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Abstract: Visual sorting of express parcels in complex scenes has always been a key issue in intelligent
logistics sorting systems. With existing methods, it is still difficult to achieve fast and accurate sorting
of disorderly stacked parcels. In order to achieve accurate detection and efficient sorting of disorderly
stacked express parcels, we propose a robot sorting method based on multi-task deep learning. Firstly,
a lightweight object detection network model is proposed to improve the real-time performance of
the system. A scale variable and the joint weights of the network are used to sparsify the model and
automatically identify unimportant channels. Pruning strategies are used to reduce the model size
and increase the speed of detection without losing accuracy. Then, an optimal sorting position and
pose estimation network model based on multi-task deep learning is proposed. Using an end-to-end
network structure, the optimal sorting positions and poses of express parcels are estimated in real
time by combining pose and position information for joint training. It is proved that this model can
further improve the sorting accuracy. Finally, the accuracy and real-time performance of this method
are verified by robotic sorting experiments.

Keywords: robotic sorting; object detection network; multi-task deep learning; intelligent logistics
sorting system; warehouse automation

1. Introduction

With the prosperity of the e-commerce industry, the rapid development of the logistics industry
has given rise to massive orders for logistics companies, which has brought a heavy load for the sorting
work of logistics systems. At this stage, traditional manual sorting can no longer cope with such sorting
loads. Therefore, vision-based intelligent logistics sorting systems have significant research value.
Detecting objects’ positions, categories, and attitude information accurately and quickly has become a
key issue in the implementation of intelligent sorting systems.

Earlier research on multi-object sorting mostly used sorting methods based on the geometric
modeling of objects, which realized the picking up or emptying of the objects in the boxes in two
steps. These methods [1–4] first use object detection algorithms to detect the position of the object,
and then use the known two-dimensional or three-dimensional model to estimate the pose of the
object. For example, Schwarz et al. [4] proposed a sorting system in the Amazon competition in 2016,
in which the image information of a dual-depth camera is merged to eliminate the image gap caused
by the perspective of a single camera. Then, two deep learning methods are used for object detection
and semantic segmentation, and an ICP-based (iterative closest point) [5] object model matching
algorithm is used to estimate the pose of the object. These methods require a two-dimensional
or three-dimensional model of each item. Therefore, the workload of preliminary preparation is
large, and the computation capacity usually makes it difficult to meet the real-time requirements of
practical applications.
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In the research on robot sorting methods in recent years, researchers have mostly used deep neural
networks to directly detect the grasping positions and poses. Some of those use grasping rectangles to
represent the positions and poses of grasping end-effectors, and deep learning networks are used to
directly detect those positions and poses. Kumra et al. [6] proposed a multi-modal detection model
based on deep learning for object grasping detection using color and depth information, in which a
five-dimensional oriented rectangle representation is used to describe the grasping, i.e., (x, y, w, h, θ),
where (x, y) represents the grasping coordinates, w and h respectively represent the required opening
distance and length of the parallel gripper, and θ represents the tilt angle of the object. The authors
trained and tested on the Cornell dataset and achieved an accuracy of 89.21% while ensuring the
real-time performance of the system. A similar oriented rectangle representation was also used
in [7–10]. Zhang et al. [10] proposed a fully convolutional network for grasping area detection based
on a directed anchor, which realizes real-time detection of the object grasping position and obtains a
high accuracy on the Cornell grasp dataset. However, the object poses of most of the above models
only have one degree of freedom, which is only suitable for cases in which there is not much inclination
of the object and the two-dimensional image plane can be mapped well into three-dimensional space.
Thus, it is difficult to accurately detect when the objects are heavily stacked.

