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Abstract: Visual sensor networks (VSNs) can be widely used in multimedia, security monitoring,
network camera, industrial detection, and other fields. However, with the development of new
communication technology and the increase of the number of camera nodes in VSN, transmitting and
compressing the huge amounts of video and image data generated by video and image sensors has
become a major challenge. The next-generation video coding standard—versatile video coding (VVC),
can effectively compress the visual data, but the higher compression rate is at the cost of heavy
computational complexity. Therefore, it is vital to reduce the coding complexity for the VVC encoder
to be used in VSNs. In this paper, we propose a sample adaptive offset (SAO) acceleration method by
jointly considering the histogram of oriented gradient (HOG) features and the depth information
for VVC, which reduces the computational complexity in VSNs. Specifically, first, the offset mode
selection (select band offset (BO) mode or edge offset (EO) mode) is simplified by utilizing the
partition depth of coding tree unit (CTU). Then, for EO mode, the directional pattern selection is
simplified by using HOG features and support vector machine (SVM). Finally, experimental results
show that the proposed method averagely saves 67.79% of SAO encoding time only with 0.52%
BD-rate degradation compared to the state-of-the-art method in VVC reference software (VTM 5.0)
for VSNs.

Keywords: visual sensor networks; versatile video coding; sample adaptive offset; edge offset; depth

1. Introduction

Recently, the advances in imaging and micro-electronic technologies enable the development
of visual sensor networks (VSNs) [1,2]. By integration of low-power and low-cost visual sensors,
VSNs can obtain multimedia data such as images and video sequences. As the key applications in
VSNs, video transmission and compression technology have been increasingly used in the field of
communication and broadcasting. Especially with the development of Internet of Things [3–6] and 5G
techniques [7,8], the transmission of video and multimedia information in mobile communication have
become the current hot technology, and improving the compression performance of mobile videos
could combine the mobile application with communication better in VSNs. Due to the increasing
pressure of video storage and transmission [9,10], more and more efficient video coding standards
have been put out in the last few decades. High-Efficiency Video Coding (HEVC/H.265) [11] is
developed by Joint Collaborative Team of Video Coding (JCT-VC). Compared with advanced video
coding (AVC/H.264), HEVC achieves equivalent subjective video quality with approximately 50%
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bit rate reduction. As the upcoming standard with the most advanced video coding technology,
versatile video coding (VVC/H.266) [12,13] can reduce the bit rate by 40% while maintaining the
same quality compared to HEVC. Therefore, it is very suitable for high-resolution and different
formats of videos in VVC, such as virtual reality (VR) video [14] and ultra high-definition video [15].
However, block-based coding structures and quantization structures are still inherited, which cause
artifacts in VVC, such as blocking artifacts, ringing artifacts, and blurring artifacts [16]. In order to
reduce the ringing artifacts and distortions, VVC also adopts the sample adaptive offset (SAO) filter
as in HEVC [17,18]. The thought of SAO is to reduce the distortion between the original samples
and reconstructed samples by conditionally adding an offset value to each sample inside coding
tree unit (CTU) [18]. Although the SAO process effectively improves the coding quality, it brings
computational redundancy [19] as SAO not only refers to each original sample and reconstructed
sample to collect statistic data, but also uses recursive rate distortion optimization (RDO) calculation
to select the best SAO parameters [20].

Moreover, the coding complexity of VVC has increased greatly at the same time, which may
be four to five times more complex than the current HEVC video coding standard [21–23].
Moreover, new video applications in VSNs need more bandwidth and less delay [24] when transmitting
wireless communication, which brings great challenges to video coding and transmission in VSNs.
Therefore, reducing the coding complexity of VVC becomes an important issue for VSNs. Thus,
this paper proposes a SAO acceleration method to reduce the SAO coding time, thereby reducing the
coding complexity of VVC and improving the efficiency of video transmission for VSNs. The main
contributions of this paper can be summarized as follows.

(1) A new depth-based offset mode selection scheme of SAO is proposed for VVC. According
to the partition depth of CTU, the edge offset (EO) mode and the band offset (BO) mode are
adaptively selected.

