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Abstract: The Angle-of-Arrival (AOA) has a variety of applications in civilian and military wireless
communication fields. Due to the rapid development of the location-based service (LBS) industry,
the importance of the AOA estimation technique has increased. Although a large antenna array is
necessary to estimate accurate AOA information of many signals, the computational complexity
of conventional AOA estimation algorithms, such as Multiple Signal Classification (MUSIC),
is dramatically increased. In this paper, we propose a cascade AOA estimation algorithm employing
CAPON and Beamspace MUSIC, based on a flexible (on/off) antenna array. First, this approach
roughly finds AOA groups, including several signal AOAs using CAPON, by applying some of
the antenna elements. Then, it estimates each signal AOA in the estimated AOA groups using
Beamspace MUSIC by applying the full size of the antenna array. In addition to extremely low
computational complexity, the proposed algorithm also has similar estimation performance to that
of MUSIC. In particular, the proposed cascade AOA estimation algorithm is highly efficient when
employing a massive antenna array. Representative computer simulation examples are provided to
illustrate the AOA estimation performance of the proposed technique.

Keywords: Angle-of-Arrival (AOA); cascade estimation; CAPON; Beamspace MUSIC; flexible
massive antenna

1. Introduction

Angle-of-Arrival (AOA estimation) is a core technique in wireless communication systems
employing a location detection technology (LDT), and has various applications ranging from commerce
to the military. The AOA information of a signal is generally estimated by an array antenna installed
in various communication systems, such as a radar receiver and a satellite [1–6]. The structure of an
array antenna utilized to estimate signal AOAs varies, and includes the linear array, planar arrays
(L-shape, square, circular, hexagonal, etc.), and arbitrary array antennas [7–9], which can be combined
in several shapes [10,11].

AOA estimation techniques are mainly classified into classical, subspace-based, and maximum
likelihood (ML) methods [8,12]. Although classical methods, such as the Bartlett and CAPON
algorithms, are simply implemented because of their low complexity, they do not have good estimation
performance in general. Representative subspace-based methods, based on the orthogonal property
between signal and noise subspaces, are represented by the MUSIC and Estimation of Signal Parameter
via Rotational Invariance Techniques (ESPRIT) algorithms. Although these have higher computational
complexity than the classical method, their estimation performance is usually much better than that of
the classical method. ML techniques, such as the Alternating Projection Algorithm (APA) [7–9,13,14],
have the best estimation performance, but generally have the highest computational complexity.
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Various studies evaluating and comparing performances of AOA estimation algorithms exist.
AOA estimation performance, based on Uniform Linear Array (ULA), Bartlett, Minimum Variance
Distortionless Response (MVDR), linear prediction approach, and MUSIC were compared and
analyzed in [15]. In addition, the study evaluated the resolution sensitivity due to changing parameters,
such as the number of antenna array elements, for each AOA estimation algorithm. Modified ULA
configurations with higher resolution to improve the AOA estimation performance of CAPON and
MUSIC algorithms were presented in [10]. Based on ULA with four antenna elements, the estimation
performance of MUSIC and ESPRIT algorithms, which are commonly employed in smart antenna
systems, were compared and analyzed in [16]. Results showed that the estimation performance of
MUSIC was more accurate than that of ESPRIT.

Based on ULA, the estimation accuracy and computational complexity of MUSIC, Root-MUSIC,
and ESPRIT algorithms were evaluated and analyzed with performance evaluation scenarios,
including changes in the number of antenna elements versus the signal-to-noise ratio (SNR), in [17].
A modified MUSIC algorithm using condensate data, which has better estimation performance than the
conventional MUSIC algorithm, confirmed by simulation results based on ULA, uniform rectangular
array (URA), and uniform circular array (UCA) antenna structures, was proposed in [18]. In addition,
performances of CAPON and MUSIC algorithms based on UCA, for the relationship between
mean square error (MSE) and system resolution, were compared and analyzed in [19]. A uniform
representation of ESPRIT and Min-Norm algorithms, based on data parameters such as the number of
snapshots, and the consistency and the separation factor of sources, was derived, and the influence of
the parameters on estimation error was analyzed in [20].

A signal subspace scaled MUSIC (SSMUSIC) proposed in [21] estimates the signal AOA based
on the linear algebraic connection between the standard subspace of the correlation matrix and
the subspace of the specific signal plus an interference model. Subspace-based algorithms were
classified into three methods by mathematical procedures, namely, an extrema-searching approach
including the MUSIC and Min-Norm searching algorithms, a polynomial-rooting approach including
Min-Norm, and Root-MUSIC, and a matrix-shifting approach including State-Space Realization,
ESPRIT, and Matrix-Pencil method, in [22]. The Root-MUSIC algorithm was described and its superior
estimation performance for the ULA structure compared to the conventional MUSIC algorithm was
verified in [23]. In addition, the performance evaluation and analysis of Bartlett, CAPON, MUSIC,
and ESPRIT algorithms for adjacent signal sources, based on ULA, were provided in [24].

