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Abstract: Wireless virtual reality (VR) is a promising direction for future VR systems that offloads
heavy computation to a remote processing entity and wirelessly receives high-quality streams.
WiGig and WiFi are representative solutions to implement wireless VR; however, they differ in
communication bandwidth and reliability. Our testbed experiments show that the performance of
WiGig and VR traffic generation strongly correlates with and consequently can be predicted from a
user’s motion. Based on this observation, we develop a wireless VR system that exploits the benefits
of both links by switching between them and controlling the VR frame encoding for latency regulation
and image quality enhancement. The proposed system predicts the performance of the links and
selects the one with a higher capacity in an opportunistic manner. It adjusts the encoding rate of the
host based on the motion-aware prediction of the frame size and estimated latency of the selected link.
By evaluating the testbed data, we demonstrate that the proposed system outperforms a WiGig-only
system with a fixed encoding rate in terms of latency regulation and image quality.
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1. Introduction

Virtual reality (VR) services let a user immerse in a virtual world by enabling the user to explore
the virtual space, which is rendered as stereoscopic images, in the way he/she does in the real world,
i.e., through head movements [1]. This process is achieved by a VR-dedicated headset device equipped
with a head-mounted display (HMD) and a built-in inertial measurement unit (IMU) to capture the
user’s head motion. The user sees a stereoscopic image of the virtual world that corresponds to his/her
current viewport (estimated from the latest head tracking data) on a display panel at an ultrashort
viewing distance (several centimeters) through binocular magnifying lenses to enable a large field of
view (FOV).

VR headset systems are generally classified into two types: tethered and untethered.
Tethered headsets (e.g., Oculus Rift and HTC VIVE) use a powerful PC (or a gaming console) to
process the VR content computations, which offer the highest-quality VR experiences of all types with
high resolution and frame rate. However, today’s tethered headsets use cables to transmit display
and motion data, and the length, weight, and tension of the required wire harness disturb the user’s
mobility, which decreases the immersiveness, restricts the scale of supported services, and creates
a tripping hazard. Untethered headsets (e.g., Samsung Gear VR and Oculus Go/Quest) have a
processing unit inside the headset (either an attached smartphone or an embedded processor) and
provide VR services with no wires; thus, they are portable and convenient but have a lower content
quality due to the limited processing power.

A promising direction of evolution for both types of VR headset systems is to offload VR
processing to a high-end host (either a local PC as in the tethered case or a cloud or mobile edge) and
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wirelessly stream the rendered VR image frames to a VR headset, which we call wireless VR in this
paper. The data traffic of wireless VR has a bidirectional nature; the VR image frames rendered by
the host are transferred to the VR headset in the downlink, and the motion (IMU) data of the headset
are fed back to the host in the uplink, so that the next VR image frame is rendered for the user’s
latest viewport. Due to the ultrashort viewing distance through the magnifying lenses of VR headsets,
a high pixel resolution of the VR frames is required (e.g., 4/8K). Moreover, to increase immersion
with reduced juddering and motion sickness, a high frame rate (e.g., 90 Hz) is desired. Therefore,
delivering a VR video service to VR headsets over wireless connectivity requires a large bandwidth.

WiGig [2] and WiFi [3] are the representative wireless technologies to realize wireless VR. Due to
the ultrawide bandwidth (2.16 GHz per channel) of the 60-GHz band and the resulting multi-Gbps
transmission speed, WiGig is suitable for streaming high-resolution VR image frames with light
compression and has been adopted in the wireless adapter for HTC VIVE headsets [4]. However,
the inherent characteristics of the 60-GHz spectrum result in a short transmission distance and
unstable connection due to blockage [5], which remain serious issues despite the use of beamforming.
High battery consumption is another problem, which results from the use of a higher emission power.
The US Federal Communications Commission (FCC) has specified a total maximum transmit power
of 500 mW for an emission bandwidth greater than 100 MHz in 54-66 GHz [6] than that used for
other unlicensed bands. WiFi has not been considered a viable solution for wireless VR due to the
insufficient transmission speed, which inevitably results in latency and motion sickness [7]. Recently,
notable solutions such as onAirVR [8] have shown the feasibility of wireless VR using WiFi. The key
to the success of this solution is the adoption of the Timewarp technique [9,10], where every received
image is reprojected before scan-out according to the latest pose of the user; thus, the inconsistency
that the user perceives is minimized. However, WiFi greatly requires compressing VR images to fit
them into its limited bandwidth, which results in reduced image quality.

