdi@tmd.ac.jp; Tel.: +81-3-5280-8091

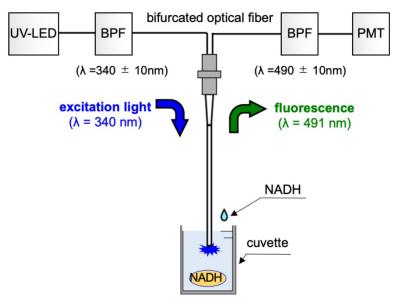


Figure S1. NADH measurement system. The NADH measurement system was composed by an UV-LED, a photomultiplier, an optical fiber probe, and a bifurcated fiber. Two band-pass filters (BPF, λ =340±10 nm and 490±10 nm) were equipped for reducing the interference.

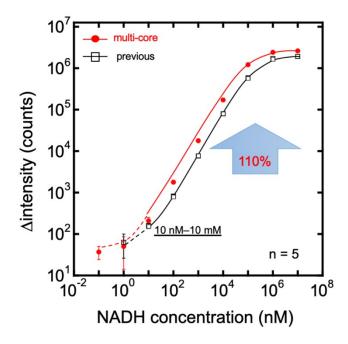


Figure S2. Calibration curves of NADH detection by previous and multi-core type bifurcated fiber probe. The signal intensity measured by the multi-core type showed about more 110% than the previous one. The dynamic range was the same, both were from 10 nM to 10 mM.

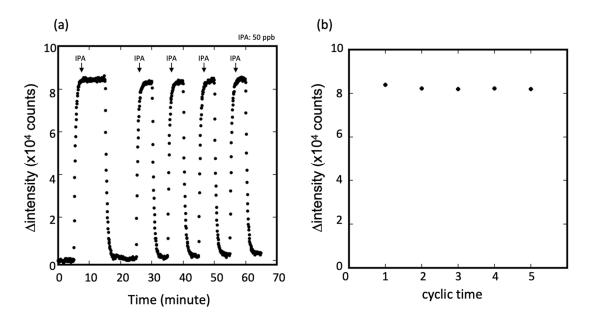


Figure S3. (a) Reproducibility curve of modified bio-sniffer tested by 50 ppb IPA gas. The first cycle measured the IPA gas for 10 minutes, and the second to fourth cycle measured the IPA gas for 5 minutes. (b) The Δ intensity of five cyclic measurements. The coefficient of variation was about 0.94%.

Principle of generating different concentrations of IPA gas

The gas generators we employed (PD-1B-2 and custom-made machine) were the calibration gas generation system. The dilution gas is calculated using the following equation (supply from Gastec, Co., Ltd., Japan):

 $F = (K \times Pr \times L) / C$ (1) or $F = (K \times Dr \times 103) / C$ (2)

Equation (1) is for the permeation tube, and equation (2) uses a diffusion tube. For generating the different concentrations of IPA gas for calibration, we used diffusion tube with Dr 6.68 at 35 °C (PD-1B-2, D-01, C: 270 ppb to 9.06 ppm), diffusion tube with Dr 40.4 at 35 °C (PD-1B-2, D-03, 1.64 ppm to 82.21 ppm), permeation tube with Pr 85.2 at 35 °C (PD-1B-2, C: 7.7 ppb to 346 ppb, F: 200 ml/min to 8 L/min))and permeation tube with Pr 85.2 at 10 °C (custom-made machine , C: 0.5 ppb to 10 ppb, F: 200 ml/min to 5 L/min). The K value of IPA is 0.407. By adjusting the different flow of dilution gas (F), we could produce different IPA gas concentrations.

Abbreviation:

F: Flow of dilution gas (mL/min) (PD-1B-2: 200 ml/min to 8 L/min; custom-made machine: 200 ml/min to 5 L/min)

- C: Gas concentration for calibration gas (ppm)
- Pr : Permeation rate (ng/min/cm)
- L: Effective length of tube (cm)
- K : Coefficient for converting the gas weight into volume (L/g)
- $K = (22.4/M) \times ((273+t)/273) \times (760/P), (25^{\circ}C 1atm);$
- M: Molecular weight; t: Temperature
- P: Pressure (mmHg)

Parameter	Description / Value		
	C8855 counting unit	H7421-40 counting head	C9692
Signal pulse width	8 ns or longer	-	100 ns or more
Max. count rate	$50 \ge 10^{6}$	-	$3 \ge 10^{6}$
Max. counter capacity	2 ³² counts / gate	-	2 ³² counts / gate
Internal counter gate time	50 µs to 10 s		1 µs to 10 s
Spectral Response range	-	300 to 720 nm	185 to 650 nm
Count Sensitivity		420 nm: 4.7 x $10^5 s^{-1} \cdot pW^{-1}$	-
		550 nm: 7.6 x 10 ⁵ s ⁻¹ ·pW ⁻¹	
Dark Count	-	100	50
Photocathode size	-	-	16 × 18 mm

Table S1 Specifications of C8855 counting unit, H7421-40 counting head and C9692 PMT

This information supply from Hamamatsu Corporation, Japan