
sensors

Article

Bidirectional Attention for Text-Dependent
Speaker Verification

Xin Fang 1,2 , Tian Gao 1 , Liang Zou 3,4,* and Zhenhua Ling 1

1 School of Information Science and Technology, University of Science and Technology of China,
Hefei 230022, China; klg@mail.ustc.edu.cn (X.F.); tiangao5@iflytek.com ( T.G.); zhling@ustc.edu.cn (Z.L.)

2 iFLYTEK Research, iFLYTEK Co., Ltd., Hefei 230088, China
3 School of Information and Electrical Control Engineering, China University of Mining and Technology,

Xuzhou 221116, China
4 School of Electronics and Information Engineering, Anhui University, Hefei 236601, China
* Correspondence: liangzou@ece.ubc.ca

Received: 6 October 2020; Accepted: 25 November 2020; Published: 27 November 2020
����������
�������

Abstract: Automatic speaker verification provides a flexible and effective way for biometric
authentication. Previous deep learning-based methods have demonstrated promising results,
whereas a few problems still require better solutions. In prior works examining speaker
discriminative neural networks, the speaker representation of the target speaker is regarded as a fixed
one when comparing with utterances from different speakers, and the joint information between
enrollment and evaluation utterances is ignored. In this paper, we propose to combine CNN-based
feature learning with a bidirectional attention mechanism to achieve better performance with only
one enrollment utterance. The evaluation-enrollment joint information is exploited to provide
interactive features through bidirectional attention. In addition, we introduce one individual cost
function to identify the phonetic contents, which contributes to calculating the attention score more
specifically. These interactive features are complementary to the constant ones, which are extracted
from individual speakers separately and do not vary with the evaluation utterances. The proposed
method archived a competitive equal error rate of 6.26% on the internal “DAN DAN NI HAO”
benchmark dataset with 1250 utterances and outperformed various baseline methods, including the
traditional i-vector/PLDA, d-vector, self-attention, and sequence-to-sequence attention models.

Keywords: text-dependent speaker verification; interactive representation; bidirectional attention; CNN

1. Introduction

Automatic speaker verification (SV) aims to verify the identity of a person based on his/her
voice. It can be categorized into text-dependent and text-independent types, according to whether the
lexicon content of the enrollment utterance is the same as that of evaluation utterance [1–4]. In general,
the text-dependent SV (TDSV) outperforms the text-independent type due to its phonetic variability
and robust handling of short utterances [5,6]. Especially with the development of smartphone and
mobile applications, interacting with mobile devices through a short speech is becoming more and
more popular, and voice authentication through a given speech password has been widely accepted [7].
In this study, we focus on TDSV with the global password “DAN DAN NI HAO” (in Chinese), which is
used as the wake-up voice for the Alpha Egg product of iFlytek.

Typically, similar to other classification tasks in machine learning, the pipeline of speaker
verification includes feature extraction, modeling and classification strategy. To be more specific,
various frame-level acoustic features, such as Mel-frequency cepstral coefficients (MFCC) and power
normalized cepstral coefficients (PNCC), are widely employed as front-end features [8]. Then the
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Gaussian mixture model–universal background model (GMM-UBM) or the i-vector strategy can be
utilized for speaker modeling [9]. At the last stage, a probabilistic linear discriminant analysis (PLDA)
or a simple cosine distance is usually employed to calculate the similarity between the representations
of enrollment and evaluation utterances [10].

Prior to the development of deep learning, i-vector in tandem with PLDA were the dominating
approach of SV [1,11]. Benefitting from the nonlinear representation ability of neural networks,
deep learning-based methods have shown promising results in both text-independent SV and
TDSV [12–14]. Deep neural networks (DNN) are employed to either extract frame-level speech
features or replace the traditional GMM-UBM for partitioning the feature space [10]. For instance,
Garcia-Romero et al. proposed a DNN-based approach to compute the alignments and the speaker
features for statistics [15]. Liu et al. investigated four types of deep learning models for extracting deep
features, which were further analyzed via an i-vector-based framework [10]. The extracted frame-level
features are always equally weighted and averaged into utterance-level speaker representation
(i.e., d-vector). However, it was shown that the averaging operation might ignore the content
information and therefore deteriorate the performance [16].

Recently, the end-to-end approaches have become more preferable in text-dependent speaker
verification [3,16]. The biggest advantage of end-to-end methods is that all model parameters can be
simultaneously optimized based on one loss function. To the best of our knowledge, Google was the
first to propose the end-to-end method for training DNNs in TDSV [3]. Compared with the previous
approaches to TDSV, they constructed the discriminative model directly from utterances. In addition,
the corresponding model was more compact and showed better performance [3]. They demonstrated
the effectiveness of the proposed model on the internal “OK Google” benchmark dataset. Instead of
treating the frame-level features equally, researchers at Microsoft introduced an attention mechanism
and combined the frame-level features into utterance-level features [17]. Inspired by the success of
convolution neural networks (CNNs) in many speech recognition problems, they extracted noise-robust
features via speaker discriminative CNNs. They further demonstrated the performance enhancement
on Window 10’s “Hey Cortana” dataset. End-to-end strategies seem more promising to achieve better
performance than the classical i-vector-based systems in TDSV.