(2) A histogram of an oriented gradient (HOG) feature-based directional pattern selection scheme is
proposed for EO mode. The HOG features [25] of CTU are extracted and input to the support
vector machine (SVM). The best directional pattern is output, skipping the RDO calculation
process and sample collection statistics of the other three directional patterns.

The rest of the paper is organized as follows. Section 2 introduces the related work. Section 3
describes the overview of SAO algorithm in VVC. Section 4 introduces the proposed method.
Experimental results are shown in Section 5. Section 6 concludes this paper.

2. Related Work

In recent years, many researchers have proposed improved methods to reduce the computational
complexity of SAO. They can be classified into two categories: The first category focuses on reducing
the complexity by improving the SAO algorithm directly. Joo et al. [26] proposed a fast parameter
estimation algorithm for SAO by using the intra-prediction mode information in the spatial domain
instead of searching all EO patterns exhaustively to simplify the decision of the best edge offset (EO)
pattern. Furthermore, they also proposed to make a simplified decision of the best SAO edge offset
pattern by using the dominant edge direction [27], which reduced the RDO calculation and sped up
the SAO encoding process in HEVC. Zhang et al. [28] proposed to distinguish videos according to
texture complexity and performed an adaptive offset process by reducing some unnecessary sample
offsets to improve the video coding efficiency. Gendy et al. [29] proposed an algorithm to reduce the
complexity of SAO parameter estimation by adaptively reusing the dominant mode of corresponding
set of CTUs, which saved SAO encoding time. Although the above two methods save SAO encoding
time, the BD-rate gain loss is large. Sungjei Kim et al. [30] proposed to decide the best SAO parameters
earlier by exploiting a spatial correlation between current and neighbor SAO types, which reduced the
parameter calculation of other SAO patterns.
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The other category focuses on reducing the complexity of SAO by parallel processing on a central
processing unit (CPU) and graphic processing unit (GPU). Zhang et al. [31] designed the corresponding
parallel algorithms for SAO by exploiting GPU multi-core computing ability, and a parallel algorithm
of statistical information collection, calculation of the best offset and minimum distortion, and SAO
merging was proposed. D. F. de Souza et al. [32] optimized the deblocking filter and SAO by using
GPU parallelization in a HEVC decoder for an embedded system. Wang et al. [33] redesigned the
statistical information collection part, which computes offset types and values, to make it well suitable
for GPU parallel computing. Later, Wang et al. [34] designed the pipeline structure of HEVC coding
through the cooperation of CPU and GPU. Through the joint optimization of deblocking filter and
SAO, the parallelism can be improved and the computational burden of CPU can be reduced.

Although the above methods have achieved good results in the research of SAO acceleration,
these technologies are all designed for HEVC, and many new technologies have been added
to VVC, such as multi-tree partitioning, independent coding of luma and chroma component,
Cross-Component Linear Prediction (CCLM) prediction mode, Ref. [35–37] Position Dependent intra
Prediction Combination (PDPC) technology, and so on [38,39]. These new technologies cause different
encoding characteristics between VVC and HEVC. Therefore, the acceleration method of SAO for VVC
needs to be re-studied.

It should be noted that the proposed method utilizes depth information for SAO acceleration.
Although the work in [26] is also depth-based, it is designed for HEVC. The block partition mode of
VVC has large differences compared with that of HEVC. Concretely, VVC adopts the new quad-tree
with nested multi-type tree (QTMT) [35,36]. Similar to HEVC, each frame is first divided into CTUs,
and then further divided into smaller coding units (CUs) of different sizes. In the QTMT structure,
there are five ways to split blocks, including horizontal binary tree (BH), vertical binary tree (BV),
horizontal ternary tree (TH), vertical ternary tree (TV), and quad-tree (QT), and the five possible
partition structures are shown in Figure 1. This division pattern means that the shape of CU includes
square and rectangular. In VVC, the maximum value of CU partition is 128 × 128, and the minimum
depth value is 0; the minimum partition of CU is 4 × 4, and the maximum depth is 6. In Figure 2,
a possible CTU partitioning with the QTMT splits is depicted.

(a)  BH (b)  BV (c)  TH (d)  TV (e)  QT

Figure 1. Five partition structures of quad-tree with nested multi-type tree (QTMT).