In this paper, we propose a wireless VR solution to exploit the benefits of both WiGig and WiFi in
a user-motion- and performance-aware manner for high-quality and reliable VR services, which is
called the Motion-aware WiGig-WiFi Interplay system for Virtual Reality (MWZ?IVR), on the hardware
platform currently available in the market, i.e, with off-the-shelf WiGig and WiFi interface modules.
The solution is designed to satisfy the following key requirements:

o  High image quality: The quality of the VR images shown to a user is the first design factor to
consider in the cooperative use of both modules, so that the user is immersed in the VR services.
Increasing the quality of the encoded images (frames) requires an increased data size. Therefore,
the VR system must be designed to be able to transfer large frame sizes as frequently as possible.

e  Regulated latency: Since the total latency becomes excessive, Timewarp produces noticeable black
borders, which disturb the immersion. Overfilling [11] is the solution to this problem; it renders an
expanded area at the expense of an increased computational load. However, the fluctuating latency
results in nonoptimal overfilling, since a specific overfilling factor cannot simultaneously minimize
both black borders and computational load under fluctuating latency. Therefore, the cooperative
use of both modules should be designed to achieve a given target latency.

MW?2IVR jointly manages the dynamic switching between WiGig and WiFi interfaces and the
adjustment of the VR content data rate to satisfy the above requirements. To achieve this goal,
MW?IVR should find answers to two essential questions: (1) How can the WiGig and WiFi link
performance be predicted? (2) How can an appropriate frame size be estimated?

Through testbed experiments, we observe that the WiGig performance greatly depends on the
distance and angular direction, while the WiFi performance is stably maintained in a room-scale
VR environment. The generated frame size is also proportional to the head angular speed due to
the changing user viewport. Based on these observations, MW?IVR is designed to employ the link
selection and encoding rate adjustment algorithms to answer the above questions. For link selection,
MW?IVR predicts the performance of both links. In particular, the WiGig performance is predicted
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based on the current distance and head angular direction with respect to the access point. Then,
the link with higher capacity is selected in an opportunistic manner. To satisfy the target transmission
latency requirement while achieving high image quality, MW2IVR predicts the upcoming frame size
based on the relationship with the head speed, estimates the latency for the selected link, and adjusts
the encoding rate of the host to bring the latency close to the target.

In summary, the main contributions of our work are listed as follows:

e  Design of the prediction scheme for the WiGig throughput and the VR frame size to be generated
based on the motion awareness of a VR user,

o  Design of the joint control mechanism of interface switching and encoding rate adjustment for
enhanced VR frame quality and latency regulation,

o  Experimental evaluation of the integrated wireless VR system to show the performance gain of
the proposed design over various conventional approaches.

For evaluation, we build a wireless VR system testbed and collect the data of the user motion,
link signal levels, and generated frame size. The evaluation of these testbed data shows that MW2?IVR
outperforms the WiGig-only system with a fixed encoding rate in terms of latency regulation and
image quality.

The remainder of the paper is organized as follows: In Section 2, we review the related works.
In Section 3, we describe the system model under consideration. Section 4 presents experimental
observations of the user motion, wireless performance, and VR traffic generation. The MW2IVR system
is described in detail in Section 5, and the experimental evaluation is shown in Section 6. Finally,
Section 7 concludes the paper.