The attention mechanism method has been widely employed and produced significant
improvements in various tasks of TDSV, especially in the last three years [7,18,19]. It provides a
powerful way to learn long-range dependencies and emphasize the most relevant information of the
input utterances. Bian et al. proposed a novel strategy incorporating a residual network (ResNet) with
the self-attention mechanism and achieved satisfying performance with fewer parameters and less
computational cost [18,20]. However, the authors assumed that the enrollment speaker’s representation
was constant and did not consider the influence of the evaluation utterances. More recently,
Zhang et al., in Tencent AI Lab, proposed a single-directional sequence-to-sequence (Seq2Seq)
attention-based method and generated an utterance-level enrollment evaluation joint vector to evaluate
the similarity between the enrollment and evaluation utterances [7]. They showed that the proposed
method outperformed many baseline models, including the classical i-vector/PLDA, d-vector method,
and self-attention-based approach on the Tencent "9420" wake-up word dataset.

Despite the significant performance improvement that has been achieved via deep learning-based
methods, there are still some issues that need to be tackled. The motivations of the proposed method
are summarized as the following three aspects.

First and foremost, most of the existing methods assume that the target speaker representation
(i.e., the features corresponding to enrollment utterance) is constant when comparing with different
evaluation utterances. However, in human speaker verification, people tend to pay attention to
different features of the enrollment utterance in comparison with various evaluation utterances. To the
best of our knowledge, the research considering the effect of evaluation utterances on extracting the
target speaker representation is still limited.
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Second, most of the existing TDSV methods employ a metric loss function (e.g., triplet loss)
to maximize the within-class similarity sp and minimize the between-class similarity sn. However,
these kinds of loss functions assume the penalty strengths on sp and sn equally, and seek to reduce
(sn − sp). In some extreme cases, e.g., sn is large and sp already approaches 1, the methods keep
on penalizing sp with a large gradient. Given one of the similarity scores deviates far from the
optimum, it should receive a strong penalty. It was demonstrated that the optimization strategy of
triplet loss lacks flexibility and might lead to irrational results [21]. In addition, optimizing (sn − sp)
usually provides a decision boundary of sp − sn = m, multiple statuses on which are accepted as the
convergence statuses. Consequently, the ambiguous convergence might deteriorate the classification
performance [21].

Finally, although there were a few attempts to apply various attention mechanisms to TDSV,
researchers tend to neglect the content information of the speech signal in training the attention model.
It was shown that phonetic information can significantly improve the performance of TDSV.

To address the above-mentioned concerns, we propose a novel framework based on a bidirectional
attention and convolution neural network (BaCNN) to generate dynamic speaker representations for
both enrollment utterance and evaluation utterance and to verify the speaker’s identity effectively.
The main contributions of the proposed method are threefold:

(1) For each pair of compared utterances (including one for enrollment and another for evaluation),
attention scores for frame-level hidden features are calculated via a bidirectional attention
model. The input of the model includes the frame-level hidden features of one utterance and
the utterance-level hidden features from the other utterance. The interactive features for both
utterances are simultaneously obtained in consideration of the joint information shared between
them. To the best of the authors’ knowledge, we are the first to employ bidirectional attention in
the speaker verification field.

(2) Inspired by the success of circle loss in image analysis, we replace the triplet loss in conventional
TDSV models with the recently proposed circle loss. It dynamically adjusts the penalty strength
on the within-class similarity and between-class similarity, and provides a flexible optimization.
In addition, it tends to converge to a definite status and hence benefits the separability.

(3) We introduce one individual cost function to identify the phonetic contents, which contribute
to calculating the attention score more specifically. The attention is then used to perform
phonetic-specific pooling. Experimental results demonstrate that the proposed framework
achieves the best performance compared with classical i-vector/PLDA, d-vector, and the
single-directional attention models.

The rest of this paper is organized as follows. Section 2 demonstrates the state-of-the-art
text-dependent speaker verification techniques. Section 3 introduces the proposed bidirectional
attention mechanism and the detailed network settings. Section 4 shows the experimental setup and
Section 5 presents the experimental results. Finally, Section 6 presents the conclusions.

2. State of the Art

To facilitate the comparison with our proposed bidirectional attention (i.e., evaluation-specific
attention), we review the basics of a few state-of-the-art methods, including i-vector/PLDA, d-vector,
naïve attention based TDSV.

2.1. TDSV Based on i-Vector

The i-vector based feature extractor was originally proposed by Dehak et al. and has become a
popular strategy in TDSV [5,9]. Instead of defining two separate spaces as in joint factor analysis (JFA),
the authors only defined the total variability space, which simultaneously contains the speaker and
channel variabilities [22,23]. Given an utterance, the speaker- and channel-dependent supervector M
is modeled as:

M = m + Tw, (1)
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where m is the mean supervector of the universal background model (UBM), T is the total-variability
matrix defining the total variability space, and w is a random vector following the standard normal
distribution and representing the low-dimensional total-variability factors, i.e., i-vector. Each factor
controls one separate eigen-dimension of T. Given one utterance, the corresponding i-vector is the
maximum a posterior probability (MAP) estimation of w. We refer the interested readers to [22–24] for
more details.

The total variability space includes the channel variability arising from phonetic and channel
variations. In order to attenuate the disturbance from channel variability, various channel compensation
techniques have been explored. For TDSV, PLDA is always employed as the back-end for modeling
the within-speaker and between-speaker variability.

2.2. TDSV Based on d-Vector

Compared with the i-vector based on traditional spectral features (e.g., MFCC), the outputs from
the hidden layer of various deep models, referred to as a d-vector, tend to provide better performance
in TDSV [3,10,25]. Li et al. evaluated the performance of recurrent neural network (RNN)-based and
CNN-based architectures in TDSV, and CNN was shown to be more powerful in modeling the acoustic
features [26]. In this work, we employ the CNN-based architecture to extract the d-vector of each
utterance and measure the cosine-distance between them.