Figure 2. An example of QTMT structure in versatile video coding (VVC).



Sensors 2020, 20, 6754 4 of 18

3. Overview of SAO in VVC

SAO, as a key technology of loop postprocessing, mainly consists of three steps: sample collection
statistics, mode decision and SAO filtering. First, in the process of sample statistics collection, eight SAO
offset patterns of each CTU need to be traversed, including four EO patterns, one BO pattern, two merge
patterns, and one SAO off pattern. We need to traverse all possible offset patterns to collect statistic
information. Then, for the mode decision, the encoder will perform RDO calculation for each pattern
by the statistical data. We choose the best pattern according to the RDO calculation results of the eight
patterns. Finally, in the filtering process, we add an offset value for each reconstructed sample.

SAO consists of two types of algorithms: Edge Offset (EO) and Band Offset (BO). The two methods
are described as follows.

3.1. Edge Offset (EO)

EO classifies samples based on direction, using four one-dimensional directional patterns:
horizontal (EO_0◦), vertical (EO_90◦), 135 diagonal (EO_135◦), and 45 diagonal (EO_45◦). As shown in
Figure 3, “c” represents the current sample, and “a” and “b” are two adjacent samples. The classification
of the current sample “c” is based on the comparison between “c” and the two neighboring samples
of it.

a c b

a

c

b

a

c

b

a

c

b

EO Class=0

EO Class=2 EO Class=3

EO Class=1

Figure 3. Four 1-D 3-pixel patterns for Edge Offset (EO) sample classification: horizontal (EO Class = 0),
vertical (EO Class = 1), 135◦diagonal (EO Class = 2), and 45◦diagonal (EO Class = 3).

For a given EO pattern, samples are divided into five categories according to the relationship
between the current pixel and neighbor pixels. Table 1 summarizes the classification rules for each
sample. The offset values are always positive for categories 1 and 2, and negative for categories 3 and 4,
which indicates that EO tries to reduce the distance between current sample and neighbor ones.

Table 1. Sample classification rules for EO.

Category Conditions

1 c < a && c < b

2 (c < a && c == b) || (c == a && c < b)

3 (c > a && c == b) || (c == a && c > b)

4 c > a && c > b

0 None of above
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3.2. Band Offset (BO)

BO divides pixel range into 32 bands where each band contains pixels in the same intensity
interval. Each interval band’s offset value is an average difference between original and reconstructed
samples. Moreover, four consecutive bands are selected to calculate the differences in pixel values
between original samples and reconstructed samples. Only four offsets of the consecutive bands are
selected and signaled to the decoder. The schematic diagram of BO mode is shown in Figure 4.

0 1 2 30 31

Pixel values 0..7     4 continuous offset bands

0 255
Sample pixel values

Figure 4. Illustration of band offset mode.

4. Proposed SAO Method

In this section, first the motivation of the proposed method is analyzed. Next, the simplification
scheme of offset mode selection is introduced. Then, the simplification scheme of EO mode is presented.
Finally, the process of the proposed method is summarized with a flowchart.

4.1. Motivation

For the BO mode, the pixel values of the compensated samples are concentrated in the four
consecutive bands, and the BO mode performs better for those regions where the pixel values are
concentrated in small ranges. Therefore, the BO mode can be fast selected according to the pixel
distribution of different CTUs.

For the EO mode, when it compensates for high-frequency distortion caused by quantization,
it references neighbor pixels for pattern selection. Therefore, the best EO pattern is closely related to
the main local edge features. In local areas, consecutive samples along the local edge direction are more
probable to have similar values compared to other samples. The HOG feature is a feature descriptor
used for object detection in computer vision and image processing. It is formed by calculating and
counting the gradient direction histogram of the local area of the images. Therefore, the HOG features
extracted from CTUs can be used to select the optimal pattern. The extracted HOG features are used as
the input of the SVM, and the best EO pattern is directly selected by the output of SVM.

