
sensors

Article

Multi-Modal Explicit Sparse Attention Networks for
Visual Question Answering

Zihan Guo and Dezhi Han *

College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China;
guozihan0006@stu.shmtu.edu.cn
* Correspondence: dzhan@shmtu.edu.cn

Received: 26 October 2020; Accepted: 24 November 2020; Published: 26 November 2020 ����������
�������

Abstract: Visual question answering (VQA) is a multi-modal task involving natural language
processing (NLP) and computer vision (CV), which requires models to understand of both visual
information and textual information simultaneously to predict the correct answer for the input visual
image and textual question, and has been widely used in smart and intelligent transport systems,
smart city, and other fields. Today, advanced VQA approaches model dense interactions between
image regions and question words by designing co-attention mechanisms to achieve better accuracy.
However, modeling interactions between each image region and each question word will force the
model to calculate irrelevant information, thus causing the model’s attention to be distracted. In this
paper, to solve this problem, we propose a novel model called Multi-modal Explicit Sparse Attention
Networks (MESAN), which concentrates the model’s attention by explicitly selecting the parts of
the input features that are the most relevant to answering the input question. We consider that this
method based on top-k selection can reduce the interference caused by irrelevant information and
ultimately help the model to achieve better performance. The experimental results on the benchmark
dataset VQA v2 demonstrate the effectiveness of our model. Our best single model delivers 70.71%
and 71.08% overall accuracy on the test-dev and test-std sets, respectively. In addition, we also
demonstrate that our model can obtain better attended features than other advanced models through
attention visualization. Our work proves that the models with sparse attention mechanisms can also
achieve competitive results on VQA datasets. We hope that it can promote the development of VQA
models and the application of artificial intelligence (AI) technology related to VQA in various aspects.

Keywords: attention mechanism; computer vision; natural language processing; sparse attention;
visual question answering

1. Introduction

Recently, multi-modal learning tasks such as image captioning [1,2], image-text matching [3–5],
and visual question answering (VQA) [6], which involve natural language processing and computer
vision, have attracted considerable attention of researchers in these two fields. Compared with other
multi-modal learning tasks, VQA is more difficult, since it requires the model to understand visual
information, textual information, and the relationships between them simultaneously, and may also
require complex reasoning and commonsense knowledge to correctly answer the questions. Therefore,
VQA is regarded as a benchmark for general artificial intelligence (AI). The vigorous development of
AI technology has brought great changes in sensors related fields. The perfect combination of sensors
and deep learning enables the machine to have senses such as vision, hearing and smell, which makes
it possible for high-value sensor data analysis and low-cost, real-time intelligent sensor systems.

A simple instance of a VQA dataset contains a visual image and a textual question related to
the content of the image, which requires the model to predict the correct answer for the input image
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and question. In practice, VQA also has many applications, such as helping researchers to carry
out image retrieval [7], providing aided-navigation for blind individuals [8], helping humans to
implement smart and intelligent transport systems and smart city, being used in the field of sensor
networks, etc. For example, when used to build smart and intelligent transport systems, VQA can
help researchers to process and analyze the massive information collected by sensors and other
information collection equipment. Specifically, the VQA model takes the image information collected
by monitors and the corresponding questions as the main input, and takes other information such
as the speed of vehicles per hour and traffic information collected by sensors and other collectors
as the secondary input to predict the answers that will help traffic management, providing traffic
information services, etc. With the development of various components of VQA models such as feature
extractors, attention mechanisms, and feature fusion methods, the performance of VQA models and
their performance in various intelligent tasks are also improving.

Attention mechanism is an advanced technology in deep neural networks, which is widely
applied to machine translation [9], speech recognition [10], image captioning, and other fields.
Attention mechanism helps models to assign different weights to the features of different importance
to make the learning of neural network more flexible. The first method to introduce visual attention
into VQA was proposed by [11]. After that, attention mechanism has become an inherent part of VQA
models [12–14]. Visual attention assigns different weights to different regions of the image to make the
model focus on the image regions that help to answer the question correctly. Similarly, learning textual
attention that can enable the model to focus on the question key words is also very important to
VQA models that need to understand textual information. Recently, co-attention that combines visual
attention and textual attention has proved that VQA models which can focus on important image
regions and question key words simultaneously have better performance [15–20], and it has become
the main attention mechanism used in VQA models.