Figure 1 shows the topology of the baseline CNN for extracting the d-vector. The inputs include
192 frames of 64-dimensional filter-bank features. Each convolutional layer is followed by a pooling
layer with 1 × 2 max pooling. The average pooling and the last fully connected layer are used to obtain
the utterance representation. The total loss is a combination of the softmax cross entropy loss and the
triplet loss [27]. The softmax cross entropy loss is defined as:

Ls = −
M

∑
i=1

log(
eWT

yi
xi+byi

N
∑

j=1
eWT

j xi+bj

), (2)

where xi denotes the i-th speaker embedding, corresponding to the yi speaker. wj denotes the j-th
weights vector and b is the bias term in the last fully connected layer. M and N represent the mini-batch
size and the number of speakers, respectively. The triplet loss is defined as:

LT =
M

∑
i=1

max(0, D(xi, xn) + δ − D(xi, xp)). (3)

The triplet loss is calculated via triplets of training samples (xi, xn, xp), where (xi, xp) belong to
the same speaker and (xi, xn) are from different speakers. Intuitively, the triplet loss minimizes the
distances between utterances from the same speaker and maximizes the distance between utterances
from different speakers.
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Figure 1. The architecture of convolutional neural network (CNN)-based d-vector extraction model.
Cross-entropy (CE) loss and triplet loss are used in this study.

2.3. TDSV Based on Attention Mechanism

Inspired by human attention behavior [28], a recent trend in TDSV is to build deep learning-based
TDSV systems with attention mechanisms [7,19]. Most of the existing methods aim to combine the
frame-level features via the combination weights learned from the attention model. These methods
extract the utterance-level features for each utterance separately, and thus neglect the joint information
between enrollment and evaluation utterances, as in [17,19]. To address this concern, Zhang et al.
from Tencent AI Lab proposed a sequence-to-sequence attentional Siamese model, and generated
an enrollment evaluation joint vector for each pair of enrollment and evaluation utterances [7].
The architecture of this TDSV model is shown in Figure 2, and includes feature learning, an
attention mechanism, and metric learning. In the feature learning section, the model learns the
frame-level features from the primary log-mel spectrogram. Then, the sequence-to-sequence model
is used to compute the attention weights for the temporal alignment between the features obtained
at the previous feature learning stage. Finally, at the metric learning stage, two fully connected
layers, with 108 units and one unit, respectively, determine whether these two utterances are from the
same speaker.
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Figure 2. Demonstration of the Sequence to Sequence (Seq2Seq) [7] attention-based text-dependent
speaker verification (TDSV) model.

3. Methodology

The human brain has selective auditory attention [29], allowing attention to be directed to
different acoustic features of interest in various speech perception tasks. For the speaker verification
task, human listeners tend to pay attention selectively when comparing each pair of utterances.
Given different pairs of utterances, people are able to change their attention according to the joint
information between the enrollment and evaluation utterances. Different distinguishable features
should be focused on when verifying various samples. In this paper, we propose a novel bidirectional
attention mechanism to mimic the human auditory attention system by learning an interactive and
speaker-discriminative feature representation. Inspired by the success of CNN in TDSV, we employ
the CNN-based architecture (NET1 in Figure 3) as described in Section 2.2 to extract the frame-level
features EnHt and EvHt for the t-th frame of enrollment and evaluation utterances, respectively.
These frame-level features are further aggregated into utterance-level ones—EnH and EvH—via the
NET2. The bidirectional attention model then computes the attention weights of each of the frame-level
features of one utterance based on the joint information with the utterance-level features of the other
utterance, and obtains the interactive speaker representations of these two utterances. Finally, the last
fully connected layer NET4 predicts whether these two utterances belong to the same speaker based
on the combination of the interactive representations (i.e., EnR and EvR) and constant utterance-level
hidden features (i.e., EnH and EvH).
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Figure 3. The architecture of the proposed bidirectional attention-based TDSV model, including NET1
for frame-level hidden feature extraction, NET2 for feature combination, NET3 for the bidirectional
attention, and NET4 for the metric learning.

3.1. Data Preprocessing

Considering the difference of speech length, we apply zero-padding or truncating to obtain the
fixed length of 192 frames. Specifically, if the duration of an utterance is shorter than 192 frames,
we use zero-padding at the beginning of the utterance. Otherwise, we take the first 192 frames of
this utterance, and the rest of the speech is discarded. This rarely happens since the durations of four
words usually do not exceed 192 frames. A masking mechanism is utilized to eliminate the effect of
zero-padding in the training process.

3.2. Model Structure

As stated above, NET1, used for frame-level feature extraction and NET2, used for feature
combination, have the same topology as the one shown in Figure 1. However, differently from the
CNN-based d-vector extraction model, the proposed method takes a pair of inputs and has two
branches, NET1 and NET2, which share weights. NET1 includes five convolutional layers. Each of the
first four convolutional layers is followed by a max pooling layer. In this study, we empirically set the
convolution kernel size as 3 × 3 and filter size as 1 × 2. The NET2 includes one average pooling layer
and one fully connected layer, which is the same as the green part shown in Figure 1.