To accurately estimate AOAs for adjacent signal sources, we should employ an antenna array
with multiple elements [25]. To resolve the high complexity problem of the conventional AOA
estimation algorithm for large antenna arrays, [26] proposed the compressed MUSIC (C-MUSIC)
approach, which search signal AOAs in a small angular sector, similar to the Beamspace MUSIC [27]
or sector-focused approaches [28]. In addition, a two-dimensional AOA algorithm with reduced
complexity based on the unitary ESPRIT algorithm was introduced in [25], and an efficient AOA
estimation technique for a massive ULA, using fast Fourier transform (FFT), was proposed in [29].

Most of the studies of AOA estimation have been carried out with a general antenna structure with
a small size rather than a large antenna structure. However, because the demand for massive antennas
has increased with the development of technology, including wireless communication techniques,
recently, studies for AOA estimation based on massive antennas have been conducted. The complexity
involved in estimating the signal AOA based on a massive antenna array may increase exponentially,
which is a significant problem in applications such as radar, satellite, and telecommunication devices,
because they need to estimate the AOA in real time. Various techniques for reducing the complexity of
AOA estimation based on a massive multiple-input multiple-output (MIMO) system were presented
in [4,30–33]. The most effective means of reducing the complexity of the AOA estimation algorithm is
to reduce the dimension of the antenna array, like in the Beamspace method [7,8,13,34].

The main goal of this paper is to address the issue of the high computational complexity of
massive antenna arrays to accurately estimate multiple signal AOAs. Although the performance of the
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AOA estimation algorithm is enhanced for a larger antenna array, its computational complexity may
be dramatically increased. As a result, the computational complexity involved in estimating AOA
based on a massive antenna array is extremely high. To address this high complexity problem for
estimating the signal AOA, in this paper, we propose a cascade AOA estimation algorithm based on a
flexible massive antenna array, consisting of CAPON and Beamspace MUSIC algorithms. We define a
flexible massive antenna as comprising array elements with an on/off function. The proposed cascade
algorithm is distinguished by two steps:

1. Step 1: Find searching ranges employing CAPON, with a small number (small proportion) of
array elements.

2. Step 2: Estimate detail AOAs in the estimated ranges employing Beamspace MUSIC, with the
entire number of array elements.

In the proposed cascade algorithm, the goal of utilizing a small number of array elements with
CAPON is to roughly estimate the ranges including signal AOAs. The goal of utilizing the entire
number of array elements with Beamspace MUSIC is to estimate individual signal AOAs in the ranges
estimated by CAPON. Because this cascade approach does not search the entire range to estimate
the detailed signal AOAs, it is highly efficient and fast compared to conventional AOA estimation
algorithms, such as MUSIC, for a massive antenna array.

The remainder of this paper is organized as follows. Section 2 describes the received signal model,
which includes the signal, antenna array vector, and additive white Gaussian noise (AWGN). We present
the cascade AOA estimation algorithm based on a flexible massive antenna, consisting of CAPON and
Beamspace MUSIC, in Section 3. In Section 4, we discuss the computational complexity of the proposed
approach and compare it to the conventional AOA estimation algorithm. Computer simulation results
are provided to illustrate the AOA estimation performance of the proposed approach in Section 5.
Finally, Section 6 outlines the conclusions of this study.

2. Received Signal Model

In this section, we describe the received signal model including multiple signals, mathematical
antenna array model, and AWGN.

2.1. Signal Model

Assuming that L signals are incident on the antenna array with the size of M×N(P = MN antenna
elements), the received signal vector at discrete sample index k can be modeled as:

r(k) = As(k) + n(k) (1)

where A is the P× L array response matrix, s(k) is the signal vector (size L), and n(k) is the AWGN
vector (size P) with independent and identically distributed (i.i.d.) components, each of which has
zero mean and variance σ2.
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2.2. Flexible Massive Antenna Model

The array response matrix A in Equation (1) is defined as:

A ,



1 · · · 1
e− jµ1 · · · e− jµL

...
. . .

...
e− j(M−1)µ1 · · · e− j(M−1)µL

e− jη1 · · · e− jηL

e− j(µ1+η1) · · · e− j(µL+ηL)

...
. . .

...
e− j((M−1)µ1+(N−1)η1) · · · e− j((M−1)µL+(N−1)ηL)


(2)

where
µl = 2π(d/λ) sinθl cosφl (3)

ηl = 2π(d/λ) sinθl sinφl (4)

In Equations (3) and (4), θl and φl are the elevation angle and the azimuth angle, respectively, d is
interelement spacing, and λ is the wavelength of the signals.

In this paper, we consider a flexible massive antenna array, which is defined as one in which
some of the antenna elements can be turned on and some of them can be turned off, depending on
the situation, as shown in Figure 1. Figure 1 describes three examples of the flexible massive antenna
array; all array elements are turned on in Figure 1a, some concentrated array elements are turned on in
Figure 1b, and some scattered array elements are turned on in Figure 1c.

Figure 1. Examples of the flexible antenna array: (a) turning on entire antenna elements, (b) turning on
some concentrated array elements, (c) turning on some scattered array elements.