Most of the early co-attention models learned the coarse interactions between image regions and
question words but ignored the dense interactions between them. Two dense co-attention models
DCN (dense co-attention network) [21] and BAN (bilinear attention network) [5] proposed later
improved the performance of VQA model by modeling dense interactions between each image region
and each question word. However, due to the lack of modeling self-attention within each modality
(i.e., region-to-region interactions for images and word-to-word interactions for questions), the deep
stacked versions of these co-attention models showed little improvement over their corresponding
shallow models. Inspired by the transformer model [22], some recently proposed models such as
MCAN (modular co-attention network) [23] and MEDAN (multi-modal encoder-decoder attention
networks) [24] can model the dense intra-model interactions (region-to-region or word-to-word) and
inter-model interactions (word-to-region) simultaneously, thus achieving the best level of accuracy.
The experimental results showed that these models can achieve deep reasoning by deep stacking their
basic modular co-attention layers.

However, modular co-attention models like MCAN and MEDAN, which model interactions
between each image region and each question word, will force the model to calculate irrelevant
information, thus causing the model’s attention to be distracted. If irrelevant information imposes
negative impacts on reading comprehension, retrieval problems may occur. Such distraction will
hinder the understanding process, thus VQA models need effective attention mechanisms. Inspired by
the Explicit Sparse Transformer [25], we propose a novel model called Multi-modal Explicit Sparse
Attention Networks (MESAN) that employs explicit selection based on top-k selection to focus only
on the specified number of question words that are the most relevant to answering the question.
We consider that this method can reduce the interference caused by irrelevant information and
ultimately help the model to achieve better performance. Extensive experimental results on the
benchmark dataset VQA v2 [26] prove the effectiveness of our models and show that our models can
achieve state-of-the-art VQA performance. Our best single model delivers 70.71% and 71.08% overall
accuracy on the test-dev and test-std sets, respectively. We also explore the effectiveness of our models
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through ablation experiments and demonstrate that our models can obtain better attended features
than other advanced VQA models through attention visualization.

The rest of this paper is organized as follows: Section 2 introduces researches related to VQA and
the framework and details of MESAN. The dataset, experimental deployment, and experimental results
are described in Section 3. In Section 4, we detail the comparison results and attention visualization
results. Section 5 specifies the conclusion and future works.

2. Materials and Methods

2.1. Related Work

We briefly introduce the research on VQA, especially those that introduce co-attention mechanisms.

2.1.1. Visual Question Answering

VQA is a widely studied vision-and-language problem that requires models to understand of both
image content and natural language question as well as their relationship simultaneously, and may also
need complex reasoning and commonsense knowledge. The first step in most VQA models [12,27–33]
is to use feature extractors to extract features from the input image and question. Then, the model uses
a fusion method to fuse the extracted image features and question features. Finally, a classifier takes
the joint embedding as input to predict the correct answer.

However, the method described above is based on global features. The use of global features
of the input image and question will make it difficult for the model to focus on the image regions
and question key words that are the most relevant to answering the question and may introduce
noise. Therefore, some researches have introduced visual attention mechanisms into VQA based on
the assumption that humans can quickly understand the visual scene by focusing on local regions of
the image instead of processing the whole scene at once. Yang et al. [34] proposed a stacked attention
network that used the semantic representation of the input question to search for the local image
regions related to answering the question to carry out multi-step reasoning on the input image to
predict the correct answer. Anderson et al. [14] designed a bottom-up mechanism to detect image
regions and a top-down attention to assign different weights to the feature vectors related to the
regions. Schwartz et al. [35] proposed an attention mechanism that learned high-order correlations
between various data modalities for VQA, which can effectively guide the model to focus on the
elements in the different data modalities that were required to solve the multi-modal task.

2.1.2. Co-Attention Models

In addition to visual attention, textual attention that can guide models to focus on question
key words is also very important, because VQA requires the model to understand of both visual
information and textual information simultaneously. Therefore, co-attention mechanisms that combine
visual attention and textual attention have become an import component of advanced VQA models.
The Dual Attention Network (DAN) proposed in [4] gathered essential information by attending
to specific regions in images and key words in questions through multiple steps. Lu et al. [15]
designed the Hierarchical Co-attention Model (HieCoAtt) to alternatively learn visual attention and
textual attention. However, the aforementioned early co-attention models only learned the coarse
interactions between image regions and question words but ignored the dense interactions between
them. Two dense co-attention models DCN [21] and BAN [5] proposed later improved this defect by
modeling dense interactions between each image region and each question word. Although these
dense co-attention models can be cascaded in depth, their deep stacked versions have few performance
advantages. Recently proposed models such as MCAN and MEDAN achieve deep reasoning by
modeling the dense intra-model interactions (region-to-region or word-to-word) and inter-model
interactions (word-to-region), thus improving the accuracy of VQA models to a new level.
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2.2. Multi-Modal Explicit Sparse Attention Networks