Take the left branch for instance: the outputs of NET1, the frame-level hidden features,
are denoted as:

(EnH1, EnH2, ..., EnHT)

= fNet1(EnX1, EnX2, ..., EnXT , θNET1),
(4)

where EnXt is the t-th frame of the enrollment utterance and EnXt is the corresponding frame-level
speech feature, θNET1 represents the parameters of NET1. These frame-level hidden features are
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further analyzed by NET2, including one average pooling layer and one fully connected layer.
The utterance-level hidden features EnH are obtained as:

EnH = fNET2(EnH1, EnH2, ..., EnHT , θNET2), (5)

where θNET2 represents the parameters of NET2. Traditionally, the output of NET1 and NET2 is either
directly taken as the speaker embedding, or the attention weights for one utterance are calculated
based on the information from itself. In this study, we developed a bidirectional attention model
(NET3 in Figure 3) to capture the joint information between the enrollment and evaluation utterances.
For instance, the left branch, NET3, takes all of the frame-level hidden features of enrollment utterance
and the utterance-level hidden features of the evaluation utterance, and outputs the attention weights
of these frame-level features EnWt, as shown in Figure 4. NET4 includes two fully connected layers.
The attention weights are obtained as follows:

(EnW1, EnW2, ..., EnWT)

= fNET3(EnH1, EnH2, ..., EnHT , EvH, θNET3),
(6)

(EvW1, EvW2, ..., EvWT)

= fNET3(EvH1, EvH2, ..., EvHT , EmH, θNET3),
(7)

where θNET3 represents the parameters of NET3. The attention weights for either utterance are obtained
in view of the joint information between two utterances.

Figure 4. The structure of the bidirectional attention mechanism. For either branch, the frame-level
hidden features of one utterance and the utterance-level hidden features of the other utterance are
adopted as the inputs.

Finally, we employ a discriminator NET4 with one fully connected layer to decide whether these
two utterances belong to the same speaker. The decision, D, is made according to:

D = fNET4(EnR, EvR, θNET4), (8)

where θNET4 represents the parameters of NET4. EnR and EvR denote the interactive speaker
representations corresponding to the enrollment utterance and evaluation utterance, respectively.
They are the weighted sums of the frame-level hidden features, as per the following:

EnR = EnWt × EnHt, (9)

EvR = EvWt × EvHt. (10)
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The parameters of these four parts, including NET1 and NET2 for feature extraction, NET3 for
calculating the attention weights, and NET4 for the final metric learning, are jointly optimized via
end-to-end training.

3.3. End-to-End Training

In TDSV, we should consider the discriminative information from both the speakers and the
text. The end-to-end loss in this study is a combination of the losses from NET1, NET2, and NET4,
considering speaker-discriminant and text-discriminant factors. The phoneme softmax cross-entropy
loss of NET1 is defined as:

LNET1 = −
M

∑
i=1

T

∑
t=1

log(
eWT

yi
Hi

t+byi

N
∑

j=1
eWT

j Hi
t+bj

), (11)

where Hi
t denotes the t-th frame-level hidden feature of the i-th utterance, belonging to the yi phoneme.

Wj denotes the j-th column of the weight matrix W in the last fully connected layer and b is the bias
term. M is the size of the mini-batch and N is the number of phonemes in each utterance. T is the
length of each utterance. This loss for phoneme classification contributes to avoiding the misalignment
of frame-level features for the convolution and pooling operations, and enables the network to fasten
its attention on the features of interest specifically.

The NET2 loss is a mixed loss with a combination of the softmax cross-entropy loss and the circle
loss, and is defined as follows:

LNET2 = LS + LC, (12)

where Ls is the softmax cross-entropy (CE) loss and and LC is the circle loss defined as follows:

LC = log
[
1 + exp (θn (Sn − ∆n))× exp

(
−θp

(
Sp − ∆p

))
, (13)

where θn and θp are nonnegative weighting factors, and ∆n and ∆p are the between-class and
within-class margins, respectively. For detailed calculation of these parameters, please refer to [21].
Differently from the triplet loss in conventional TDSV, sn and sp are in an asymmetric position.
The circle loss dynamically changes the penalty strength and hence is able to provide a more balanced
optimization on these two similarities.

The NET4 loss is the sigmoid cross-entropy loss, which is defined as follows:

LNET4 = δ(j, k)σ(S) + (1 − δ(j, k))(1 − σ(S)), (14)

where σ(S) = 1/(1 + e−S) is the standard sigmoid function. δ(j, k) equals 1 when j = k; otherwise it
equals 0.

We trained the overall network based on a two-step strategy, including the first step to pre-train
NET1 and NET2 for effective speaker representations and the second step for jointly training all four
NETs. The overall network is optimized via the stochastic gradient descent (SGD) approach [30].
The optimization formulas can be written as:

θNET1 = θNET1 − l × (γ × ∂LNET1

∂θNET1
+

∂LNET2

∂θNET1
+ β × ∂LNET4

∂θNET1
), (15)

θNET2 = θNET2 − l × (
∂LNET2

∂θNET2
+ β × ∂LNET4

∂θNET2
), (16)

θNET3 = θNET3 − l × (
∂LNET4

∂θNET3
), (17)

θNET4 = θNET4 − l × (
∂LNET4

∂θNET4
), (18)
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where l is the learning rate, and γ and β are the weights corresponding to the losses of NET1 and
NET4, respectively.

For each neural network model, an SGD optimizer with a momentum of 0.9 was employed. We set
the learning rate to be 0.1024 in the first five epochs and decreased it to 0.05012 in the second five
epochs. Each combination of neural network architecture and loss function was trained for 10 epochs
in total. Additionally, we employed the batch to accelerate the training process. Once the network
is trained, the enrollment speech and evaluation speech can be sent to the model simultaneously to
verify whether the evaluation speech is also from the speaker who provides the enrollment speech.