2. Related Work

There have been recent attempts to design communication and networking schemes for wireless
VR in unlicensed spectra. Abari et al. [12] proposed MoVR to solve the signal blocking problem in
the 60-GHz band by reflecting signals toward the user. Kim et al. [13] proposed a dynamic/adaptive
algorithm that could control the power allocation in 60-GHz transceivers to achieve the time-average
energy efficiency for VR data delivery while preserving the queue stabilization. In [14], the feasibility
of wireless VR using WiGig was examined through performance measurements and simulation studies.
In [15], the feasibility of wireless VR over WiFi was examined via testbed experiments, and the
challenges were discussed. Ahn et al. [16] proposed securing timely transmission opportunities
by using trigger-based transmission. Tan et al. [17] proposed several enhancement schemes for
the WiFi medium access control (MAC) protocol to better support the motion feedback of wireless
VR, including prioritizing aged motion data, obtaining motion feedback using reverse direction,
and limiting the aggregation size.

There is increasing research on delivering VR services in cellular networks such as 5G systems.
Elbamby et al. [18] discussed the challenges and enablers for ultrareliable and low-latency wireless VR,
including edge computing and proactive caching in millimeter wave (mmWave) cellular networks.
Chen et al. [19] solved a resource management problem in cellular networks for wireless VR,
which exploited the potential spatial data correlations among users due to their engagement in
the same VR environment to reduce the traffic load in both uplink and downlink. The problem was
solved using a machine learning algorithm, which used echo state networks with transfer learning.
Guong et al. [20] solved a similar problem using distributed learning in mmWave-enabled wireless
networks with mobile edge computing. Dang and Peng [21] solved a joint radio communication,
caching and computing decision problems to maximize the average tolerant delay at both mobile VR
devices and fog access points. Huang and Zhang [22] proposed a multiuser MAC scheduling scheme
with a low-complexity downlink user selection algorithm for VR service in a 5G system; the proposed
method includes video frame differentiation and delay-based weight calculation, spatial-frequency
user selection, and link adaptation with a dynamic block-error-rate target.
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Other research directions for wireless VR include VR content compression methods [23,24],
wireless streaming of 360-degree VR video [25,26], and position tracking using WiFi [27]. Li et al. [28]
proposed a quality of experience (QoE) model to stream 360-degree VR video in wireless networks.
Existing research on the exploitation of multiple radios is also relevant, but most of it has focused
on general data communication. Sur et al. [29] proposed a WiFi-assisted 60-GHz link adaptation
algorithm that predicted the beam and physical layer (PHY) rate setting and a blockage detection
and switching algorithm. E-MICE [30] exploits multiple WiFi radio interfaces in an energy-efficient
manner, which activates and deactivates a radio for effective capacity enhancement through machine
learning-based prediction algorithms.

3. System Model

The wireless VR system under consideration is illustrated in Figure 1. A VR headset client
is connected to a remote processing host, which can be a local PC or a cloud/mobile edge, via a
multiradio access technology (RAT) access point (AP) that supports WiGig and WiFi. We assume that
the headset client uses one link (WiGig or WiFi) at a time, not both simultaneously, due to excessive
energy consumption. The processing chain and data flow of wireless VR are also illustrated in Figure 1.
To track a user’s viewport in real time, the VR headset continuously measures the user’s head pose
(yaw, pitch, and roll orientations) with its built-in IMU and reports it to the host through uplink
transmission. The host generates VR image frames based on the reported motion data and streams
them to the headset client through downlink transmission. Due to the insufficient bandwidth of the
network or link, the VR image frames are encoded as a video stream using a compression codec
(e.g., H.265). We call each compressed VR frame a VR video frame. The headset client decodes the
received frames and scans them out on the display panel. A timewarp may be applied to them before
they are scanned out. Each of these processing blocks introduces some latency. In particular, the latency
components of motion report transfer, encoding, frame transfer, and decoding are newly introduced in
wireless VR.