In this section, we first introduce how we extract the image features and question features.
Then we describe the explicit sparse attention and encoder-decoder strategy used in our model. Finally,
we employ a fusion mechanism to obtain the joint embedding of the attended image features and
attended question features, and feed it into a classifier to predict the most likely answer. The overall
architecture of MESAN is given in Figure 1.

Figure 1. The overall architecture of Multi-modal Explicit Sparse Attention Networks (MESAN).

2.2.1. Image and Question Embeddings

Following [14], we employ the bottom-up and top-down visual attention mechanism to extract
image features. We use the Faster R-CNN model [35] to propose a set of image regions that is
represented by pooled convolutional feature vectors. The extracted image features are represented
as X ∈ Rm×2048, where m ∈ [10, 100] is the number of detected objects. In practice, we use a
linear transformation of X to make its dimension consistent with the question features. Therefore,
the dimension of the image features we used becomes m× 512 as shown in Figure 1.

For the input question, we first tokenize it into words and trim it to a maximum of 14 words the
same as [5,23]. Then we use the 300-D GloVe word embeddings [36] pre-trained on a large-scale corpus
to transform the question words into a sequence of word embeddings of size n× 300, where n ∈ [1, 14]
is the number of question words. Finally, we use a single layer 512-dimensional long short-term
memory (LSTM) to encode the word embeddings into the question features Y ∈ Rn×512.

In practice, we use zero-padding to fill X and Y to their maximum (i.e., m = 100 and n = 14) to
handle the variable number of image objects and question words. During training, the padding logits
are masked with −∞ to avoid the underflow problem.

2.2.2. Explicit Sparse Attention

Our model is composed of an encoder and a decoder. The core of the encoder is stacked SA
(self-attention) units that can learn self-attention for question words, and the core of the decoder is
stacked SGA (self&guided-attention) units that can learn self-attention and question-guided attention
for input images. The SA and SGA units are inspired by the scaled dot-product attention proposed
in [22], and the difference is that we implement an explicit selection based on top-k selection to obtain
more concentrated attention.

1. Sparse Scaled Dot-Product Attention

Given a query and a set of key-value pairs, an attention mechanism can map them to an output.
The query, keys, values, and output are all vectors and the output is a weighted sum of the values,
where weight is computed by a compatibility function of the query with the corresponding key.
The inputs to sparse scaled dot-product attention include the query Q[lQ, d], key K[lK, d], and value
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V[lV , d] and they are the linear transformation of the image features and question features. We first
compute the dot products of Q and K, and divide by

√
d to obtain the attention scores P:

P =
QKT
√

d
(1)

We evaluate the scores P based on the assumption that scores with larger values demonstrate
higher relevance. Then we implement sparse attention masking function M(·) on P to explicitly select
the top-k contributive elements. The function M(·) selects the k largest elements of each row in P and
records their position in a position matrix. Specifically, it first selects the k-th largest value of row i and
mark it as ai. If the value of the j-th element is larger than ai, the position (i, j) is recorded. The sparse
attention masking function M(·) is as follows:

M(P, k)ij =

{
Pij i f Pij ≥ ai

−∞ i f Pij < ai
(2)

Unlike Dropout [37], we only explicitly select the high attention scores through top-k selection.
The function M(·) assigns negative infinity with the scores that are smaller than the top k largest scores
and thus, the corresponding probabilities approximate 0. k is a hyperparameter and is usually a small
number. Then we apply a softmax function to get the weights on the value:

W = so f tmax(M(P, k)) (3)

Finally, the attended features F is given by:

F = WV (4)

By employing sparse scaled dot-product attention, we can not only obtain more concentrated
attention, but also eliminate the negative impacts imposed by irrelevant segments. Figure 2a shows
the difference between sparse scaled dot-product attention and ordinary scaled dot-product attention,
and Figure 2b describes the core calculation steps of sparse scaled dot-product attention.