3. Cascade AOA Estimation Algorithm Based on Flexible Massive Antenna Array

In the use of large antenna arrays to estimate the signal AOA, the estimation performance
of conventional AOA estimation techniques, such as MUSIC, is significantly enhanced, but its
computational complexity is dramatically increased. To address the problem of extremely high
computational complexity and efficiently estimate signal AOAs based on a massive antenna array,
in this section we propose a cascade AOA estimation algorithm consisting of CAPON and Beamspace
MUSIC, as shown in Figure 2.
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Figure 2. Architecture of cascade Angle-of-Arrival (AOA) estimation algorithm based on flexible
(ON/OFF) massive antenna array.

First, we roughly find AOA groups, including multiple signal AOAs for estimating the ranges
of the groups, using CAPON. In this process, we use a proportion of the array elements (small size)
to roughly estimate their ranges. Next, we estimate the detailed signal AOAs in the estimated AOA
groups, using Beamspace MUSIC. In this process, we use all of the array elements (full size) to
enable accurate estimation of each AOA. To estimate the detailed AOAs, we scan only the estimated
ranges, unlike in conventional AOA estimation techniques, such as MUSIC. In the proposed cascade
AOA estimation algorithm, the goals of CAPON and Beamspace MUSIC are to roughly estimate
the ranges of existing signal AOAs and to estimate individual signal AOAs in ranges estimated by
CAPON, respectively.

3.1. CAPON for Estimating AOA Range Based on Small Number of Antenna Element

The CAPON algorithm is designed to estimate signal AOAs using the property that maximizes
the output SNR for the incident signal to the antenna [35]. Although CAPON has poor resolution for
estimating AOAs of adjacent signals or in a low SNR environment, it has low computational complexity
and fast estimation performance compared to a subspace-based algorithm that requires eigenvalue
decomposition [3,36].

The proposed cascade algorithm in this paper quickly and roughly identifies AOA groups,
including multiple adjacent AOA signals, using CAPON. In this process, it utilizes a small number of
the total antenna elements because we need to merely find approximate AOA groups. The spatial
spectrum of CAPON for identifying the AOA group is given by:

PCAPON =
1

a(θ,φ)HR−1
C a(θ,φ)

(5)

where RC is a covariance matrix for the received signal based on the small number of antenna elements,
defined as:

RC = E
[
rC(k)rC(k)

H
]

(6)

In Equations (5) and (6), a(θ,φ) is an array response vector for the specific elevation and azimuth
angles, rC(k) is the received signal based on the small number of antenna elements,PC = MC ×NC
(MC and NC are the numbers of antenna elements turned on in each axis), and H is the conjugate
transpose. Using peaks of Equation (5), we roughly find AOA groups including multiple signal AOAs,
and determine the ranges of existing signal AOAs based on the estimated AOA groups.

3.2. Beamspace MUSIC for Estimating Signal AOA Based on Entire Antenna Element

Although the estimation performance of the adjacent signal AOAs is enhanced as the number of
antenna elements is increased, the computational complexity of estimation processing is dramatically
increased [37]. Therefore, a technique for minimizing performance degradation and reducing the
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dimension of an antenna array with large number of elements is required to ensure high estimation
performance of adjacent signal AOAs. The representative method to reduce the antenna array
dimension is a linear transformation technique. Beamspace processing reduces the antenna dimension
from an element space to a beamspace using linear transformation. The dimensional reduction by
beamspace processing is performed by multiplying the conjugate transpose of the linear transformation
matrix with size of P× PB (typically PB � P), where P is the number of antenna elements and PB is the
dimension of the beamspace, by the received signal vector. To cover the entire array element dimension,
multiple beamspace transformation matrices may be considered. Algorithms based on beamspace
processing, such as Beamspace MUSIC [38], Beamspace root MUSIC [39], and Beamspace ESPRIT [40],
have several benefits, including reduced computational complexity, improved resolution, and reduced
estimation error [3,5–7,27,41]. The estimation performance of the Beamspace MUSIC algorithms can
approach the Cramer–Rao Bound (CRB) if appropriate preprocessor settings are used [42].

To estimate the detailed signal AOAs included in the estimated AOA groups, the proposed cascade
algorithm employs Beamspace MUSIC. Unlike the process of CAPON, which uses a small proportion
of the total number of antenna elements, Beamspace MUSIC uses all of the antenna elements (full size
of the antenna array) in the estimated ranges of AOA groups. That is, an AOA group obtained by
CAPON becomes a beam sector (range for searching) and Beamspace MUSIC finds the detailed AOA
of each signal in that beam sector.

The beamspace transformation matrix can be generated by the discrete Fourier transform (DFT),
discrete prolate spheroidal sequence (DPSS), or Taylor series [8,43]; we consider the DFT method in
this paper. The beamspace transformation matrix applied to the full-size antenna array is defined as:

B ,
1
√

P
By ⊗Bx (7)

where By and Bx represent DFT metrics for the x and y axes, respectively, and ⊗ is a Kronecker operator.
In Equation (7), the size of B is P× PB. The beamspace output vector is given by:

q(k) = BHr(k) (8)

where r(k) is the received signal vector based on all of the antenna array elements. The spatial spectrum
of Beamspace MUSIC is given by:

PBeamspaceMUSIC(θ,φ) =
a(θ,φ)HBBHa(θ,φ)

a(θ,φ)HBEBNEH
BNBHa(θ,φ)

(9)

where EBN is a beamspace noise subspace eigenvector matrix calculated by the eigenvalue
decomposition of the beamspace covariance matrix RB, which is defined as:

RB = E
[
q(k)q(k)H

]
(10)

Using the peaks of Equation (9), we estimate the detailed signal AOAs included in AOA
groups. Because the proposed cascade algorithm only searches for signal AOAs in specific sectors,
its computational complexity is substantially lower than that of conventional AOA estimation
algorithms, such as MUSIC, which searches for AOAs across the entire range of angles for the massive
array antenna.