4.2. Simplification of Offset Mode Selection

The BO mode works in the areas where the pixel values are concentrated, and the pixel distribution
is closely related to picture contents. We observe that regions with complex texture have complex
pixel distribution and the corresponding pixel values are decentralized. On the contrary, regions with
simple texture have concentrated pixel distribution. Simultaneously, regions with complex texture
are usually encoded with small CU, and regions with simple texture are usually encoded with large
CU. For example, Figure 5 depicts the partition result of each CTU in the 87th frame of the sequence
BasketballPass under all intra (AI) configuration, where the quantization parameter (QP) is 22. We can
see that larger CU is selected for encoding flat areas, such as floors and walls. A smaller CU is selected
to encode regions with complex texture, such as the human head and a basketball. Moreover, to show
the pixel distribution difference between complex region and simple region, a block belongs to complex
region is selected and the pixel distribution is shown in Figure 6a, and a block belongs to simple regions
is selected and the pixel distribution is shown in Figure 6b. It can be seen that for block belongs to
complex regions (Figure 6a), the pixel values are decentralized (minimal pixel 93, maximum pixel 184).
For block belongs to simple regions(Figure 6b), the pixel values are concentrated (minimal pixel 121,
maximum pixel 124).
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Figure 5. Coding unit (CU) partition of the 87th of BasketballPass encoded with QP = 22 under all
intra (AI) configuration.

(a) Pixel value (depth = 6). (b) Pixel value (depth = 0)

Figure 6. Pixel value distribution comparison between complex region and simple region.

Therefore, the partition depth of CTU can be used to measure the pixel distribution, where the
depth of CTU represents the maximum depth of CU in CTU. Concretely, smaller depth means simpler
texture, which indicates more concentrated pixel distribution. Therefore, CTU with small depth can
directly choose BO mode as the offset mode, because all the concentrated pixels of this CTU could be
covered by four consecutive bands. On the other hand, CTU with large depth contains decentralized
pixel range. If BO mode is adopted, many samples can not be covered by the four consecutive bands,
which will degrade offset performance. Therefore, in this paper, if depth < δ, the BO mode is selected
as the SAO type; otherwise, the EO mode is selected.

Obviously, threshold δ directly influences the performance of the proposed method. Thus,
we conduct some experimental tests to select a proper value for δ. We count the proportion of each
depth in which the best mode is BO mode between EO mode and BO mode, where the test sequences
are Johnny and KristenAndSara under low delay with B picture (LB) configuration, and the number of
test frames is 100 for each sequence. As shown in Figure 7, the depth values are mostly concentrated
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at 0 and 1 when the best mode is BO mode, which illustrates that BO mode shows good effect in
the area with lower complexity, and EO mode performs better in the area with higher complexity.
Therefore, we set δ = 2. If the depth < 2, BO mode will be directly selected as the best mode between
EO mode and BO mode. Otherwise, EO mode will be directly selected as the best mode.
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Figure 7. Proportion of each depth in which the best mode is BO mode between EO mode and BO
mode under LB (The test sequences are Johnny and KristenAndSara, and the test frames are 100 for
each sequence).

4.3. Simplification of EO Mode

This section describes the simplification of EO mode. First, the gradient computation is introduced.
Then, the HOG features calculation is present. Finally, the classification based on SVM is analyzed.

4.3.1. Gradient Computation

The HOG features are extracted by calculating and counting the histogram of the gradient
direction of the local area of the picture. Therefore, we divide the CTU picture into small cells to
calculate the gradient amplitude and gradient direction. The Scharr operator and Sobel operator are
two common operators for computing gradient. The principles and structures of the two operators
are similar. The central element of the Scharr operator takes more weight, so the accuracy calculated
by it is higher. Therefore, in this paper, we choose the Scharr operator to calculate the edge gradient.
The direction gradient of Scharr operator is calculated as

Gxi,j = 3 fi+1,j−1 + 10 fi+1,j + 3 fi+1,j+1

− 3 fi−1,j−1 − 10 fi−1,j − 3 fi−1,j+1
(1)

Gyi,j = 3 fi−1,j−1 + 10 fi,j−1 + 3 fi+1,j−1

− 3 fi−1,j+1 − 10 fi,j+1 − 3 fi+1,j+1
(2)

where Gxi,j and Gyi,j represent the gradient in the horizontal direction and the gradient in the vertical
direction, respectively, and the gradient amplitude can be roughly estimated in the following ways,

Amp({Gxi,j, Gyi,j}) =
√
(Gxi,j)

2 + (Gyi,j)
2 (3)

The decision of EO pattern is made by horizontal gradient and vertical gradient, and the HOG

is established by
Gyi,j
Gxi,j

. Let η =
Gyi,j
Gxi,j

, and the direction angle of the gradient θi,j could be calculated
as follows.