4. Experimental Setup

4.1. Experimental Dataset

We evaluated the proposed bidirectional attention-based TDSV system on our internal
“Dan Dan Ni Hao” benchmark dataset. The dataset includes three subsets for training, development
(i.e., validation), and testing. The sampling rate is 16 kHz and the precision is 16-bit. All of these audio
recordings were collected from three homemade sessions at iFlytek Co., Ltd. These utterances were
forced aligned to obtain the “Dan Dan Ni Hao” snippets. There are around 120 frames for each snippet,
with a frame rate of 100 Hz. In view of this observation, we extracted the first 120 frames from each
snippet. For the snippet with less than 120 frames, we padded frames with zeros at the end.

Training Set: This set included 6900 speakers, and each speaker has 77 utterances on average.
Utterance duration is 1.2 s on average.

Development Set: All utterances from the other 25 speakers were used as a validation set for
adjusting the hyperparameters. For each speaker, one utterance was used as the enrollment data and
the other 25 utterances were used for evaluation. This resulted in 625 target trials and 15,000 impostor
trials in total.

Test Set: The test set comprised recordings from 50 speakers. For each speaker, one recording was
used for enrollment, and the other 25 were used as evaluation utterances. This resulted in 1250 target
trials and 30,000 impostor trials in total. The test set did not have any overlap with the training set or
the development set, in terms of speakers.

4.2. Evaluation Metric

To fairly evaluate the performance of the proposed method, we employed three performance
indices, including equal error rate (EER), Recall, and Minimum of detection cost function
(MinDCF) [31,32]. EER is determined when the false alarm (false acceptance) probability equals
to the miss (false rejection) probability. The lower the EER value, the higher the accuracy of the TDSV
system. Recall is a measure of true positive rate, defined as:

Recall(θ) =
TP

TP + FN
, (19)

where TP represents the number of true positive samples, FN represents the false negative samples
(missed detections), and θ represents the verfication threshold. In this work, we evaluated the Recall
when the false alarm rate equals 0.05, denoted as Recall0.05. DCF is defined as a weighted sum of the
miss and false alarm probabilities:

DCF(θ) = CMiss × PTarget × PMiss(θ) + CFalseAlarm × (1 − PTarget)× PFalseAlarm(θ), (20)

where PMiss(θ) and PFalseAlarm(θ) represent the miss and the false alarm probabilities, respectively.
CMiss and CFalseAlarm denote the relative cost of false rejection and false acceptance, respectively,
and were empirically set to be 10 and 1, respectively, as in [33]. PTarget is the a priori probability of the
specified target speaker. We evaluated the DCF when the PTarget = 0.01, namely DCF0.01. The DCF0.01
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varies with different verification thresholds (θ), and we evaluated the verification performance with
the minimum value of DCF0.01 (i.e., MinDCF0.01). Furthermore, below we show the performance of
the detection error trade-off (DET) curves, which demonstrate the error at different operating points.

5. Results and Discussion

To fully explore the effectiveness of the proposed bidirectional attention-based TDSV system,
experiments and comparisons in terms of the network architecture, hyperparameters, and different
attention mechanisms were designed.

5.1. The Weights of Losses

We investigated the performance of models with different loss weights. We utilized two
hyperparameters to achieve a tradeoff between the losses of NET1, NET2, and NET4, including
γ as the weight for the loss of NET1 and β as the weight for the loss of NET4. Considering both
hyperparameters might affect the performance, we changed one parameter at a time. We heuristically
initialized the γ as 1, and the impact of β on EER and on the development set are depicted in Figure 5a.
The lowest EER of 6.76% on the development set was achieved when β was set to 1. We further
evaluated the impact of γ when β equals the potential optimal value 1. As shown in Figure 5b,
the proposed method achieved the potential lowest EER of 6.27% on the development set when γ was
set to 5. For simplicity, we set γ to 5 and β to 1 in following experiments.

Figure 5. The equal error rate (EER) corresponding to different weights of losses. (a) the EER on the
development set when γ = 1; (b) the EER on the development set when β = 1.

The TDSV system should focus not only on the speakers’ discriminative features but also on
phonetic information. Therefore, we introduced the softmax cross-entropy loss of NET1, focusing on
the lexical contents of each frame. Because of the multi-layer convolution and pooling operations in
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NET1, the t-th frame-level hidden feature without LNET1 may lack information with regard to the
lexical contents. To make the attention mechanism more specific, we employed the force alignment
strategy to obtain the phoneme label for each frame of speech. In this study, we also evaluated the
performance without the LNET1, and the performance is listed in Table 1. The EERs considering the
phonetic information were 6.27% and 6.26% on the development and test sets, respectively. In contrast
to the EER neglecting the phonetic contents, it achieved a relative decrease of 5.0% and 5.44% on
the development and test sets, respectively. This indicates the importance of the temporal alignment
within each pair of enrollment and evaluation utterances.

Table 1. The EERs (%) on the development and test sets with and without LNET1.