In another type of research, deep learning models based on segmentation have been used
to detect the grasping areas. As the winning team in the Amazon sorting competition in 2017,
Zeng et al. [11] proposed a robotic sorting system for known and new objects in complex environments.
Using multiple installed RGB-D cameras as data sources, this system exploits deep neural networks
based on ResNet-101 [12] and Fully Convolutional Networks (FCN) [13] to segment pixel-level grasping
candidate regions, and then adopts the regression score and a series of optimization strategies to select
the best grasping point. The system can achieve a grasping accuracy of 96.7% with a gripper and
92.4% with a sucker, and it can sort new objects well. Similarly, Nguyen et al. [14] used two deep
neural networks connected in series, one as an object detector and another to detect the functional
area of the object. It was proved that the combination of an object detector and a post-optimization
using dense conditional random fields (CRF) [15] could achieve a high detection effect, which was
experimentally verified on a full-size humanoid robot. On this basis, Thanh-Toan Do et al. [16]
proposed AffordanceNet, which borrows the idea of the popular instance segmentation algorithm
Mask R-CNN [17]. An end-to-end network structure is used to implement object classification and
the segmentation of functional areas. Shao et al. [18] combined ResNet with the U-net [19] structure,
a special framework of convolution neural networks (CNNs), to predict the picking region without
recognition and pose estimation, which makes the robotic picking system learn picking skills from
scratch. This type of system more directly determines the grasping points or candidate grasping areas.
However, image segmentation algorithms often require heavy network structures; thus, the accuracy
and the real-time performance in industrial applications have to be weighed.

The sorting research for express parcels in this paper is applied to the real logistics warehousing
environment. It not only needs to accurately detect parcels with different sizes and partial occlusion,
but also needs to ensure the efficiency and timeliness of the system. Thus, the detection methods based
on object modeling are not applicable. Moreover, unlike the daily necessities in the existing datasets,
the confusing colors of the surfaces and the stacking on top of each other make the grasping areas
of the parcels lack prominent features. It is necessary to establish a more reasonable model for the
objects’ grasping points in three-dimensional environments. Aiming at the issue of fast parcel sorting,
Han et al. [20] proposed a robot picking method based on deep neural networks in complex scenes.
The multi-layer shallow feature map and the final feature map are merged to extract more detailed
candidate grasping areas, and then a cascaded convolutional optimal grasping position detection
network based on key points is used to achieve real-time estimation for target objects. The grasping
point model of this research is designed in three-dimensional form. The position and attitude of
the object can be estimated from the key points using the above method, but there is still room for
improvement in detection accuracy. At the same time, the edge devices in the logistics industry
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have small memories, weak computing performance, and insufficient network inference capabilities.
A lighter network structure is required to meet the real-time requirements for industry scenes.

To overcome the aforementioned challenges, in this paper, we propose a rapid sorting method
based on multi-task deep learning. First, a new lightweight network model architecture is proposed
to improve detection speed of stacked parcels without loss of accuracy. Second, a multi-task optimal
grasping position estimation network model based on key points is proposed to predict the optimal
grasping position of express packages in real time. Finally, the optimal grasping point and depth
information of the scene are used to determine the pose of the target object to realize automatic
grasping of parcels with an industry robot.

The remainder of this paper is organized as follows: Section 2 represents the overall framework
of this parcel sorting method and then demonstrates the lightweight object detection network and
multi-task optimal sorting network in detail. Section 3 presents experiments to verify the correctness
and efficiency of the algorithm. The conclusion and future work are presented in Section 4.

2. Sorting Method for Express Parcels in Complex Scenes

2.1. Overall Framework

The overall framework of a parcel sorting method based on multi-task deep learning is shown
in Figure 1. In the process of separating stacked parcels, a lightweight object detection algorithm is
used to sense the environment, and the position and category of the express parcels are quickly and
accurately obtained. Then, an optimal sorting position and pose estimation network model based on
multi-task deep learning are used to estimate the location and attitude for the grasping of the parcels.
In Figure 1, the yellow dots indicate the detected key points, and the red arrow represents the grasping
action, the end of which indicates the grasping position.

Figure 1. The overall framework of a parcel sorting method based on multi-task deep learning.
A lightweight object detection algorithm is used to sense the environment, and the position and
category of the express parcels are quickly and accurately obtained. An optimal sorting position and
pose estimation network model based on multi-task deep learning are used to estimate the location
and attitude for the grasping of the parcels.