θi,j = arctan(η) (4)
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4.3.2. HOG Features Calculation

In the process of HOG features calculation, each pixel in the cell votes for a direction-based
histogram channel. According to the gradient direction and gradient amplitude of each pixel in
the cell, the gradient amplitude value is added to the histogram channel to which the current pixel
belongs. The histogram channels are evenly distributed in the range of 0–180◦ or 0–360◦. EO modes
are classified according to four kinds of position information (horizontal, vertical, 135◦ diagonal,
and 45◦ diagonal) between current pixel and neighbor pixels, and we divide 0–180◦ into 9 bins (20◦ for
each part) as histogram channels. Due to changes in local illumination, the range of gradient intensity
is very large. Therefore, groups of adjacent cells are considered as spatial regions called blocks to
perform normalization operations to achieve better extraction results, and the histograms of many
cells in the block represent the block histograms, which represent the feature descriptor. After the
calculation of block gradient histograms, all the block gradient histograms in a CTU represent all the
features within the CTU, and all the block feature vectors are concatenated to form the final feature
vectors in each CTU. Figure 8 shows the visualization of a picture based on HOG features, where 4 cells
form a block.

Figure 8. Visualization of histogram of an oriented gradient (HOG) features.

4.3.3. Classification Based on SVM

The best pattern is predicted by SVM. The SVM algorithm is to find the best hyperplane in
a multidimensional space as a decision function, so as to achieve classification between classes.
For a given training set, S = {(xi, yi)}, xi represents the feature vector of the training samples,
yi represents the label of the training samples, and yi = 1 and yi = −1 denote the positive and
negative samples respectively. Therefore, hyperplane f (x) can be calculated as follows,

f (x) = ωTx + b

=
m

∑
i=1

αiyixT
i x + b

(5)

where ω is the normal of the hyperplane, m is the number of support vectors, αi is the Lagrange
multiplier and b is the deviation. The objective function can be calculated as follows,

min
ω,b,ξi

1
2
‖ω‖2 + C

m

∑
i=1

ξi (6)
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s.t. yi(ω
Txi + b) ≥ 1− ξi

ξi ≥ 0, i = 1, 2, ..., m.
(7)

where the ξi is the slack variable, and C is the penalty factor. The kernel function κ(x, xi) is used to
map the original space to a higher dimensional space, and f (x) can be rewritten as

f (x) =
m

∑
i=1

αiyiκ(x, xi) + b (8)

In this paper, we choose radial basis function as the kernel function. The kernel function can be
calculated as

κ(x, xi) = exp(−γ‖x− xi‖2), γ > 0 (9)

where γ defines the impact of a single sample.
The samples can be classified according to the obtained hyperplane. In this paper, there are four

directional patterns of EO as candidates for SAO. Therefore, we design four one-versus-rest SVM
models. For each model, the positive examples are the CTUs with the best EO pattern, and the negative
examples are the CTUs with the remaining three other patterns. The HOG features of CTUs are used
as the input of SVM to train the four SVM models off-line, and the best EO pattern is directly selected
through the models.

4.4. Summary

Combining the simplification of offset mode selection and directional pattern selection,
the flowchart of the proposed SAO acceleration method is summarized in Figure 9. Concretely,
first, the depth information is used to evaluate the pixel distribution, and SAO is accelerated based
on the depth information. If the depth is smaller than 2, BO mode is selected as the best offset mode;
otherwise, EO mode is selected as the best offset mode. Second, for the EO mode, the HOG features
of each CTU are extracted, and the best directional pattern of EO mode is predicted based on HOG
features and SVM. Next, the best mode is selected by comparing the RDO values of EO or BO mode
and SAO off state. Then, we compare this mode with the best pattern in SAO merge mode to select
the final offset mode and obtain the SAO offset information. Finally, the offset value is added to the
reconstructed samples.