Local host

Multi-RAT  wiGig
access point 4,"\ Motion feedback

Y VR video stream

Cloud/edge )
host iy Motion feedback
= ....‘.: ...................... >
= ¥ VR video stream VR headset
WiFi client

/N
= =

[ Rendering ]4'[ Motion information transfer ]4-[ s'gg?i?\g
. Decodi
[ Encoding H VR frame transfer & Scca?n-lngjt ]

Figure 1. Multi-RAT wireless VR system.

In our testbed, a local PC is used as a processing host. A Netgear Nighthawk X10 and an Acer
Travelmate laptop (equipped with the Sparrow 11ad module) are used. An HTC VIVE headset is
connected to the laptop via HDMI and USB cables. The motion data of the headset are captured and
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transferred to the host using VirtualHere software [31]. The compression codec is H.265 from the x265
library [32], and the streaming protocol is the real-time transport protocol (RTP) over UDP.

4. Experimental Observations on the Impact of User Motion

4.1. Impact of User Motion on the Wireless Performance

To observe the performance of WiGig and WiFi in wireless VR scenarios, we perform throughput
measurement tests. Within a VR service, the VR user walks around and rotates his/her head to
explore the virtual world. In other words, when the user moves, the position and directional angle of
the headset with respect to the connected AP change. For performance measurement, we establish
a line-of-sight WiGig/WiFi connection between the AP and the client, run iPerf tests, and observe
throughput changes for varying distances and directional angles.

The throughput performance of WiGig for varying distances is shown in Figure 2. In this
experiment, the lid of the laptop where antennas are embedded faces the AP, which corresponds to
the front direction or zero-degree angle. When the distance is 0.5 m, the throughput is measured
as 2.5 Gbps. However, at 1 m, the throughput significantly decreases to 2 Gbps. Beyond 1 m,
the throughput is approximately 1.5 Gbps. When the distance increases from 1.5 m to 3 m,
no meaningful change in the throughput is observed. These experimental results imply that WiGig’s
performance is sensitive to the distance within a nearby area but becomes less sensitive once the
distance exceeds a certain threshold. Over 3 m, we experienced unpredictable/irregular disconnections
of the WiGig interface. If the WiGig connection is made stable, it will be meaningful to investigate the
system performance in a wider service area.

In the second experiment, we continuously change the orientation of the laptop during the
iPerf [33] test at a distance of 2 m, which is more similar to real wireless VR scenarios. During the
experiment, we measure the directional angle of the client and the signal level of the WiGig module
(as reported by the wil6210 driver [34]). The collected data and throughput measurement over
time are shown in Figure 3; the mean and normalized standard deviation (divided by the mean)
of the throughput for varying antenna direction are given in Figure 4. In the figures, we observe a
correlation between the directional angle (yaw value of the IMU data) and the performance of WiGig.
The throughput is at the highest point when the direction is toward the front (zero degree). However,
when the client rotates, the throughput dramatically decreases and, moreover, the normalized standard
deviation increases (implying higher relative fluctuation). The signal level of WiGig also strongly
correlates with the direction; it is measured to be highest near zero degree and almost proportionally
decreases with the angle increase. We expect that this decrease results from imperfect and slow
beamforming operations.
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Figure 2. Throughput performance of WiGig at various distances.
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Unlike WiGig, the performance of WiFi is not sensitive to user motion at the room scale.
In the same environment as the WiGig test (performed at midnight to minimize interference),
the throughput performance of WiFi remains unchanged with distance and direction, as shown
in Figure 5. Although the signal strength of WiFi decreases with increasing distance, the link speed
(PHY rate) of WiFi does not change. However, the throughput of WiFi is only one-third the maximum
throughput that WiGig can achieve.

WiGig throughput (Gbps)
Normalized standard deviation

0 0
-100 -50 0 50 100
Antenna direction (front: O degree)

Figure 4. Mean and normalized standard deviation of WiGig throughput for varying antenna directions.
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Figure 5. Throughput performance of WiFi at various distances.