2.2. Lightweight Object Detection Network

In recent years, large-scale datasets, high-end modern GPUs, and new network architectures
have allowed the development of unprecedentedly large CNN models. Both two-stage models,
such as Fast R-CNN [21] and Faster R-CNN [22], and end-to-end models, such as YOLO [23] and
SSD [24], often have heavy network structures to ensure the desired accuracy in object detection
tasks. Among them, the YOLOv3 [25] object detection network model has been widely used in many
industrial fields due to its excellent performance in speed and accuracy. However, considering the
higher real-time requirements and more limited equipment performance in an intelligent logistics
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sorting system, the inference speed of YOLOv3 is far from enough. On the other hand, although high
detection accuracy is required in the express parcel sorting scenes, there are still a large number of
redundant parameters that can be pruned from YOLOv3 for use in the task of express parcel sorting.
Therefore, in order to apply the object detection model to the intelligent logistics sorting system better,
we propose a pruning strategy for YOLOv3 to obtain a lightweight object detection model with no
accuracy loss.

In the previous works [26–28], networks were thinned by pruning strategies to reduce the weight
of the network. Network sparsification can be implemented in different aspects, such as with the
parameters, kernels, channels, and layers. Fine-grained-level (e.g., weight-level) sparsity gives the
highest flexibility and generality, which will lead to a higher rate of compression, but it usually requires
special software or hardware accelerators for fast inference on the sparse model [29]. On the contrary,
the coarsest-layer-level sparsity does not require special packages to speed up the inference. However,
when some network layers are pruned, the network lacks the corresponding flexibility. In comparison,
channel-level sparsity provides a nice tradeoff between flexibility and ease of implementation. It can
be applied to any typical CNNs or fully connected neural networks, and more lightweight network
models can be obtained, which can enable efficient inference and lower memory usage.

For judging the importance of the network channel, we introduce a scale variable γ for each
channel to evaluate its importance. Then, the training weights and scale variables are applied to the
subsequent sparse training. Finally, the network is pruned according to the scale variable. The loss
function of the network model that joins weights and scale variables for training is

L = ∑
(x,y)

l( f (x, W), y) + λd ∑
γ∈Γ

g(γ), (1)

where (x, y) denotes the training input and target, W denotes the trainable weights, ∑(x,y) l( f (x, W), y)
corresponds to the normal training loss of a CNN, and g(·) is a sparsity-induced penalty on the scaling
factors. The L1-norm represents the sum of the absolute values of the elements in the vector, and L1
regularization has a property that can generate a sparse model, so we use g(s) = |s| to sparsify the
network. λd is a dynamic weight used to balance the relationship between the convolutional neural
network and the sparse network.

We set the initial and final weight as λs and λ f , respectively. We use a cosine function to make λd
dynamically adjust as the number of network training iterations increases, as shown in Equation (2).
Icur and Imax represent the current number of iterations and the maximum number of iterations for
network training, respectively. In the initial stage of network training, g(·) accounts for a larger
proportion of losses, which can guarantee greater sparseness of the network. It is more conducive to
judging the importance of the channel. In the later stage, as λd decreases, the sparseness slows down,
but better detection accuracy can be guaranteed. Compared with a fixed weight, dynamical weight
can make the network’s sparseness and detection accuracy a reasonable trade-off.

λd = λ f + (λs − λ f ) cos(
Icur

Imax
· π

2
) (2)

When the network model is in the process of joint training, the scale variable γ can autonomously
guide the network to identify importance of each channel, and it can safely remove the channel
without seriously affecting the network performance. The scale variable is determined by batch
normalization (BN). By designing a simple and effective method that includes channel scale variables
and normalizing the batch input data, BN can make the network quickly converge and achieve better
representation capabilities. Let zin and zout be the input and output of a BN layer; µB and σB denote the
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mean and standard deviation values of input activations over the current mini-batch, and zmid denotes
the intermediate result after the first operation. The BN layer performs the following transformation:

zmid =
zin − µB√

σ2
B + ε

(3)

zout = γzmid + β, (4)

where γ and β are trainable scale and shift transformation parameters, which can recover the original
activations to ensure the representation ability of the networks. ε is set to prevent the instability caused
by data overflow, and has a certain effect of smoothing and denoising.

In the process of guiding channel-level sparsification, we can obtain a thinning model, in which
many BN scale variables are close to zero. Then, those channels close to 0 are pruned according to
a global threshold. In the pruning process, it is important to remove the input and output terms of
the corresponding channel. As shown in Figure 2, a more lightweight model structure can be directly
obtained without additional software or hardware resources for sparsification.