The proposed cascade AOA estimation algorithm based on the flexible massive antenna is
summarized in Table 1 and Figure 3. Although a massive antenna array has excellent performance
for estimating accurate AOAs of multiple signals simultaneously, it suffers from extremely high
computational complexity due to the size of the antenna array. To address the issue of high
computational complexity in the estimation of signal AOAs based on a massive antenna array,
in this paper we propose the cascade AOA estimation algorithm consisting of CAPON and Beamspace
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MUSIC. To reduce the computational complexity, we select searching ranges including signal AOAs
using CAPON, and we estimate the detailed AOAs using Beamspace MUSIC only in the selected
ranges. Because CAPON uses a small number of antenna elements and a rough step-size, it does not
affect the computational complexity. In addition, Beamspace MUSIC in the proposed cascade algorithm
does not degrade the estimation accuracy of signal AOAs compared to using only the Beamspace
MUSIC algorithm, because it uses all of the antenna elements and a fine step-size in the specific ranges.
Note that in this paper we refer to conventional Beamspace MUSIC as “only Beamspace MUSIC”,
to distinguish it from Beamspace MUSIC used in the proposed cascade algorithm. In this paper,
a flexible massive antenna is used to select a small number of the total antenna elements, using CAPON.

Table 1. Summary of cascade AOA estimation algorithm.

1. Receiving the signal (rC(k)) based on the small size of the antenna array for CAPON
2. Determining G AOA groups including multiple signal AOAs, using CAPON
3. Receiving the signal (r(k)) based on the full size of the antenna array for Beamspace MUSIC
4. Estimating the individual signal AOA in an estimated AOA group using Beamspace MUSIC, in the estimated range
5. Repeat 4 until the Gth group

Figure 3. Flow chart of the proposed cascade algorithm.

4. Computer Simulation

In this section, we provide computer simulation examples to demonstrate the performance of
the proposed cascade AOA estimation algorithm based on the flexible (ON/OFF) massive antenna
array. For the simulation, continuous wave (CW), frequency modulation (FM), amplitude modulation
(AM), and wideband (WB) noise signals, and AWGN are considered in a received signal, and a flexible
antenna array with a size of 10 × 10 is used as the receiver. In addition, for reliable performance
evaluation, we consider four scenarios as follows:
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1. The first scenario: three AOA groups (the first AOA group includes one CW, one FM, and one
WB noise adjacent signals; the second AOA group includes one AM, one FM adjacent signals;
and the third AOA group includes one FM and one AM adjacent signals).

2. The second scenario: two AOA groups (the first AOA group includes two CW, one WB noise
adjacent signals; and the second AOA group includes one AM, two WB noise adjacent signals).

3. The third scenario: one AOA group (including two AM, two FM, and one WB noise
adjacent signals).

4. The fourth scenario: three AOA groups (the first AOA group includes one CW and one FM signal;
the second AOA group includes one AM signal; and the third AOA group includes one FM and
one AM adjacent signals).

The primary parameters for the signals considered in the four scenarios are summarized in
Tables 2–5, respectively. Note that we assume that elevation angles of all of the signals for the first,
second, and third scenarios are 50◦,−20◦, and 40◦, respectively, for the convenience of the simulation.
In the fourth scenario, there are three AOA groups of signals with different elevation angles, unlike in
the other three scenarios. Furthermore, we assume that the SNR for each signal is 20 dB, the normalized
modulation frequency and the modulation index of the FM signal are fm = 0.001 and M.I.FM = 0.05,
respectively, and the modulation index of the AM signal is M.I.AM = 0.03. To roughly estimate
AOA groups employing CAPON, we assume that 4 × 4 neighboring elements of the antenna are
activated, whereas all of the elements (10× 10) are activated for estimating individual signal AOAs in
the estimated ranges based on AOA groups using Beamspace MUSIC. In the simulation, we consider a
10dB threshold to determine the search ranges of Beamspace MUSIC.

Table 2. Computer simulation scenario 1.

Signal Elevation (◦) Azimuth (◦) Center Frequency

CW 50 −120 0.3
FM 50, 50, 50 −117, 34, 130 0.25, 0.35, 0.4
AM 50, 50 30, 135 0.13, 0.44
WB 50 −114 0.06

Table 3. Computer simulation scenario 2.

Signal Elevation (◦) Azimuth (◦) Center Frequency

CW −20, −20 −52, −42 0.1, 0.4
AM −20 60 0.3
WB −20, −20, −20 −47, 50, 55 0.05, 0.18, 0.45

Table 4. Computer simulation scenario 3.