Figure 2. (a) The difference between sparse scaled dot-product attention (left) and ordinary dot-product
attention (right). (b) The core calculation steps of sparse scaled dot-product attention. Through explicit
selection based on top-k selection and softmax function, only the most contributive elements are
assigned with probabilities.

2. Multi-Head Sparse Attention

Multi-head attention [22] allows the model to jointly attend to information from different
representation subspaces at different positions to improve the representation capacity of the attended
features. Using the same idea, our multi-head sparse attention has h parallel attention heads and each
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head corresponds to an independent sparse scaled dot-product attention function. The multi-head
sparse attention is formulated as:

Multihead(Q, K, V) = Concat(head1, . . . , headh)WO (5)

where headi = so f tmax(M(
QWQ

i (KWK
i )

T
√

d
, k))(VWV

i ) (6)

where WQ
i , WK

i , WV
i , WO are the projection matrices.

2.2.3. Encoder and Decoder

It has been proved in [23] that the performance of the encoder-decoder model is better than that
of the stacking model, thus we also use the encoder-decoder structure in our model.

• Encoder: We use encoder to implement self-attention to learn fine-grained question features.
The encoder consists of N stacked identical SA (self-attenion) units and each SA unit has two
sub-layers. The first sub-layer is a multi-head sparse attention layer and the second is a pointwise
fully connected feed-forward layer. The first SA unit takes question features Y[y1; . . . ; yn] ∈ Rn×512

as input, and its multi-head sparse attention layer learns the correlation between each word pair
< yi, yj >. The feed-forward layer of the first SA unit further transforms the output of its
previous sub-layer through two fully connected layers with ReLu [38] and Dropout and outputs
the attended question features. Every other SA unit takes the output of its previous SA unit as
input and we mark the output of the encoder as Y(N)[y(N)

1 ; . . . ; y(N)
n ] ∈ Rn×512.

• Decoder: The decoder consists of N stacked identical SGA (self&guided-attention) units, each of
which has three sub-layers and outputs the attended image features. The first and the second
sub-layers are both a multi-head sparse attention layer with sparse scaled dot-product attention
as the core. The first sub-layer of the first SGA unit takes image features X[x1; . . . ; xm] ∈ Rm×2048

as input and every other SGA unit takes the output attended image features of its previous SGA
unit as input to its first sub-layer. In practice, we use a linear transformation of X to make its
dimension consistent with the question features. The second sub-layer takes the attended image
features obtained from its previous sub-layer and the output of the encoder, i.e., the attended
question features Y(N)[y(N)

1 ; . . . ; y(N)
n ] ∈ Rn×512 as input to learn question-guided attention for

the input image features. The last sub-layer is a feed-forward layer, which is the same as that in
the encoder and it also takes the output of its previous sub-layer as input. We mark the output of
the decoder as X(N)[x(N)

1 ; . . . ; x(N)
m ] ∈ Rm×512.

To facilitate optimization, we also apply residual connection [39] followed by layer
normalization [38] to the outputs of each sub-layer of SA and SGA. Figure 3 shows the details of SA
and SGA units, and the structure of the encoder-decoder model.

2.2.4. Feature Fusion and Classifier

After the encoder-decoder learning stage, we obtain the attended question features
Y(N)[y(N)

1 ; . . . ; y(N)
n ] ∈ Rn×512 and attended image features X(N)[x(N)

1 ; . . . ; x(N)
m ] ∈ Rm×512. We design a

two-layer MLP (FC(512)-ReLu-Dropout(0.1)-FC(1)) for Y(N) and X(N) to compute their final attended
features as follows:

α = so f tmax(MLP(X(N))) (7)

x̃ =
m

∑
i=1

αix
(N)
i (8)
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where α = [α1, . . . , αm] ∈ Rm are the attention weights and x̃ ∈ R512 is the attended image feature.
We use the same method to obtain the attended question feature ỹ ∈ R512. The feature fusion
mechanism is as follows:

Z = LayerNorm(WT
x x̃ + WT

y ỹ) (9)

where Z is the fused feature, LayerNorm [38] is used to optimize training and Wx, Wy ∈ R512×1024

are two linear projection matrices. Finally, Z is projected into a vector s ∈ RA followed by a sigmoid
function [40], where A is the number of the most frequent answers in training set. The sigmoid function
is used as a classifier to obtain the final result.