Figure 2. Channel-level pruning.

Although a more lightweight model is obtained with lower running memory requirements and
faster running speed, pruning a certain number of channels will cause the model’s representation ability
to decrease significantly. Therefore, it is necessary to compensate through subsequent fine-tuning
training of the model. After experiments, it was validated that the pruned YOLOv3 network model
can achieve as considerable of an accuracy as before. The flowchart of the acquisition process of the
lightweight network is shown in Figure 3.

The YOLOv3 network model was processed through the pruning strategies above, and the method
in [20] was used to fuse the channels of multi-layer shallow feature maps and deep feature maps to
extract more detailed features, which improves the speed and accuracy of the detection. The model
structure is shown in Figure 4.

Firstly, down-sampling is performed on the shallow feature maps. Then, we propose a
BN–rectified linear unit (RELU)–convolution layer (Conv) module consisting of batch normalizations,
activating linear units (RELUs, rectified linear units), and convolution layers (Conv) to conduct the
information fusion. It was designed to gain more detailed information and more delicate features
of objects, and to prevent overfitting caused by having too many channels after channel fusion.
Subsequently, the structure is designed similarly to a spatial pyramid, which detects multi-scale feature
maps for target objects of different sizes. The sizes of the three target detection feature maps and
their corresponding preset bounding boxes are shown in Table 1 according to the clustering of the
COCO dataset.
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Figure 3. Flowchart of the network pruning procedure.

Figure 4. Structure of the lightweight detection network.

Table 1. Size of the feature maps and bounding boxes.

Object Detection
Feature Map

Size of Feature Map
(pixel2)

Size of the Preset Bounding
Box (pixel2)

Number of Preset
Bounding Boxes

feature map1 13 × 13 (116 × 90); (156 × 198);
(373 × 326) 13 × 13 × 3

feature map2 26 × 26 (30 × 61); (62 × 45);
(59 × 119) 26 × 26 × 3

feature map3 52 × 52 (10 × 13); (16 × 30);
(33 × 23) 52 × 52 × 3
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2.3. Multi-Task Optimal Sorting Position and Pose Estimation Network

Before determining the position and pose of grasping, object detection was performed using the
lightweight model proposed above to obtain candidate regions for grasping within the field of view of
the camera. The detection results are shown in Figure 5.

Accurately and efficiently obtaining the optimal sorting positions and poses of the express parcels
is the key for robots to complete the sorting task. In order to achieve this goal, a multi-task deep
learning network model based on key points is proposed, which can accurately detect the optimal
sorting positions and poses in real time in a complex environment with disorderly stacking and mutual
blocking. This paper uses a similar method to that of [20] to model the optimal sorting positions of
the packages in three dimensions. As shown in Figure 6, the cuboid represents the express package to
be picked. Four key points are used to characterize the optimal picking area, and their intersections
are used as the final optimal sorting position. The sorting vector is represented as (u, v, z, α, β, θ),
where(u, v, z) is the robot grasping position in the world coordinate system, and (α, β, θ) is used to
characterize the three-dimensional posture of the object to be picked.

Figure 5. Candidate regions for grasping after lightweight object detection.

Figure 6. The model of the optimal sorting positions and poses for express parcels.
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Unlike the method in [20], the network model in this paper is an end-to-end structure. The overall
framework of the network is shown in Figure 7. In the training phase, the network first predicts the
four key points of the optimal sorting surface of the sample. At the same time, pose information is
exploited to constrain the positions of the key points, making it possible to determine the positions
of the key points more efficiently and accurately. Finally, the intersection of key points is calculated
as the sorting position, that is, the robot’s grasping position. The coordinates of the grab position in
the world coordinate system are (u, v, z), as shown in Figure 6. The pose of the robot’s grasping is
estimated by subsequent accurate calculations.

Figure 7. Optimal multi-task sorting position and pose estimation network model.