Losses Development Set Test Set

LNET2 + LNET4 6.60 6.62
5LNET1 + LNET2 + LNET4 6.27 6.26

5.2. Comparison between Triplet Loss and Circle Loss

We compared the circle loss against the triplet loss, which was commonly used in TDSV systems.
We comprehensively evaluated their performance in both the traditional d-vector-based architecture
and the proposed BaCNN framework, where the circle loss or triplet loss are combined with the
cross-entropy loss. As listed in Table 2, the circle loss outperformed the triplet loss. More specifically,
as for the traditional d-vector-based framework shown in Figure 1, the combination of CE loss and
circle loss achieved an EER of 7.43% and 7.18% on the development and test sets, respectively, a relative
decrease of 7.47% and 10.14%, respectively, compared to the combination of CE loss and triplet loss.
In addition, as for the proposed bidirectional attention framework, either combination with circle loss or
triplet loss were used as the loss function for the NET2. The optimal weights for LNET1 and LNET4 were
selected with the strategy mentioned in Section 5.1. The BaCNN model with circle loss consistently
outperformed that with the triplet loss on both the development set and test set. We suspect that
the improvement is mainly due to the better separability in the feature space learned by the circle
loss. In addition, the circle loss benefits deep feature learning with high flexibility. Considering
the distances to the optimum, the circle loss assigns different gradients to these similarity scores,
rather than as that in the triplet loss, where the within-class similarity and between-class similarity are
in symmetric position.

Table 2. The EERs (%) on the development and test sets with different losses.

Architecture Losses Development Set Test Set

d-vector CE loss + triplet loss 8.03 7.99
d-vector CE loss + circle loss 7.43 7.18
BaCNN 0.5LNET1 + LNET2(CE loss + triplet loss) + 0.5LNET4 6.60 6.51
BaCNN 5LNET1 + LNET2(CE loss + circle loss) + LNET4 6.27 6.26

5.3. Evaluation of Different Deep Feature Combinations

Utterance-level hidden vectors, EnH and EvH, are derived from deep convolutional network
separately, and are employed as the constant d-vectors to represent the speaker identity [26].
However, these d-vectors do not consider the joint-information between enrollment and evaluation
utterances. In this work, we employ a bidirectional attention model to mimic humans’ selective
auditory attention [28,29]. For each pair of compared utterances, we extract the interactive speaker
representation of either utterance in consideration of the information from the other one, and obtain the
corresponding features for speaker verification, EnR and EvR. We evaluated the performance obtained
when using features at different levels, including the utterance-level hidden features EnH and EvH,
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which are constant, the speaker representations via bidirectional attention, EnR and EvR, which are
interactive, and their combination. As shown in Table 3, the combination of these two kinds of features
provided the best performance. Compared with the traditional method based on utterance-level
hidden features, the proposed method achieved a 4.27% and 5.44% relative decrease of EER on the
development set and test set, respectively. In addition, we evaluated the performance of unidirectional
attention, where the speaker representation of either enrollment utterance or evaluation utterance is
assumed to be constant. The combination of EnH, EvH, and EnR provided comparable performance
on the development set, whereas it showed higher EER on the test set. This performance suggests that
the joint information between two utterances is complementary to the traditional d-vector.

Table 3. The EERs (%) on the development and test sets with different inputs.

Inputs of NET4 Development Set Test Set

EnH and EvH 6.55 6.62
EnR and EvR 7.55 7.18

EnH, EvH, and EnR 6.25 6.41
EnH, EvH, and EvR 6.33 6.58

EnH, EvH, EnR and EvR 6.27 6.26

5.4. Comparison with State-of-the-Art TDSV Methods

In this experiment, we compare our proposed method with several state-of-the-art text-dependent
speaker verification methods, including the methods based on i-vector, d-vector, self-attention,
and Seq2Seq attention, in terms of the EER, Recall0.05, and MinDCF0.01. As for the i-vector extraction,
a UBM with 512 Gaussian mixture components was used to collect the Baum–Welch statistics from
the training utterances, and a gender-independent total variability matrix with 300 total factors was
obtained. We further employed the LDA and within-class covariance normalization (WCCN) to
alleviate intra-speaker variability and reduce the dimension of the i-vector to 200 [12,24]. A PLDA
model with 150 latent identity factors was then trained. In this study, we employed the CNN
architecture detailed in Section 2.2 to extract the frame-level features. As for the d-vector-based
strategy, the cosine distance was used to evaluate the similarity between the speaker representations
obtained from enrollment and evaluation utterances separately. Instead of averaging, we also evaluated
the performance of the self-attention and Seq2Seq attention mechanism as in [7,19], which are used to
calculate the weights of frame-level hidden features. It should be mentioned that the utterance-level
feature learning modules of these deep learning-based frameworks were pre-trained based on the
entire training set.

Except for the traditional i-vector based strategy, the other methods employ the same basic
speaker representations as the d-vector-based method. As can be seen in Table 3, introducing attention
mechanisms into TDSV models improved the verification performance in various tasks. In addition,
considering the joint information between enrollment and evaluation utterances, the proposed BaCNN
approach achieved the best performance, as listed in Table 4. Compared with the d-vector baseline
system, the proposed method achieved a relative decrease of 15.61% and 12.81%, a relative increase
of 4.94% and 2.24%, and a relative decrease of 8.03% and 0.52%, in terms of the EER, Recall0.05,
and MinDCF0.01, respectively. The result on the test set is consistent with that on the development
dataset, which further shows the robustness of the proposed BaCNN strategy.
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Table 4. Comparison with state-of-the-art methods on the development set and the test set.