4.2. Impact of User Motion on VR Traffic

Due to the limited bandwidth of wireless connectivity, the wireless VR system under consideration
transfers a stream of encoded VR frames to a user headset. The principle of video encoding is to extract
the differential information between frames as motion vectors; larger differences between frames result
in more information, which increases the size of the resulting encoded frame. If we can predict the
sizes of upcoming frames, this will be important information in MW2IVR for adaptive operation.

In wireless VR, the major source of differences between frames is the user’s motion. To investigate
the relationship between the user motion and the amount of generated VR traffic to be delivered,
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we simultaneously collect both data during the playing of VR content in our wireless VR system.
Figure 6 shows the head angular speed and frame size with changing frame indices. We observe an
apparent correlation between the two quantities. The peaks of the head speed match those of the frame
size. The stationary periods of the user (when the head speed is close to zero) are also synchronized
with the valleys of the frame size.

To quantitatively observe the correlation between the two parameters, we show the scatter plot in
Figure 7; The red line and blue curve are the linear and quadratic regression results, respectively, of the
data samples showing a trend. The frame size is clearly proportional to the head speed. In statistics,
the p-value is commonly used as a measure of correlation; it is defined as the probability of obtaining
the observed correlation under the hypothesis of no correlation, i.e., the true correlation is zero. Then,
a sufficiently small p-value (typically less than 0.05 or 0.01) implies that such a correlation is unlikely
observed under this hypothesis, and the new hypothesis of a significant correlation should be accepted
as true. For the samples in the figure, the p-value is 2.7 x 1072%; thus, a strong correlation between
two variables is concluded.

The VR content may have moving objects in its scenes. Therefore, although the user is in a steady
state, the frame size may change with time. The user’s motion will cause additional changes in the
frame size. The amount of VR traffic to transmit will not increase immediately after the user’s motion
due to the latency components between the occurrence of the user’s motion and the transmission of the
corresponding VR traffic, such as motion data transfer, content simulation, rendering, and encoding.
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Figure 6. Changes in the head angular speed and encoded frame size with time.
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Based on the observations in the previous sections, we know that WiGig and WiFi are
complementary to each other, so cooperatively utilizing them can help to achieve high image quality
and regulated latency. MW2IVR is designed to achieve this goal using two algorithms: (1) link selection
(between WiGig and WiFi) for higher throughput and (2) encoding rate adjustment to satisfy the target

latency for the selected link. The building blocks of MW?2IVR are illustrated in Figure 8.

We will describe each algorithm of MW2IVR in detail.

Head direction
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Figure 8. Building blocks of MW?IVR.
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5.1. Link Selection

MW?2IVR selects the link with the highest predicted performance between WiGig and WiFi.
Let Rwigig and Rwir; be the predicted throughput performance of the WiGig and WikFi links, respectively.
The resulting throughput of the wireless connectivity, which we denote by R*, is obtained as

R* = max{Rwicig, RwiFi }- 1

When the WiFi link is in use for VR streaming, MW?2IVR switches to the WiGig link if the
predicted WiGig performance is better than the WiFi performance. Likewise, while the WiGig link
is in use, MW?IVR switches back to the WiFi link if the WiFi performance becomes better than the
WiGig performance.

According to the experimental observations in Section 4.1, the WiFi performance remains stable in
a room-scale environment. Therefore, MW2IVR considers the performance of the WiFi to be constant.
MW?IVR uses the WiFi link as a default link for stable service and does not turn it off due to its
relatively low power consumption. Thus, the WiFi performance is predicted from its modulation and
coding scheme (MCS) in use.