SAO Stats

BO,EO_0,EO_1,EO_2,EO3,SAO_OFF

Calculate the offset 

and RDO 

Extract HOG features
Calculate  RDO

SAO_OFF

BO

Calculate the offset and RDO

Best mode in EO/BO and SAO_OFF

Select the best EO pattern 

according to SVM

SAO_OFF?
YES

NO

Depth<2

EO

SAO best offset and mode 

Check Merge or not

SAO filtering

YES

NO

Figure 9. Flowchart of proposed overall sample adaptive offset (SAO) algorithm.
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5. Experimental Result

In this section, first the experimental design is introduced. Then, the performance of HOG and
SVM is analyzed. Finally, the acceleration performance of different methods is compared.

5.1. Experimental Design

The proposed method and other acceleration methods are implemented on the VVC reference
software (VTM5.0) [40]. The test platform is a Dell R730 server, which has two 12-core Intel(R) Xeon(R)
E5-2620 V3 CPUs with a main frequency of 2.4 GHz made in China. Our experimental materials are
from the standard sequences of JCT-VC proposals [41], as shown in Table 2. All the experimental
sequences are encoded with four modes, which contains AI mode, random access (RA) mode, low delay
with P picture (LP) mode, and LB mode. The main encoding parameter configurations are listed in
Table 3.

Table 2. Experimental test materials.

Class Resolution Sequence Name Encoded Frames Frame Rate

ClassB

1920 × 1080 BQTerrace 120 60 fps

1920 × 1080 Cactus 100 50 fps

1920 × 1080 Kimono1 100 24 fps

ClassC

832 × 480 BasketballDrill 100 50 fps

832 × 480 PartyScene 100 50 fps

832 × 480 BQMall 120 60 fps

ClassD

416 × 240 BQSquare 120 60 fps

416 × 240 BasketballPass 100 50 fps

416 × 240 BlowingBubbles 100 50 fps

ClassE

1280 × 720 Fourpeople 120 60 fps

1280 × 720 Johnny 120 60 fps

1280 × 720 KristenAndSara 120 60 fps

ClassF
1280 × 720 SlideEditing 100 30 fps

1280 × 720 SlideShow 100 30 fps

Table 3. Main encoding parameter configurations.

Codec VTM5.0

Configurations

All Intra (AI)
Random Access (RA)

Low delay with P picture (LP)
Low delay with B picture (LB)

Profile Main

GOPsize 8

Quantization Parameter 22, 27, 32, and 37

Deblock Filter ON

Adaptive Loop Filter OFF

5.2. Effectiveness Verification of HOG Features

The parameters and data regarding the HOG features are calculated and shown. The first sequence
in each class is selected as the training sequences, and the remaining sequences are used as the testing
sequences. In this paper, a self-made data set is used. For training of each configuration, we select a
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total of about 16,000 CTUs of each training sequence for each QP, and we extract the HOG features of
CTUs in the training sequences to make the data set. The size of the CTU is 128 × 128 (For the CTUs
whose size is not 128 × 128 at the boundary, pixels of boundary are used to fill the size to 128 × 128
when calculating the HOG features). The cell size of the extracted HOG features extraction is 8 × 8,
and the size of each block is 16 × 16. The size of blockStride is 16 × 16, so there is no overlap among
the blocks. We divide 0–180◦ into 9 parts (20◦ for each part) as histogram channels. The radial basis
function (RBF) is selected as the kernel function of SVM, and the penalty factor C is set to 10 and the
parameter γ is set to 0.09.

Figure 10 shows the CTU pictures for each best EO pattern and their corresponding HOG features
maps. The four EO patterns correspond to the four labels of SVM, and the HOG features of each CTU
are used as the input of SVM to predict.

In this paper, each CTU contains 8 × 8 (64) blocks, while each block contains 4 cells, and each cell
is divided into 9 bins. Therefore, a CTU contains a total of 8 × 8 × 4 × 9 (2304) dimensional features.
Figure 11a–d shows the corresponding features and the gradient value of each feature of Figure 10a–d.