Figure 3. (a) The details of SA (slef-attention) and SGA (self&guided-attention) units. (b) The structure
of the encoder-decoder model.

3. Results

We perform extensive experiments and ablation studies on the largest VQA dataset VQA v2 [26]
to explore the effectiveness of our model and experimentally answer how to choose the appropriate
k. In this section, we will introduce the benchmark dataset VQA v2 and describe the details of
our experiments.
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3.1. The Dataset

To solve the language priors in VQA, Goyal et al. [26] balance the VQA dataset [6] by collecting
complementary images for each question such that every question in VQA v2 is associated with a pair
of similar images that results in two different answers to the question. The complementary images were
collected from Amazon Mechanical Turk (AMT) and a second round of data annotation was conducted
to collect answers on these new images. Thus, VQA v2 is more balanced and is approximately twice
the size of the original VQA dataset. VQA v2 is divided into train set, validation set, and test set,
and the test set is further split into test-dev and test-std to evaluate VQA models online. The answers
are divided into three types: Yes/No, Number, and Other.

3.2. Experimental Setup

The dimensions of the image features, question features, and fused multi-modal features are 2048,
512, and 1024, respectively. The dimension of the multi-head sparse attention dm is 512 and the number
of head h is set to 8. To limit the size of the multi-head sparse attention module, the dimension of
the output features of each head is set to dm/h = 64. Following the strategy in [41], the number of the
most frequent answers in the training set is 3129, i.e., A = 3129. Considering the training time and the
number of parameters, we set the number of the stacked layers of SA and SGA units to 6, i.e., N = 6,
according to the suggestion in [23,24].

All the models in this paper are trained with the Adam optimizer [42] with β1 = 0.9, β2 = 0.98,
and the batch size is set to 64. The warm-up learning rate is set to min(2.5te−5, 1e−4), where t is
the current epoch number starting from 1. The dropout in all fully connected layers is set to 0.1.
The learning rate decays by factor 0.2 every 2 epochs after 10 epochs. All the models are trained up to
13 epochs. In addition, we use a subset from Visual Genome [43] as a dataset for auxiliary training.
The experimental results of other advanced VQA models show that this can improve the overall
performance of the models.

3.3. Experimental Results and Ablation Studies

We conduct extensive experiments and ablation studies on VQA v2 to explore the performance
of our models. In order to limit the size of the models and save computing time, we set the
appropriate stacked layers N of attention units and the number of head h of multi-head sparse
attention, according to the experience of MCAN and MEDAN. Therefore, we only need to explore
the effectiveness of sparse attention networks with different variants and choose the appropriate
k to make the models achieve the best performance. The results are shown in Table 1, Figure 4,
Table 2, and Figure 5. And the best results in the tables are bold.

• MESAN-SA: MESAN-SA means that only the SA units for learning question self-attention in
encoder adopt explicit sparse attention, while the SGA units in decoder adopt the ordinary scaled
dot-product attention. The length of the input question words is 14, thus we need to select
k ∈ [1, 14] most relevant question key words for subsequent experiments. During ablation studies,
we evaluate the performance of k ∈ {3, 4, 5, 6, 7, 8, 9}. From Table 1 and Figure 4d, we can see
that the accuracy of the model roughly increases first and then decreases with the increase of k.
When k = 8, the model achieves the highest accuracy, 70.71%.

• MESAN-SA&SGA: MESAN-SA&SGA means that both the SA units in encoder and the first
sub-layer for learning image self-attention in SGA in decoder adopt explicit sparse attention,
while the second sub-layer for learning question-guided attention in SGA adopts the ordinary
scaled dot-product attention. Considering that the input features of the second sub-layer in SGA
are selected by top-k selection, we no longer use sparse attention in it. The number of regions
of the input image is 100, thus we need to select k2 ∈ [1, 100] most relevant image regions for
subsequent experiments. During ablation studies, we set the parameter k1 of top-k selection used
in encoder to 6 and evaluate the performance of different k2 ∈ {40, 50, 60, 70, 80} of top-k selection
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used in decoder. From Table 2 and Figure 5d, we can see that the performance of the model rises
first and then falls as k2 increases. When k2 = 60, the model achieves the highest accuracy, 70.68%.