The model’s representation ability basically depends on the design of the loss function, especially
when the training dataset is not sufficient enough. We use gts := [xT

1 , yT
1 , xT

2 , yT
2 , xT

3 , yT
3 , xT

4 , yT
4 ] to

represent the ground truth of the four key points and pres := [xP
1 , yP

1 , xP
2 , yP

2 , xP
3 , yP

3 , xP
4 , yP

4 ] to represent
the predicted key points. We usually directly use mean square error or root mean square error to design
the loss function, but they are not reliable enough on average to measure the key points of different
parts without considering geometric information. For example, (xT

i , yT
i ), (xP

i , yP
i ) give the true and

predicted coordinates of a key point in the image. Their deviation is d =
√
(xT

i − xP
i )

2 + (yT
i − yP

i )
2.

If two pairs of points are mapped from 3D to a 2D image, the distance in the 3D scene may be very
different. Therefore, integrating attitude information into the loss function will be more helpful for
improving the accuracy of key point positioning. For express parcels, in the complex environment
of disorderly stacking and mutual obstruction, the pose of each express parcel is different, and the
direction in which the robot grasps is one of the normal vector directions that can represent the pose.
Therefore, we optimize the positions of key points by fusing the pose information and key point
information, and take the error correction of key point correlation into account to obtain more accurate
estimation results. The form of the loss function is as follows:

LOSS = Epose + Eposition (5)

Epose =

√
1
3
((αT − αP)2 + (βT − βP)2 + (θT − θP)2) (6)

Eposition =

√
1
n

n

∑
i=1

Li + λL(L2
Slope + L2

Parallel) (7)
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Li =
√
(xT

i − xP
i )

2 + (yT
i − yP

i )
2 (8)

LSlope =

√
(

yT
2 − yT

1
xT

2 − xT
1
−

yP
2 − yP

1
xP

2 − xP
1
)2 (9)

LParallel =

√
(

yP
2 − yP

1
xP

2 − xP
1
−

yP
3 − yP

4
xP

3 − xP
4
)2, (10)

where (·)T and (·)P represent the true value and the predicted value, respectively. Epose and Eposition
denote the loss of the pose and the loss of the position, respectively. Li represents the loss of the key
point, i (i = 1, 2, 3, 4). λL denotes a weight to balance the two parts in Eposition. LSlope indicates the
correlation between the positions reflected by the predicted value and the real value. LParallel represents
the loss of the positional relationship between the four predicted key points.

From the above loss function, it can be intuitively seen that the fusion of three-dimensional
attitude deviation is more reasonable compared to using only two-dimensional position deviation,
which can help improve the accuracy and robustness of the system. The network is an end-to-end
structure instead of a cascaded network [20], which simplifies the training process and can effectively
improve the training speed.

Using the multi-task optimal picking pose estimation algorithm based on key points, the optimal
sorting position for each object can be obtained, which is the grasping point of the robot. In our
research, the pose output in the algorithm is used to help fine-tune key point detection. After we have
the position, a method to calculate the pose is used to obtain the sorting pose of the parcels combined
with depth information. Then, the position and the pose of grasping are transformed into a vector in
the coordinate system of the robot base through a coordinate transformation, that is, (u, v, z, α, β, θ).

After predicting the four key points of the picking area, three key points can be selected
to determine the plane to be sorted by a robot. The attitude of the end effector of the robot is
perpendicular to the plane, that is, a normal vector of the plane, which can represent the pose of the
parcel. Generally, vacuum suction is used as the end effector of a robot to suck box-shaped parcels.
The opposite direction of the normal vector obtained is the direction of the end effector of the robot.
The attitude of the end effector can be calculated as

n = P1P2 × P1P3 =

 i j k
x2 − x1 y2 − y1 z2 − z1

x3 − x1 y3 − y1 z3 − z1,

 (11)

where P1 and P2 are the two direction vectors of the plane, respectively.

3. Experiment and Analysis

During the training and testing processes of object detection and optimal sorting estimation,
we conducted experiments using a GTX1080TI GPU with 11 GB, 32 GB memory, and an i7 8700k,
six-core 12-thread CPU. The deep learning frameworks used for training were Tensorflow1.3.0 and
Keras 2.1.0. In order to simulate the actual parcel sorting scenes in our laboratory and to verify
the correctness and effectiveness of the algorithm, an RGB-D vision-based robot sorting experiment
platform was set up, which mainly included a UR-5 six-degree-of-freedom robot, an RGB-D deep
vision sensor (Kinect V2), a suction cup effector, etc. As shown in Figure 8, the objects to be sorted
were box-shaped express parcels with different sizes that were randomly placed within the RGB-D
camera’s field of view.
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Figure 8. Vision-based robot sorting experiment platform.