Signal Elevation (◦) Azimuth (◦) Center Frequency

AM −40, −40 −75, −71 0.13, 0.33
WB −40 −67 0.25
FM −40, −40 −83, −79 0.04, 0.45

Table 5. Computer simulation scenario 4.

Signal Elevation (◦) Azimuth (◦) Center Frequency

AM 50, −25 39, 65 0.05, 0.13
CW −40 −55 0.3
FM −40, 50 −50 35, 0.22, 0.35

Figure 4 shows the received signal spectrum, including one CW signal, three FM signals, two AM
signals, and one WB noise signal, for the first scenario. The spatial spectrum of CAPON based on
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4× 4 antenna elements for the first scenario, which includes three AOA groups, is shown in Figure 5.
Figure 6 presents the spatial spectrum of Beamspace MUSIC based on all of the antenna elements
(size of PB is 9) for the first scenario, which shows the final result of the estimated signal AOAs.
From Figure 6, we observe that the first AOA group includes three adjacent signal AOAs, the second
AOA group includes two signal AOA, and the third AOA group includes two adjacent signal AOAs.
Figure 7 shows the received signal spectrum including two CW signals, one AM signal, and three
WB noise signals, for the second scenario. The spatial spectrum of CAPON based on 4× 4 antenna
elements for the second scenario, which includes two AOA groups, is shown in Figure 8. Figure 9
presents the spatial spectrum of Beamspace MUSIC based on all of the antenna elements (size of PB is
9) for the second scenario, which shows the final result of the estimated signal AOAs. From Figure 9,
we observe that the first AOA group includes three adjacent signal AOAs and the second AOA group
includes three adjacent signal AOAs. Figure 10 shows the received signal spectrum including two
FM signals, two AM signals, and one WB noise signal, for the third scenario. The spatial spectrum
of CAPON based on 4× 4 antenna elements for the third scenario, which includes one AOA group,
is shown in Figure 11. Figure 12 presents the spatial spectrum of Beamspace MUSIC based on all of the
antenna elements (size of PB is 16) for the third scenario, which shows the final result of the estimated
signal AOAs. From Figure 12, we observe that the estimated AOA group includes five adjacent signal
AOAs. From Figure 6, Figure 9, and Figure 12, we observe that all signal AOAs are efficiently estimated
for all scenarios. Figures 13–15 compare the spatial spectra of Beamspace MUSIC of the proposed
cascade algorithm to the conventional MUSIC and only Beamspace MUSIC based on DFT. For the
performance comparison of three algorithms, we added the results of Figure 6, Figure 9, and Figure 12
into Figures 13–15. From the figures, we can see that the estimation performance of the proposed
cascade algorithm is similar to those of the conventional MUSIC algorithm and the only Beamspace
MUSIC algorithm, because the peak lengths of the three algorithms are similar. Figures 16–19 are 3D
figures for the fourth scenario considering different azimuth and elevation angles. The 3D spatial
spectrum of CAPON based on 4× 4 antenna elements for the fourth scenario, which includes three
AOA groups, is shown in Figure 16. Figure 17 presents the 3D spatial spectrum of Beamspace MUSIC in
the proposed algorithm based on the entire antenna elements for the fourth scenario, which shows the
final result of the estimated signal AOAs. From Figure 17, we observe that the first AOA group includes
two adjacent signal AOAs, the second AOA group includes one signal AOA, and the third AOA group
includes two adjacent signal AOAs. Figures 18 and 19 show the 3D spatial spectra of MUSIC and
only Beamspace MUSIC for comparison with the proposed cascade algorithm. From these figures,
we observe that the three algorithms have similar AOA estimation performance for the fourth scenario.

Figure 4. Spectrum of the received signal for the first scenario.
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Figure 5. Spatial spectrum of CAPON for the first scenario (elevation angle = 50◦).

Figure 6. Spatial spectrum of Beamspace Multiple Signal Classification (MUSIC) in the proposed
algorithm for the first scenario (elevation angle = 50◦).

Figure 7. Spectrum of the received signal for the second scenario.
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Figure 8. Spatial spectrum of CAPON for the second scenario (elevation angle = −20◦).

Figure 9. Spatial spectrum of Beamspace MUSIC in the proposed algorithm for the second scenario
(elevation angle = −20◦).

Figure 10. Spectrum of the received signal for the third scenario.
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Figure 11. Spatial spectrum of CAPON for the third scenario (elevation angle = −40◦).

Figure 12. Spatial spectrum of Beamspace MUSIC in the proposed algorithm, for the third scenario
(elevation angle = −40◦).

Figure 13. Comparison of the proposed cascade algorithm, MUSIC, and only Beamspace MUSIC,
for the first scenario.
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Figure 14. Comparison of the proposed cascade algorithm, MUSIC, and only Beamspace MUSIC,
for the second scenario.

Figure 15. Comparison of the proposed cascade algorithm, MUSIC, and only Beamspace MUSIC,
for the third scenario.