When the WiGig link is not in use for VR streaming, it is turned off to reduce the power
consumption of the client. The average power consumption of the WiGig interface was measured
using the Wattman power consumption analyzer (HPM-100A) [35] as 8.4 watts higher than the
idle state (both WiGig and WiFi are turned off), 4.3 watts higher than WiFi at 2.4 GHz, and three
watts higher than WiFi at 5 GHz. The average off-to-on delay of the WiGig interface was around
300 ms (the average of ten trials). MW2IVR switches from WiFi to WiGig after the WiGig interface is
confirmed connected. Therefore, it is necessary to estimate the performance of the WiGig link when
it is deactivated. For this purpose, MW2IVR uses a two-step approach as follows. In the first step,
it estimates the maximum WiGig performance for a given distance assuming that the client faces
toward the front. The current distance is estimated based on the WiFi signal strength or more accurately
obtained by the positional information if the headset is equipped with positional tracking. In the next
step, MWZ?IVR applies a scaling factor to the maximum performance to consider the direction effect.
Finally, MW2IVR obtains the predicted throughput performance of the WiGig link at the given distance
and direction. The determination of the information necessary for prediction is based on the a priori
determination of the WiGig performance.

5.2. Encoding Rate Adjustment

MW?2IVR adjusts the data rate of encoding on the host side such that the target transmission
latency is satisfied for the selected link. Let L be the mean size of the generated VR frames. Latency D
in delivering a VR frame to the client using the selected link at rate R* is

L

@)
MW?IVR aims to constrain the actual latency to be near the target latency Dy.

As observed in Section 4.2, the frame size is affected by the head motion; thus, MW?2IVR must
predict the frame size to be generated and adjust it accordingly. MW2IVR predicts the frame size
using the head angular speed obtained from the headset’s IMU data. The VR content has a base size
Lpgse even when the head speed is zero. When the head speed increases, the frame size also increases.
Based on this relationship, MW?2IVR predicts the upcoming frame size as

Lpredicted = -0+ Lygse, (3)

where v is the head speed and « is the scaling constant, which is found as the increase rate of the
frame size for changing v, and & and Ly, can be predetermined or continuously calibrated during VR
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service. The accuracy of the frame size prediction is illustrated in Figure 9. « is set to 180 bytes/(deg/s),
and Ly, is 1080 kbytes. The figure shows that the predicted frame size matches the generated frame
size overall. Relatively large errors are observed when the user is in a steady state because the VR
objects still move, which affects the frame size. We denote the expected latency for the predicted frame

size Lpredicted as Dexpected .

3000 ~ Predicted frame size
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Figure 9. Predicted frame size vs. generated frame size.

To satisfy the target latency Dy for the predicted frame size, MW2IVR adjusts the encoding rate of
the host’s encoder. MW?IVR increases the encoding rate if Deypecteq 18 lower than Dy and decreases it
otherwise. The encoding configurations of the encoder cannot be changed in the middle of a group
of pictures (GOP). Thus, the encoding rate remains unchanged until a new GOP begins. Table 1
illustrates the video quality in terms of the peak signal-to-noise ratio (PSNR) for varying target bit
rates when the encoder X265 is used. As the target bit rate is decreased, the PSNR is also decreased.
Another parameter of X265 to control the generated frame size is the quality, as illustrated in Table 2.
In Equation (2), when the encoder generates smaller frames, the latency is decreased. However, from
the results in the tables, a smaller frame size implies a lower VR video quality. Therefore, MWZ2IVR
adjusts the encoding rate to better satisfy the target latency instead of minimizing the latency.

Table 1. Target bit rate vs. PSNR.

Target Bit Rate (%) = PSNR  Target Bit Rate (%) PSNR

100 -

83 46.06025 27 42.0448
67 45.36735 17 40.1181
50 44.38812 10 39.7944
33 429074 3 31.6792

Table 2. Encoding quality vs. frame size.

Quality Frame Size (%)

100 100
80 84.1
50 61.8
30 48.7

10 39.1
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6. Performance Evaluation

In this section, we evaluate the performance of MW2IVR in comparison with various systems,
using data from our wireless VR system testbed. The performance of MW2IVR is evaluated in terms of
the link latency (Equation (2)) and delivered frame size.