Table 1. Ablation results of MESAN-SA on visual question answering (VQA) v2 test-dev set. The best
results are bold.

k Yes/No Number Other All

3 86.72 53.83 60.48 70.54
4 86.96 52.97 60.58 70.58
5 86.97 52.79 60.70 60.62
6 86.91 53.74 60.65 70.68
7 86.85 53.35 60.63 70.61
8 87.05 53.21 60.72 70.71
9 87.02 52.81 60.62 70.61

Figure 4. (a) The Yes/No accuracy of MCAN, MEDAN, and MESAN-SA with different k.
(b) The Number accuracy of MCAN, MEDAN, and MESAN-SA with different k. (c) The Other accuracy
of MCAN, MEDAN, and MESAN-SA with different k. (d) The Overall accuracy of MCAN, MEDAN,
and MESAN-SA with different k. All the reported results are evaluated on VQA v2 test-dev set.

Table 2. Ablation results of MESAN-SA&SGA on VQA v2 test-dev set. The best results are bold.

k2 Yes/No Number Other All

40 86.74 53.10 60.58 70.51
50 86.89 53.35 60.52 70.57
60 87.02 53.43 60.63 70.68
70 87.04 53.32 60.61 70.67
80 86.58 52.86 60.62 70.43
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Figure 5. (a) The Yes/No accuracy of MCAN, MEDAN, and MESAN-SA&SGA with different k2.
(b) The Number accuracy of MCAN, MEDAN, and MESAN-SA&SGA with different k2. (c) The Other
accuracy of MCAN, MEDAN, and MESAN-SA&SGA with different k2. (d) The Overall accuracy of
MCAN, MEDAN, and MESAN-SA&SGA with different k2. All the reported results are evaluated on
VQA v2 test-dev set.

The difference between the two models is that the former only uses sparse attention in
encoder, while the later also uses sparse attention in decoder. From Tables 1 and 2, we can see
that the performance of MESAN-SA, which uses original scaled dot-product attention to learn visual
self-attention, is better than that of using sparse attention to learn visual self-attention. We think that
this is because image features are more complex and have more noise than textual features. Therefore,
using sparse attention to learn visual self-attention will have a negative impact on the performance of
the model.

4. Discussion

We also compare MESAN with other advanced VQA models through experimental results and
attention visualization.

4.1. Comparison with Advanced VQA Models

We compare the performance of our models with previous published competing methods. Table 3
shows the experimental results on the VQA v2 dataset with test-dev and test-std sets. Using Faster
R-CNN based bottom-up attention to extract image region features is one of the most common and
advanced method used by VQA models. Therefore, for fair comparison, the models in Table 3 use
the image features extracted by bottom-up attention and are all a single network. Among them,
bottom-up [41] is the most basic VQA model that uses bottom-up attention. MFH (generalized
multi-modal factorized high-order pooling approach) [16] was developed by cascading multiple
Multi-modal Factorized Bilinear Pooling (MFB) blocks to achieve more effective fusion of the visual
features and textual features, which won the runner-up in VQA Challenge 2017 and also used
co-attention mechanism. BAN [5] achieved the first place in the leaderboard of both VQA Challenge
2017 and 2018 at the time of submission by learning and using bilinear attention distributions.
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Moreover, it further used the counting module [44], which exploited auxiliary spatial information to
further improve the accuracy of the model on counting problems. MCAN and MEDAN are the most
advanced co-attention models, and our models are also based on co-attention mechanism. As can be
seen from Table 3, our best model MESAN-SA(k = 8) achieves the highest overall accuracy on both
test-dev and test-std sets. On Yes/No and Number questions, although our models are not the best,
they also reach the similar accuracy levels. We can see from Tables 1 and 2 that our MESAN-SA(k = 6)
and MESAN-SA&SGA(k1 = 6, k2 = 70) also achieve better results than MCAN and other models in
Table 3. We have done five-fold experiments on MESAN-SA(k = 8), and the lowest accuracy on test-dev
is 70.66%, which is also higher than that of MCAN and MEDAN(Adam). In addition, we also replace
the scaled dot-product attention in MEDAN for learning question self-attention with sparse attention
and have carried on experiment verification. The results are shown in Table 4. We can see that when
k = 5, the accuracy of the model is improved on all kinds of questions except Yes/No questions, and the
accuracy on Yes/No questions is only reduced by 0.15%. We have done five-fold experiments on
MEDAN-Sparse(k = 5), and the lowest accuracy on test-dev is 70.60%. This is the same as the result of
MEDAN(Adam), but the results of the other four time experiments on this model are higher than this
value. This is a good proof of the robustness of our method that using explicit sparse attention on VQA
models. All the above experimental results, including ablation experiments, prove the effectiveness of
our models.