Figure 16. Spatial spectrum of CAPON for the fourth scenario: (a) 3D plot, (b) top view (θ = −90◦∼90◦,
φ = −90◦∼90◦).
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Figure 17. Spatial spectrum of Beamspace MUSIC in the proposed algorithm, for the fourth scenario:
(a) 3D, (b) top view (θ1 = −41◦∼−39◦, φ1 = −61◦∼−45◦, θ2 = −26◦∼−24◦, φ2 = 63◦∼67◦, θ3 = 48◦∼51◦,
φ3 = 31◦∼43◦).

Figure 18. Spatial spectrum of MUSIC for the fourth scenario: (a) 3D, (b) top view (θ = −90◦∼90◦,
φ = −90◦∼90◦).

Figure 19. Spatial spectrum of only Beamspace MUSIC for the fourth scenario: (a) 3D, (b) top view
(θ = −90◦∼90◦, φ = −90◦∼90◦).

Figure 20 shows the root mean square error (RMSE) curves versus SNRs for the proposed cascade
algorithm, MUSIC, and only Beamspace MUSIC, for the fourth scenario. RMSE is calculated by:

RMSE(θ,φ) =

√√√
E
[(
θo − θ̂

)2
]
+ E

[(
φo − φ̂

)2
]

2
(11)
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where θo and φo are original elevation and azimuth angles, respectively, and θ̂ and φ̂ are the estimated
elevation and azimuth angles, respectively. From Figure 20, we observe that the three algorithms have
similar estimation errors for all SNRs for the fourth scenario. We omit RMSE results for other scenarios
because they are similar.

Figure 20. Root mean square error (RMSE) curves according to signal-to-noise ratio (SNR) of proposed
cascade, MUSIC, and Beamspace MUSIC.

5. Computational Complexity

In this section, we provide analysis of the computational complexity for the proposed cascade
algorithm compared to that of the conventional MUSIC and only Beamspace MUSIC algorithms,
to demonstrate the low computational complexity of the proposed approach. Table 6 summarizes
the numbers of multiplication/division and addition/subtraction for CAPON, Beamspace MUSIC,
and MUSIC, for the specific elevation and azimuth angles. In Table 6, R−1

C is the inverse of the CAPON
covariance matrix, P is the total number of antenna elements and PC is the number of antenna elements
for CAPON, defined in Sections 2 and 3. In addition, PB and U are the dimension of the beamspace
and the number of signals, respectively, for Beamspace MUSIC. For the MUSIC algorithm, T is the
total number of signals. The sizes of α and β are PB × PB and P× P, respectively, in Table 6.

For the convenient comparison of computational complexities for the proposed cascade AOA
estimation algorithm and the conventional MUSIC algorithm, we ignore the computational complexity
for the generation of covariance matrices and their eigenvalue decomposition processing for the three
algorithms, for the following reasons.

1. With the exception of a step of Equation (8), the computational complexity for the generation of
the covariance matrix of Beamspace MUSIC, RB, is lower than that of the MUSIC algorithm, R,
because the size of RB is smaller than that of R.

2. The computational complexity of an eigenvalue decomposition processing for RB is lower than
that of R, because the size of RB is smaller than that of R.

3. The computational complexity of eigenvalue decomposition processing for Beamspace MUSIC in
the proposed cascade algorithm is lower than or equal to that for the only Beamspace MUSIC
algorithm, because the considered search range of the proposed cascade algorithm is smaller than
or equal to that of the only Beamspace MUSIC algorithm.

4. The computational complexity for the generation of the covariance matrix of Beamspace MUSIC
is higher than that of the general covariance matrix with the same size, due to Equations (8)
and (10).
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5. We must consider multiple covariance matrices and eigenvalue decompositions of Beamspace
MUSIC because we estimate multiple AOA groups in the proposed cascade algorithm and the
only Beamspace MUSIC algorithm.

6. The computational complexity for the generation of the covariance matrix of CAPON, RC,
is significantly lower than that of R, because the size of RC is significantly smaller than that of R.

Table 6. Computational complexity of the three algorithms.

CAPON

R−1
C

mul/div P3
c

add/sub P3
c − 2P2

c + Pc

1
aC(θ,φ)HR−1

C aC(θ,φ)
mul/div Pc

2 + Pc + 1

add/sub P2
c − 1

Beamspace MUSIC

α , EBNEH
BN

mul/div (PB −U)PB
2

add/sub (PB −U − 1)PB
2

aBM(θ,φ) mul/div PBP

add/sub PB(P− 1)

1
aBM(θ,φ)H

αaBM(θ,φ)
mul/div P2

B + PB + 1

add/sub P2
B − 1

MUSIC

β , ENEH
N

mul/div (P− T)P2

add/sub (P− T − 1)P2

1
a(θ,φ)H

βa(θ,φ)
mul/div P2 + P + 1

add/sub P2
− 1

Based on the aggregation of the above content, we assume that the computational complexities for
the generation of the covariance matrix and the eigenvalue decomposition for the proposed cascade
algorithm, the general MUSIC algorithm, and the only Beamspace MUSIC algorithm, are similar.
From the above content, we find that the computational complexity of the eigenvalue decomposition
processing for the general MUSIC algorithm is much higher than that of the other algorithms, and that
for the only Beamspace MUSIC algorithm is higher than or equal to that for Beamspace MUSIC in the
proposed cascade algorithm. Therefore, we can ignore the computational complexity of the eigenvalue
decomposition processing for the three algorithms because the goal of this section is to show that
the computational complexity of the proposed cascade algorithm is lower than that of the general
MUSIC algorithm and the only Beamspace MUSIC algorithm. In particular, we consider that their
computational complexities are lower than those for the calculation of the spatial spectrum of CAPON,
Beamspace MUSIC, and general MUSIC, for all of the elevation and azimuth angles. In conclusion,
in this section we focus on the comparison of the computational complexities for searching AOAs
based on the spatial spectrum of the proposed cascade algorithm, the MUSIC algorithm, and the only
Beamspace MUSIC algorithm.