6.1. Evaluation Configuration

To evaluate the performance of MW?IVR and other systems in the same environment, including
the user motion, we record the IMU data during the playing of the interactive VR content Great
Power [36] and the throughput and signal levels of both links in the log files. Then, the recorded IMU
data and other logged data are fed into the host of MW?IVR and the other systems in comparison.
We set the GOP size of the encoder as half of the frame rate, so that MW2IVR can update the encoding
rate twice per second. We set the target latency (D;) of MWZIVR to 11 ms, which is the average latency
of the legacy WiGig-only system. The WiFi signal levels of —-30, -35, -39, 42, —45, and —47 dBm are
interpreted as distances of 0.5, 1, 2, 3, 4, and 5 m and mapped to the throughput scaling factors for
the distances of 1, 0.74, 0.71, 0.66, 0.64, and 0.64, respectively. The throughput scaling factors for the
head directional angles of zero, <25, <45, and >45 degrees are 1, 0.78, 0.5, and 0. These parameter
configurations are based on the experimental results obtained in the testbed. « and Ly, for the frame
size prediction in Equation (3) are set to be identical to those in Figure 9: 180 bytes/(deg/s) and
1080 kbytes, respectively. The encoding rate determined by MW2IVR is set to the target bit rate of the
x265 encoder. For comparative evaluation, conventional techniques (other systems) are represented
into the following classes:

o Legacy VR with a fixed interface: The wireless interface in use is not changed during VR service.
The encoding rate is fixed as well. The cases of WiGig-only and WiFi-only are considered.

e Interface switching: Switching between WiGig and WiFi interfaces is made for higher throughput
during VR service. The switching algorithm of MW?IVR without encoding rate adjustment
is considered.

e Encoding adjustment: The encoding rate of a VR service is adjusted for latency regulation but
without interface switching. The adjustment algorithm of MW?IVR is considered, and thus
accompanies the proposed motion-aware VR traffic prediction scheme. The cases of WiGig-only
and WiFi-only are considered.

6.2. Frame Transmission Latency

Figure 10 shows the frame transmission latency over time. In the figure, MW2IVR achieves the
regulated latency around the target (11 ms), while the other systems except legacy VR (WiFi) show
fluctuating latency. The reason is that the head motion simultaneously increases the upcoming frame
size and reduces the throughput of WiGig, which amplifies the latency increase. The legacy VR (WiGig)
and encoding adjustment (WiGig) systems cannot handle such a latency increase, while MW2IVR
successfully handles it by an opportunistic switch to WiFi and an encoding rate adjustment, thus having
the latency upper-bounded by 22 ms and mostly under 15 ms. The legacy VR (WiGig) and interface
switching systems often have lower latency than MW2IVR, which, however, do not increase the
enhanced image quality due to the fixed encoding rate. The legacy VR (WiFi) and encoding adjustment
(WiFi) systems achieve regulated latency due to the stable throughput performance of the WiFi interface
in the entire service area.
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Figure 10. Frame transmission latency over time.

The cumulative distribution function (CDF) in Figure 11 supports this observation. The averages
for both MWZ?IVR and legacy VR (WiGig) systems are similarly obtained as 11.3087 ms (MW?2IVR)
and 11.0802 ms (legacy VR (WiGig)). However, the latency of the legacy VR (WiGig) system spans a
wide range, which implies a failure of latency regulation. The latency of MW?IVR is distributed in a
narrower range around the target latency. The legacy VR (WiFi) system shows regulated, but higher
latency than MW2IVR. The interface switching system shows similar latency to MWZ2IVR for 25%
of the samples, but lower latency for the rest when the link condition of WiGig is good (since the
encoding rate is fixed). The encoding adjustment (WiFi) system shows almost the same pattern of

latency distribution as MW2IVR.