Method
Development Set Test Set

EERR (%) Recall0.05 (%) MinDCF0.01 EER (%) Recall0.05 (%) MinDCF0.01

i-vector/PLDA [12] 11.61 77.51 0.5578 11.80 76.83 0.5499
d-vector and cosine [25] 7.43 87.67 0.4033 7.18 89.42 0.4017

Self-attention [19] 6.96 90.40 0.3795 6.87 89.98 0.4235
Seq2Seq attention [7] 6.88 89.57 4059 6.83 89.73 0.4236

BaCNN-1step 7.60 88.10 0.4373 6.91 89.18 0.4606
BaCNN 6.27 92.00 0.3709 6.26 91.42 0.3996

If all the parameters of these four NETs are randomly initialized and jointly optimized (denoted
as BaCNN-1step), the performance is not competitive. At the early stage of the training, it is difficult to
provide effective attention due to the inaccurate constant speaker representations (i.e., EnH and EvH).
Therefore, the model cannot quickly converge to a relatively good solution. After pre-training of NET1
and NET2, the joint training of NET3 and NET4 provided better performance. The corresponding EER
had a relative decrease of 17.5% and 9.41% compared to that of the BaCNN-1step on the development
set and test set, respectively. In addition, the DET curves in Figure 6 show a comparison with the
state-of-the-art TDSV methods mentioned above, and further demonstrate that the improvements
were consistent across operating points.

Figure 6. DET curves of different methods.

5.5. Analysis of Interactive Speaker Embeddings

In order to illustrate the effectiveness of the proposed bidirectional attention mechanism,
we further analyzed the attention weights corresponding to different pairs of enrollment and evaluation
utterances. We randomly selected utterance1 of speaker A (denoted as SpkA_utt1) as the enrollment
utterance and explored the distribution of EnW when utterance2 and utterance3 from speaker A
(denoted as SpkA_utt2 and SpkA_utt3, respectively), and utterance4 from speaker B (denoted as
SpkB_utt4) are used as the evaluation utterance. As shown in Figure 7, the horizontal axis represents
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the index of frames and the vertical axis represents the corresponding coefficient of EnWs. The EnWs
follow a similar distribution when the evaluation utterances are from the same speaker. For instance,
the EnW corresponding to SpkA_utt2 is highly correlated with that corresponding to SpkA_utt3.
However, similar to human selective attention [29], the EnWs differ greatly when the evaluation
utterances are from different speakers. For instance, the BaCNN model payed more attention to the
first 58 frames of SpkA_utt1 when comparing it with SpkA_utt2, whereas it payed more attention
to the first 35 frames of SpkA_utt1 when comparing with SpkB_utt4. The attention weights for the
enrollment utterances varied with evaluated speakers. This also indicates that the BaCNN model does
learn interactive speaker representations for different speakers.

Figure 7. An illustrative example of the attention weight EnW. The physical length of the enrollment
Spk_utt1 is 120 frames.

6. Conclusions

Inspired by the selective auditory attention of human brain, we were motivated to design a novel
bidirectional attention mechanism for text-dependent speaker verification. Specifically, we investigated
a CNN-based network used to extract frame-level hidden features, since it has been proven to be
effective in speaker verification. The literature demonstrates that the emerging TDSV methods
always neglect the joint information between the enrollment and evaluation utterances. Instead
of using a fixed enrollment speaker representation in speaker verification, we employed a bidirectional
attention mechanism to model the interactive speaker representations in comparing with the utterances
from different speakers. Considering the complementary characters, we combined the interactive
information and the constant hidden features in calculating the similarity between enrollment and
evaluation utterances. In view of the importance of lexical contents in TDSV, we introduced an
additional loss to jointly explore the speaker-discriminant and speech-discriminant information.
Experimental results on the internal “Dan Dan Ni Hao” benchmark demonstrated a significant
improvement of BaCNN against various baselines, including i-vector/PLDA, d-vector, self-attention,
and Seq2seq attention. The proposed BaCNN mimics the human selective auditory attention, and
therefore can also be applied to text-independent speaker verification tasks.
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12. Zeinali, H.; Sameti, H.; Burget, L.; Černocký, J.H. Text-dependent speaker verification based on i-vectors,
neural networks and hidden Markov models. Comput. Speech Lang. 2017, 46, 53–71. [CrossRef]

13. Yao, Q.; Mak, M.W. SNR-invariant multitask deep neural networks for robust speaker verification.
IEEE Signal Process. Lett. 2018, 25, 1670–1674. [CrossRef]

14. Zhang, C.; Yu, C.; Hansen, J.H. An investigation of deep-learning frameworks for speaker verification
antispoofing. IEEE J. Sel. Top. Signal Process. 2017, 11, 684–694. [CrossRef]

15. Garcia-Romero, D.; McCree, A. Insights into deep neural networks for speaker recognition. In Proceedings
of the Sixteenth Annual Conference of the International Speech Communication Association, Dresden,
Germany, 6–10 September 2015.

16. Dey, S.; Madikeri, S.R.; Motlicek, P. End-to-end Text-dependent Speaker Verification Using Novel Distance
Measures. In Proceedings of the 19th Annual Conference of the International Speech Communication
Association (Interspeech), Hyderabad, India, 2–6 September 2018; pp. 3598–3602.

17. Zhang, S.X.; Chen, Z.; Zhao, Y.; Li, J.; Gong, Y. End-to-end attention based text-dependent speaker
verification. In Proceedings of the 2016 IEEE Spoken Language Technology Workshop (SLT), San Diego, CA,
USA, 13–16 December 2016; pp. 171–178.