Based on Table 6, the total numbers of the multiplication/division and addition/subtraction for
searching AOAs on the spatial spectrum of Beamspace MUSIC in the proposed algorithm are given by:

ComplexityBM(mul/div) =
G∑

i=1

ψθiψφi

δ2
BM

(
P2

Bi
+ PBi + 1 + PBiP

)
+

(
PBi −Ui

)
P2

Bi

 (12)
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and:

ComplexityBM(add/sub) =
G∑

i=1

ψθiψφi

δ2
BM

(
P2

Bi
− 1 + PBi(P− 1)

)
+

(
PBi −Ui − 1

)
P2

Bi

 (13)

respectively, where PBi and Ui are the dimension of the beamspace and the number of signals,
respectively, in the ith estimated groups for Beamspace MUSIC. In addition, G is the number of the
estimated AOA groups, ψθi and ψφi are the searching ranges of the ith estimated group, respectively,
and δBM is the Beamspace MUSIC step-size for searching for AOAs (for example, if the present
searching angle is 78◦ and δ = 0.01, the next searching angle is 78.01◦). In this calculation, we ignore
the computational complexity for generating the beamspace process matrix because its number
of multiplication/division and addition/subtraction is very low compared to the that of the other
calculations. Considering the computational complexity for CAPON and Beamspace MUSIC, the total
numbers of the multiplication/division and addition/subtraction of the proposed cascade AOA
estimation algorithm are given by:

ComplexityCascade(mul/div) = 3602

δC

(
PC

2 + PC + 1
)
+ PC

3

+
G∑

i=1

[
ψθiψφi
δ2

BM

(
P2

Bi
+ PBi + 1 + PBiP

)
+

(
PBi −Ui

)
P2

Bi

] (14)

and:
ComplexityCascade(add/sub) = 3602

δC

(
PC

2
− 1

)
+ PC

3
− 2PC

2 + PC

+
G∑

i=1

[
ψθiψφi
δ2

BM

(
P2

Bi
− 1 + PBi(P− 1)

)
+

(
PBi −Ui − 1

)
P2

Bi

] (15)

respectively, where δC is the CAPON step-size for searching for AOAs. In addition, the total numbers
of the multiplication/division and addition/subtraction for searching for AOAs on the spatial spectrum
of the conventional MUSIC algorithm are given by:

ComplexityM(mul/div) =
3602

δ2
M

(
P2 + P + 1

)
+ (P− T)P2 (16)

and:

ComplexityM(add/sub) =
3602

δ2
M

(
P2
− 1

)
+ (P− T − 1)P2 (17)

respectively, where δM is the MUSIC step-size for searching for AOAs. The total number of
multiplication/division and addition/subtraction for searching for AOAs using the only Beamspace
MUSIC algorithm are given by:

ComplexityOBM(mul/div) =
3602

δ2
BM

(
P2

B + PB + 1 + PBP
)
+ GOBM(PB −U)P2

B (18)

and:

ComplexityOBM(add/sub) =
3602

δ2
BM

(
P2

B − 1 + PB(P− 1)
)
+ GOBM(PB −U − 1)P2

B (19)

respectively, where GOBM is the number of divided ranges for only Beamspace MUSIC.
To compare the computational complexities of the proposed cascade algorithm, the general MUSIC

algorithm, and the only Beamspace MUSIC algorithm, according to the number of antenna elements,
we consider the two cases summarized in Table 7. In addition, we consider square array antennas with
sizes from 3× 3 to 10× 10. Figures 21 and 22 show curves for the numbers of multiplication/division
and addition/subtraction versus the number of antenna elements for the proposed cascade algorithm,
the general MUSIC algorithm, and the only Beamspace MUSIC algorithm, for CASE 1, respectively.
Figures 23 and 24 show curves for the numbers of multiplication/division and addition/subtraction
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versus the number of antenna elements for the proposed cascade algorithm, the general MUSIC
algorithm, and the only Beamspace MUSIC algorithm, for CASE 2, respectively. From these figures,
we observe that the computational complexity of the proposed cascade algorithm is lower than that of
the general MUSIC algorithm and only Beamspace MUSIC. As the size of the array antenna is increased,
the difference in the three curves increases. That is, the proposed cascade algorithm is extremely
efficient compared to the general MUSIC algorithm and the only Beamspace MUSIC algorithm for a
massive antenna array which has a large number of antenna elements.