Table 3. Results of the state-of-the-art single models and our models on VQA v2. All the models use the
same bottom-up attention visual features and are trained, validated, and tested on VQA v2. The best
results on both splits are bold.

Model
Test-dev Test-std

Yes/No Number Other All All

Bottom-up [42] 81.82 44.21 56.05 65.32 65.67
MFH [16] - - - 66.12 -
BAN + GloVe [5] 85.46 50.66 60.50 69.66 -
BAN + Glove + counter [5] 85.42 54.04 60.52 70.04 70.35
MCAN [23] 86.82 53.26 60.72 70.63 70.90
MEDAN(Adam) [24] 87.10 52.69 60.56 70.60 71.01
MESAN-SA(k = 8) (ours) 87.05 53.21 60.72 70.71 71.08
MESAN-SA&SGA(k1 = 6, k2 = 60) (ours) 87.02 53.43 60.63 70.68 70.94

Table 4. Results of MEDAN and MEDAN-Sparse with different k ∈ {4, 5, 6} on VQA v2 test-dev set.
The best results are bold.

Model Yes/No Number Other All

MEDAN-Sparse(k = 4) 86.89 52.50 60.54 70.48
MEDAN-Sparse(k = 5) 86.95 52.73 60.72 70.62
MEDAN-Sparse(k = 6) 86.76 52.72 60.55 70.46
MEDAN(Adam) 87.10 52.69 60.56 70.60

4.2. Attention Visualization

Figure 6 shows the visualization results of the attention of MESAN-SA(k = 8), MCAN and MEDAN
for a specific question. We can see that MCAN and MEDAN assign a portion of weight to words that
are not related to answering the question, while MESAN focuses on the most relevant k words by
explicit selection. For the key words “color” and “pipe” of this question, MESAN also gives higher
weights than MCAN and MEDAN, which can help the model to focus on the specified number of
question key words to better predict the answer. We think that this method can reduce the noise caused
by irrelevant words, focus the attention of the model, and ultimately help to improve the performance
of the whole model.
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Figure 6. The visualization results of the attention of MESAN-SA(k = 8), MCAN, and MEDAN for a
specific question. The ordinate is the weight to measure the importance of a word.

5. Conclusions

In this paper, we propose a novel model called Multi-modal Explicit Sparse Attention Networks
(MESAN) for VQA. Considering many existing co-attention based VQA methods modeling dense
interactions between each image region and each question word, which will force the models to
calculate irrelevant information and have a negative impact on the performance of the models,
MESAN reduces the interference from irrelevant information and focuses the attention of the model
by using explicit selection based on top-k selection. Like other different sparse attention mechanisms
used in NLP and CV fields, our models also achieve competitive results. A large number of ablation
experiments and comparative experiments prove the effectiveness of our models and demonstrate that
the models with sparse attention mechanisms can also achieve competitive results on VQA datasets.
We also show the advantages of our model over other advanced VQA models through attention
visualization. The limitation of this paper is that it is necessary to manually compare the different
results of different k to select the best k value to achieve the best performance of the model. In the
future studies, we will focus on exploring the method that can adaptively learn the optimal value of
parameter k and strive to explore more effective sparse attention mechanisms for not only VQA, but also
computer vision and natural language processing. We hope to propose better models to promote the
application of VQA in intelligent transportation, smart city [45] and other artificial intelligence fields,
and combine VQA with technologies based on the Internet of Things (IoT) Environment [46] to explore
more application possibilities.
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Abbreviations

The following abbreviations are used in this manuscript:

VQA visual question answering
NLP natural language processing
CV computer vision
AI artificial intelligence
DCN dense co-attention network
BAN bilinear attention network
MCAN modular co-attention network
MEDAN multi-modal encoder-decoder attention networks
MESAN Multi-modal Explicit Sparse Attention Networks
DAN Dual Attention Network
HieCoAtt Hierarchical Co-attention Model
LSTM long short-term memory
SA self-attention
SGA self&guided-attention
AMT Amazon Mechanical Turk
MFH generalized multi-modal factorized high-order pooling approach
MFB Multi-modal Factorized Bilinear Pooling
IoT Internet of Things
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