3.1. Experiment on Object Detection

For training the lightweight object detection model, the YOLOv3 initial model was trained at
first, and then a thinning training was performed. The data for this experiment came from the RGB-D
camera. The training set had 2140 images, the validation set had 400 images, and the test set had 400
images. The hyperparameters required for model training are shown in Table 2. In our experiment,
the base learning rate was set to 0.01 and divided by 10 at iterations 2000 and 4000, respectively.

Table 2. Object detection network hyperparameter setting.

Hyperparameters Value

batch size 8
base learning rate 0.01

learning rate decay 2000, 4000
rate of learning rate change 0.1

maximum iterations 8000
momentum 0.9

weight decay 0.0005

The changes in average recall (AR) and mean average precision (MAP) during training are
shown in Figure 9. In these two figures, the abscissas both represent the epochs of training, and the
ordinate represents the AR and MAP of the network, where orange and positive red curves represent
normal training and sparse training, respectively. It can be observed that the accuracy of the sparse
training model fluctuates greatly, but the accuracy then increases as the training process continues
and the learning rate is fine-tuned. Though the accuracy is slightly inferior to that of normal
training, sparse training can detect less important channels and thus perform network pruning
wisely, which effectively reduces the weight of the network.

The scale factor of BN was used to select the channels with lower importance for pruning.
The distribution of BN before and after sparse training is shown in Figure 10. It can be seen that the
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output of each layer is Gaussian-like after normal training. However, after sparse training, the outputs
of many layers will tend to zero. Therefore, it is proven that the importance of each channel can be
effectively distinguished by the scale factor.

(a) (b)

Figure 9. Average recall (AR) and mean average precision (MAP) during normal training and sparse
training. (a) AR curves. (b) MAP curves.

(a) (b)

Figure 10. Comparison of gamma distribution before and after training. (a) Before sparse training.
(b) After sparse training.

The weight of the network influences the network size, the occupied memory size, and the
inference speed. In the pruning process, the pruning proportion of the channels also affects all aspects
of the network performance. A comparison experiment of the original YOLOv3 and the pruned
YOLOv3 was performed under different pruning ratios, as shown in Table 3. From the actual data,
it can be seen that the appropriate pruning ratio can not only reduce the network size and thus greatly
accelerate the inference speed, but can also ensure that the accuracy of the pruned network is close to
that of the original detection network. However, if the pruning ratio is excessively large, although the
inference speed can be further increased, the accuracy will drastically deteriorate even when the
network is fine-tuned. Through comparisons and analyses, this paper selects the network with 40%
pruning as the object detection model for express parcels.

Table 3. Accuracy and speed performance under different pruning ratios.

Model MAP(%) Parameter
Amount (MB)

Parameter
Reduction (%)

Inference
Time (s)

Time
Reduction (%)

YOLOv3 (Baseline) 98.75 58.67 — 0.0161 —
YOLOv3 (10%Pruned) 97.28 57.76 1.55 0.0158 1.82
YOLOv3 (20%Pruned) 97.25 54.55 7.21 0.0156 3.11
YOLOv3 (40%Pruned) 96.58 38.78 33.9 0.0131 18.63
YOLOv3 (60%Pruned) 65.34 20.67 64.8 0.0103 36.02
YOLOv3 (80%Pruned) 20.26 6.36 89.2 0.0101 37.28

The data in Table 3 are the results of using dynamic weights during sparse training. We set
λs = 0.001 and λ f = 0.0005 in the Equation (2). In order to further prove the validity of the dynamic
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weight used in Equation (2), we conducted a set of comparative experiments with fixed weights. In this
experiment, the fixed weights were set to 0.0005 and 0.001 for training separately. Then, the trained
network was pruned to different degrees. Finally, the accuracy and inference time were obtained
through testing and compared with previous experiments, as shown in Table 4.

Table 4. Accuracy and speed performance using dynamic and fixed weights.