18. Bian, T.; Chen, F.; Xu, L. Self-attention based speaker recognition using Cluster-Range Loss. Neurocomputing
2019, 368, 59–68. [CrossRef]

http://dx.doi.org/10.1109/TASLP.2017.2694708
http://dx.doi.org/10.3390/s19214709
http://www.ncbi.nlm.nih.gov/pubmed/31671509
http://dx.doi.org/10.1016/j.csl.2020.101078
http://dx.doi.org/10.3390/s19204385
http://www.ncbi.nlm.nih.gov/pubmed/31658784
http://dx.doi.org/10.1016/j.specom.2014.03.001
http://dx.doi.org/10.1109/TASL.2010.2064307
http://dx.doi.org/10.1016/j.specom.2015.07.003
http://dx.doi.org/10.3390/app10186571
http://dx.doi.org/10.1016/j.csl.2017.04.005
http://dx.doi.org/10.1109/LSP.2018.2870726
http://dx.doi.org/10.1109/JSTSP.2016.2647199
http://dx.doi.org/10.1016/j.neucom.2019.08.046


Sensors 2020, 20, 6784 17 of 17

19. Chowdhury, F.R.R.; Wang, Q.; Moreno, I.L.; Wan, L. Attention-based models for text-dependent speaker
verification. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018; pp. 5359–5363.

20. Wu, Z.; Shen, C.; Van Den Hengel, A. Wider or deeper: Revisiting the resnet model for visual recognition.
Pattern Recognit. 2019, 90, 119–133. [CrossRef]

21. Sun, Y.; Cheng, C.; Zhang, Y.; Zhang, C.; Zheng, L.; Wang, Z.; Wei, Y. Circle loss: A unified perspective of
pair similarity optimization. arXiv 2020, arXiv:2002.10857.

22. Dehak, N.; Dumouchel, P.; Kenny, P. Modeling prosodic features with joint factor analysis for speaker
verification. IEEE Trans. Audio Speech Lang. Process. 2007, 15, 2095–2103. [CrossRef]

23. Kenny, P.; Ouellet, P.; Dehak, N.; Gupta, V.; Dumouchel, P. A study of interspeaker variability in speaker
verification. IEEE Trans. Audio Speech Lang. Process. 2008, 16, 980–988. [CrossRef]

24. Campbell W.; Sturim D.; Reynolds D. Support vector machines using GMM supervectors for speaker
verification. IEEE Signal Process Lett. 2006, 13, 308–311. [CrossRef]

25. Heigold, G.; Moreno, I.; Bengio, S.; Shazeer, N. End-to-end text-dependent speaker verification.
In Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Shanghai, China, 20–25 March 2016; pp. 5115–5119.

26. Li, C.; Ma, X.; Jiang, B.; Li, X.; Zhang, X.; Liu, X.; Cao, Y.; Kannan, A.; Zhu, Z. Deep speaker: an end-to-end
neural speaker embedding system. arXiv 2017, arXiv:1705.02304.

27. Fang, X.; Zou, L.; Li, J.; Sun, L.; Ling, Z.H. Channel adversarial training for cross-channel text-independent
speaker recognition. In Proceedings of the ICASSP 2019-2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 6221–6225.

28. Kaya, E.M.; Elhilali, M. Modelling auditory attention. Philos. Trans. R. Soc. Biol. Sci. 2017, 372, 20160101.
[CrossRef]

29. Dai, L.; Best, V.; Shinn-Cunningham, B.G. Sensorineural hearing loss degrades behavioral and physiological
measures of human spatial selective auditory attention. Proc. Natl. Acad. Sci. USA 2018, 115, E3286–E3295.
[CrossRef]

30. Yang, J.; Yang, G. Modified convolutional neural network based on dropout and the stochastic gradient
descent optimizer. Algorithms 2018, 11, 28. [CrossRef]

31. Nagrani, A.; Chung, J.S.; Xie, W.; Zisserman, A. Voxceleb: Large-scale speaker verification in the wild.
Comput. Speech Lang. 2020, 60, 101027. [CrossRef]

32. Kinnunen, T.; Delgado, H.; Evans, N.; Lee, K.A.; Vestman, V.; Nautsch, A.; Todisco, M.; Wang, X.;
Sahidullah, M.; Yamagishi, J.; et al. Tandem assessment of spoofing countermeasures and automatic
speaker verification: Fundamentals. IEEE/ACM Trans. Audio Speech Lang. Process. 2020, 28, 2195–2210.
[CrossRef]

33. Kinnunen, T.; Li, H. An overview of text-independent speaker recognition: From features to supervectors.
Speech Commun. 2010, 52, 12–40. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.patcog.2019.01.006
http://dx.doi.org/10.1109/TASL.2007.902758
http://dx.doi.org/10.1109/TASL.2008.925147
http://dx.doi.org/10.1109/LSP.2006.870086
http://dx.doi.org/10.1098/rstb.2016.0101
http://dx.doi.org/10.1073/pnas.1721226115
http://dx.doi.org/10.3390/a11030028
http://dx.doi.org/10.1016/j.csl.2019.101027
http://dx.doi.org/10.1109/TASLP.2020.3009494
http://dx.doi.org/10.1016/j.specom.2009.08.009
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	State of the Art
	TDSV Based on i-Vector
	TDSV Based on d-Vector
	TDSV Based on Attention Mechanism

	Methodology
	Data Preprocessing
	Model Structure
	End-to-End Training

	Experimental Setup
	Experimental Dataset
	Evaluation Metric

	Results and Discussion
	The Weights of Losses
	Comparison between Triplet Loss and Circle Loss
	Evaluation of Different Deep Feature Combinations
	Comparison with State-of-the-Art TDSV Methods
	Analysis of Interactive Speaker Embeddings

	Conclusions
	References