0.8

0.7

0.1

—Legacy VR (WiGig) i
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Interface switching M
----- Encoding adjustment (WiGig)
----- Encoding adjustment (WiFi) H
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10

15 20 25 30 35
Frame Tx latency (ms)

Figure 11. Cumulative distribution function of the frame transmission latency.
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6.3. Generated Frame Size

The generated and delivered frame sizes over time are shown in Figure 12. The systems except
encoding adjustment (WiGig) have similar lower bounds of the frame size to each other. However,
MW?2IVR achieves occasional large frame sizes and consequently a higher image quality due to
the increase in encoding rate. This increase in the frame size occurs when the user motion slows,
since the throughput of the WiGig link increases; thus, MW2IVR has room to increase the encoding
rate. Despite such opportunistic large increases in the frame size, MW?IVR regulates the latency,
as shown in the latency results. The figure also shows that the frame size increase for MW2IVR is
somewhat synchronized with the frame size and latency decrease of the legacy VR (WiGig) system.
Hence, the near-zero head motion makes room for the wireless link to deliver more data, but the other
systems do not fully utilize it. The frame sizes of the legacy VR and interface switching systems show
the same pattern of increasing and decreasing as they use a fixed encoding rate. The frame size of the
encoding adjustment (WiGig) system increases similarly with MW2?IVR when the link condition of
WiGig is good, but decreases even lower than MWZIVR whenever the the link condition of WiGig gets
poor, at the expense of degraded VR frame quality. MW2IVR successfully handles such a poor link
condition of WiGig by switching to WiFi, thus limiting quality degradation.

4 ‘ ‘ ‘
—Legacy VR (WiGig)
—Legacy VR (WiFi)
35 Interface switcing
---------- Encoding adjustment (WiGig)
3L } - Encoding adjustment (WiFi)
m
2
32.5
2
e 2
)
[0} o
E1.5%
o
e )
1

0 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600

Frame index

Figure 12. Generated and delivered frame sizes over time.

The CDF of the frame size is shown in Figure 13. MW2IVR has larger sizes than the legacy VR
and interface switching systems in 80% of the frames, than the encoding adjustment (WiGig) system
in 65% of the frames, and than the encoding adjustment (WiFi) system in all frames. In other words,
MW?2IVR applies a higher encoding rate for a majority of the frames than the other systems. Specifically,
MW?ZIVR achieves a 25% or greater increase in frame size for 40% of the frames than the legacy VR and
interface switching systems. The average frame size is 1.883 Mbytes for MW2IVR and 1.509 Mbytes for
the legacy VR and interface switching systems (the encoding quality is fixed as 50% of the maximum
and 2.2 Mbytes is the maximum frame size of the considered VR content under this setting).
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Figure 13. Cumulative distribution function of the generated and delivered frame sizes.
7. Conclusions

We developed a wireless VR system that incorporated WiGig and WiFi links for latency regulation
and image quality enhancement, which is called MW2IVR. Through testbed experiments, we observed
that the WiGig performance greatly depended on the distance and directional angle of the head.
We also observed that the generated frame size was affected by the head speed. Based on these
observations, MW2IVR was designed to predict the performance of both links and select the WiGig link
in an opportunistic manner. MW2IVR adjusts the encoding rate of the host based on the motion-aware
prediction of the frame size and the estimated latency for the selected link. By evaluating the testbed
data, we demonstrated that MW2IVR outperformed the WiGig-only system with a fixed encoding rate
in terms of latency regulation and image quality.
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Abbreviations

The following abbreviations are used in this manuscript:

AP Access Point

CDF Cumulative Distribution Function
FOV Field Of View

GOP  Group Of Pictures

HMD Head-Mounted Display

IMU Inertial Measurement Unit

MAC Medium Access Control
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MCS  Modulation and Coding Scheme
PHY Physical Layer

PSNR  Peak Signal-to-Noise Ratio

QoE Quality of Experience

RAT Radio Access Technology

RTP Real-time Transport Protocol
VR Virtual Reality
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