Sparse Weight Pruning Ratio MAP (%) Inference Time (s)

fixed 0.0005 20% 93.43 0.0156
fixed 0.0005 40% 90.84 0.0132
fixed 0.001 20% 91.98 0.0155
fixed 0.001 40% 89.67 0.0131

λd (λs = 0.001, λ f = 0.0005) 20% 97.25 0.0156
λd (λs = 0.001, λ f = 0.0005) 40% 96.58 0.0131

After comparison, with similar detection accuracy, the sparse network with dynamic weight could
be pruned to a greater degree, that is, a more lightweight network structure was obtained. It greatly
improved the inference speed of the network. Excessive static weight would make the degree of
sparseness too large, the network representation ability would be reduced, and the detection accuracy
would be affected. However, static weights that are too small will cause the degree of sparsity to not be
obvious, which is not conducive to distinguishing the importance of channels. When the pruning ratio
is large, the accuracy will also be significantly reduced. Dynamically adjusting the weight of sparse
training can make the degree of sparseness of the network moderate and can ensure the network’s
representation ability. Therefore, using dynamic weights can effectively improve the detection accuracy
and speed of the network.

Another factor affecting the accuracy of detection is that, with the deepening of the network,
although the semantic features of the data extracted by the network are richer, a lot of spatial
information is lost. The spatial information includes the dependency relationship of each express parcel
that blocking others in a disorderly stacked environment. Therefore, by adding the BN–RELU–Conv
module to the network, channel features of the shallow feature maps and deep feature maps are
fused to extract more delicate features and avoid loss of the spatial information. The experimental
results shown in Figure 11 indicate the accuracy of object detection with and without BN–RELU–Conv
module. The value in the figure is the confidence level for object recognition.

(a) (b)

Figure 11. Comparison before and after adding the batch normalization (BN)–rectified linear unit
(RELU)–convolution layer (Conv) module. (a) Without the BN-RELU-Conv module. (b) With the
BN-RELU-Conv module.
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3.2. Experiment on Multi-Task Optimal Sorting Network

The loss function used by the optimal sorting position and pose estimation network combines
the pose estimation bias and the key point position prediction bias, and is trained in parallel by a
multi-task network model. After training, the model is used to infer the sorting position and pose
of parcels in the test set. For comparison, we used the single-task network model as a baseline that
removes the pose estimation branch and keeps only the key point position bias to predict the picking
position. It can be seen from Figure 12 that some sorting positions detected by the single-task model
were skewed towards the edge of the box, while the positions estimated by the multi-task model
basically appeared in the center of the grasping planes of the parcels. The accuracy of the detection
results obtained by the multi-task model is higher, which is more conducive for robots in sorting and
conducting the following operations more safely and efficiently. This is because the pose information
is better integrated during the training of the multi-task model, making the spatial characteristics
of the grasping planes and the sorting vectors more obvious. In addition, as can be seen from the
experimental results in Table 5, the multi-task model has a great advantage in detection accuracy.

Figure 12. Comparison of the sorting locations of the single-task and multi-task models.

Compared with the cascaded network model [20], the end-to-end (E2E) network structure used in
this paper for training and inference can improve the inference speed, and the loss of accuracy can be
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compensated by the multi-task model structure. In order to prove this point, a detailed comparative
experiment was carried out, and the results for the CPU and GPU are shown in Table 5.

Table 5. Speed performance comparison for different model structures for the sorting network.

Structure Detection
Accuracy (%)

Inference Time
in CPU (s)

Inference Time in
GPU (s)

end-to-end + single-task 93.62 0.2572 0.01674
cascaded + single-task 95.86 0.3836 0.02607
cascaded + multi-task 98.34 0.4258 0.03127

end-to-end + multi-task 97.53 0.2764 0.01833

It can be seen from Table 5 that the detection accuracy of our multi-task E2E network model
is nearly 5% higher than that of the single-task E2E network, while their speed difference is small.
Compared with the single-task cascaded network, our network improves the inference speed by
27.94% without losing accuracy. On the other hand, although the multi-task cascaded network
model has slightly higher accuracy, its real-time performance is poor. Therefore, under comprehensive
comparisons, the multi-task E2E network model proposed in this paper achieved excellent performance
in terms of speed and accuracy, further improving the efficiency and real-time performance of
the system.