Table 7. Scenario for comparing computational complexities of the proposed cascade algorithm,
the general MUSIC algorithm, and the only Beamspace MUSIC algorithm.

CASE 1 CASE 2

The number of total signals (T) 6 8

The number of AOA groups (G) 2 4

The number of signals in AOA group (U) 3 2

Size of PB 9

Search range (CAPON) 360◦ 360◦

Search range
(Beamspace MUSIC of proposed cascade algorithm) 40◦ ×G 40◦ ×G

Search range
(Only Beamspace MUSIC) 360◦ 360◦

Search range (MUSIC) 360◦ 360◦

Step-size (CAPON) 1◦ 1◦

Step-size
(Beamspace MUSIC of proposed cascade algorithm) 0.01◦ 0.01◦

Step-size
(Only Beamspace MUSIC) 0.01◦ 0.01◦

Step-size (MUSIC) 0.01◦ 0.01◦

Figure 21. Curves for comparing multiplication/division computational complexities of the proposed
cascade algorithm, the general MUSIC algorithm, and only Beamspace MUSIC, versus the number of
antenna elements, for CASE 1.
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Figure 22. Curves for comparing addition/subtraction computational complexities of the proposed
cascade algorithm, the general MUSIC algorithm, and the only Beamspace MUSIC algorithm, versus the
number of antenna elements, for CASE 1.

Figure 23. Curves for comparing multiplication/division computational complexities of the proposed
cascade algorithm, the general MUSIC algorithm, and only Beamspace MUSIC, versus the number of
antenna elements, for CASE 2.

Figure 24. Curves for comparing addition/subtraction computational complexities of the proposed
cascade algorithm, the general MUSIC algorithm, versus the number of antenna elements, for CASE 2.

Next, we compare computational complexities of the proposed cascade algorithm, the general
MUSIC algorithm, and the only Beamspace MUSIC algorithm, according to the search range.
To compare, we assume that the overall antenna size is 10 × 10, the size of PB is 16, the total
number of signals is 16, the number of the AOA groups is 4, and the number of signals in each group is
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4. This scenario considers the condition that, for U signals in an AOA group, the high-dimensional
array signals can be represented in a 2U-dimensional subspace without information loss for the ULA
antenna [44]. Other parameters are the same as those in Table 7. For example, if each range of the
AOA group is 10◦ and the number of the AOA group is 4, the search range of the proposed cascade
algorithm is 40◦. Although the search range of the general MUSIC and the only Beamspace MUSIC
algorithms is 360◦, because they must search the entire range, the proposed cascade algorithm has
a variable search range. Figures 25 and 26 show curves for the numbers of multiplication/division
and addition/subtraction versus the search range for the proposed cascade algorithm, the general
MUSIC algorithm, and the only Beamspace MUSIC algorithm. The curves are presented by 3D plots
because they should consider elevation and azimuth angles. Figures 25b and 26b represent the side
view of the 3D plot to clearly show the difference in the three curves. From the figures, we observe
that the computational complexity of the proposed cascade algorithm is significantly lower than that
of the general MUSIC algorithm and the only Beamspace MUSIC algorithm. Note that the proposed
cascade algorithm is slightly higher than the only Beamspace MUSIC algorithm at 360◦ due to the
computational complexity of the CAPON algorithm. That is, the proposed cascade algorithm is more
efficient than the general MUSIC algorithm and the only Beamspace MUSIC algorithm for almost
every case.

Figure 25. Curves for comparing multiplication/division computational complexities of the proposed
cascade algorithm, the general MUSIC algorithm, and only Beamspace MUSIC, according to the search
range: (a) 3D, (b) side view.

Figure 26. Curves for comparing addition/subtraction computational complexities of the proposed
cascade algorithm, the general MUSIC algorithm, and only Beamspace MUSIC, according to the search
range: (a) 3D, (b) side view.
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6. Conclusions

To accurately estimate the number of signal AOAs simultaneously, a large antenna array is
required in a wireless communication receiver. However, if the size of the antenna elements is
increased, the computational complexity for estimating signal AOAs is also dramatically increased
for conventional AOA estimation algorithms, such as MUSIC. In this paper, we proposed an efficient
cascade AOA estimation algorithm based on a flexible massive antenna, consisting of CAPON and
Beamspace MUSIC. First, the proposed cascade algorithm roughly finds AOA groups using CAPON,
based on the received signal using a small size of the antenna elements. Next, it estimates the individual
signal AOA in the estimated AOA groups using Beamspace MUSIC, based on the received signal
using the entire size of antenna elements. To estimate the detailed signal AOA, the Beamspace
MUSIC algorithm only searches the ranges estimated from the AOA group, unlike conventional AOA
estimation algorithms. The performance of the proposed cascade AOA estimation algorithm was
illustrated by computer simulation examples with several scenarios. In addition, we compared and
analyzed the computational complexities of the proposed cascade algorithm and the general MUSIC
algorithm, for various cases. We are currently studying an adaptive threshold determination technique
for efficiently determining the optimized threshold value for the Beamspace MUSIC search range
in the proposed cascade AOA estimation algorithm, based on the adaptive signal processing theory.
The adaptive threshold research includes a separation technique for overlap caused by two very
close groups.
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