In our research, the pose output in the algorithm was used to help fine-tune key point detection.
So, we used the obtained position coordinates to get the posture of the express package through
Equation (11). The accuracy of the position detection directly affects the accuracy of the pose estimation.
The curves in Figure 13 show the location loss and the NME (normalized mean error) of our model
during the training process compared with the single-task network model. As can be seen from the
figure, the multi-task network structure has a faster convergence speed, a more stable training process,
and a more accurate detection accuracy for position and pose estimation.

Figure 13. Location loss and normalized mean error (NME) of our model compared with the single-task
network model.

In order to further prove the superiority of our method, we compare it with some representative
solutions [10,14,16,30]. The solutions in [14,16] are based on semantic segmentation and can detect
regions that can be grasped by robots. The method in [10,30] directly performs grasp detection using
a deep neural network after modeling the robot’s grasping end effector as a vector. Because these
methods are different from the application scenario of ours, we select the geometric center of the above



Sensors 2020, 20, 6785 15 of 18

detection results as the optimal sorting position for comparison. The results of the experiment are
shown in Table 6.

Table 6. Comparison of different solutions for parcel sorting tasks.

Method Inference Time (s) Detection Accuracy (%)

BB-CNN-CRF [14] 0.3162 96.36
AffordanceNet [16] 0.1508 98.81

FCGD [10] 0.0596 98.31
Grasp detection using Faster RCNN [30] 0.0489 97.44

Ours 0.0183 97.53

It can be seen from Table 6 that our method uses a reasonable pruning strategy, which makes
the network lighter and faster than other solutions, but the accuracy is slightly inferior to the other
methods [10,16]. However, benefiting from the improved accuracy of the multi-task model, the result
of our solution in the parcel sorting task is also satisfactory.

3.3. Robot Sorting Experiment

In order to comprehensively evaluate the effectiveness and robustness of our algorithm, the robot
sorting system shown in Figure 8 was used for implementing integrated parcel sorting experiments.
By using the “hand–eye calibration” of the robot and the RGB-D camera [31], the position and
attitude information of the target objects obtained by the algorithm can be transformed into the
robot’s base coordinate system; then, the robot is guided to pick up and place the disorderly stacked
express packages.

The experiments were divided into 50 groups with different parcel stacking scenes. The number of
stacked parcels in each group of complex scenes was no less than six, that is, the sorting test experiment
was performed on more than 300 parcels. The selection process for each package is shown in Figure 14.
When all of the parcels in each group of scenes were picked up and placed in the designated positions
according to a certain criterion, this group of experiments was completed. After the experiments,
the robot sorting system reached a sorting success rate of 89.7%. At the same time, the average
detection time for each parcel was reduced by 11.5% compared with the algorithm in [20]. The time for
the neural network to detect each scene was within 20 ms, and the time for the robot to sort was about
10 s (each scene in our experiment included 6–7 boxes). The results of the experiment demonstrate that
the proposed algorithm can increase the time efficiency of the sorting system while guaranteeing the
accuracy and reliability. So, we think that our system can be used as an integral part of an automated
warehouse center to replace manpower.

(a) (b)

Figure 14. Cont.
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(c) (d)

Figure 14. Robot sorting experiment. (a) Grasping. (b) Picking up. (c) Moving. (d) Placing.

4. Conclusions

In this paper, we propose a novel vision-based robot sorting method for logistics environments,
which can improve the time efficiency of parcel sorting in complex scenes while ensuring the accuracy
and reliability. First, a lightweight object detection network model was proposed, which greatly
shortens the detection time and improves the system’s sorting efficiency and real-time performance.
Then, a multi-task model for an optimal sorting position and pose estimation network based on key
points was proposed.

The experimental results indicate that our solution for express parcel sorting has significantly
better real-time performance under the condition of ensuring accuracy compared with other existing
methods. In addition, it can effectively solve the problem of sorting cluttered parcels in express storage
in real time. The whole system can greatly reduce labor costs and improve the degree of automation
in warehouse centers. Since the dataset in this paper only contains square packages, the detection of
packages with special-shaped structures is not accurate enough compared with that of some existing
solutions. Further research and optimization are still needed. In the future, we will further optimize
and implement the method for efficient sorting of more types of express parcels.
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