Taking these features as the input of SVM, the best EO pattern can be predicted directly by
comparing the probability that the current CTU belongs to each EO pattern. Table 4 shows the
prediction accuracy of EO Pattern in this paper and the works in [26,27]. Compared with the methods
in [26,27], the algorithm based on HOG features fully combines the features of images and shows
higher prediction accuracy.

Table 4. Prediction accuracy comparison of different SAO methods.

Algorithm Accuracy(%)

Intra-based EO [26] 72.20

Sobel-based EO [27] 76.30

Proposed 79.06

(a) EO 0◦ (b) EO 90◦

(c) EO 135◦ (d) EO 45◦

Figure 10. Coding tree units (CTUs) and HOG features maps of each EO pattern.
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(b) Features of Figure 10b
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(c) Features of Figure 10c
0

10

20

30

40

0

20

40

60

80
0

0.05

0.1

0.15

0.2

Number of features per blockNumber of blocks

G
ra

di
en

t v
al

ue

(d) Features of Figure 10d

Figure 11. HOG features and the gradient value of each feature of Figure 10a–d.

5.3. Acceleration Performance Comparison

Figure 12 summarizes the distribution of depth values of CTUs under different configurations.
From the figure, it can be seen that for the sequences with higher texture complexity, the depth of CTU
is larger, such as the sequences in ClassB, ClassC, and ClassD; for those sequences with lower texture
complexity, there are more CTUs with smaller depth than the sequences with high texture complexity,
such as the sequences in ClassE and ClassF. This is also in line with our expectations.

We evaluate the performance of the algorithm with the Bjφntegaard [42] metric (BD-rate) and the
reduction of SAO encoding time ∆T. ∆T can be calculated as follows.

∆T =
TVVC(SAO) − TProposed(SAO)

TVVC(SAO)
(10)

Table 5 summarizes the BD-rate and run time reduction of the proposed method compared with
VTM5.0. The result shows that the proposed method averagely achieves 63.68%, 65.09%, 71.46%,
and 70.93% SAO encoding time saving with 0.20%, 0.33%, 0.96%, and 0.59% coding performance gain
degradation for AI, RA, LP, and LB, respectively. The comparison shows that the proposed method can
effectively reduce the SAO encoding time in the case of a small BD-rate performance loss for VSNs.
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Figure 12. The proportion of depths of all testing sequences encoded with four configurations.

Table 6 compares the proposed method with the other three methods in [27,28,30] under AI
configuration. It can be seen that the proposed method averagely achieves 63.68% SAO encoding
time saving, which is better than the methods in [27] (53.43%), [28] (9.62%), and [30] (48.34%).
Compared with the method in [27], it can be seen that the proposed algorithm achieves further
computational complexity reduction with a much smaller increment in the BD-rate. This is because
that the prediction accuracy of the best EO pattern of the method by HOG features is more accurate
than that of the [27] directly using Sobel operator. In addition, this paper further optimizes the
coding efficiency by combining the depth. Compared with the method in [28], we can see that the
SAO encoding time saved in this paper in VVC is much more than that in [28]. On the one hand,
the algorithm in [28] directly uses the depth information to turn on SAO adaptively. Due to the block
partition method based on QTMT, there are more choices of block partition in VVC, which leads to great
differences in block partition structure between VVC and HEVC. On the other hand, the optimization
of EO mode is not considered in [28]. Compared with the method in [30], it can be seen that the
SAO encoding time saved in this paper in VVC is more than that in [30] with almost the same BD
performance loss. This is because in [30] at least two patterns of EO mode and BO mode must be
calculated. Moreover, when the best mode is SAO off, all possible SAO patterns must be calculated,
which consumes a lot of time.
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Table 5. BD performance and time reduction of the proposed method encoded with AI, RA, LP,
and LB configurations.

Anchor(VTM5.0)
SAO Disabled

with 128 × 128 CTU
Y BD-Rate ∆T

All
Intra
(AI)

ClassB 0.15% 63.22%
ClassC 0.03% 62.87%
ClassD −0.04% 63.01%
ClassE 0.10% 64.43%
ClassF 0.77% 64.87%

Random
Access
(RA)

ClassB 0.44% 61.68%
ClassC 0.11% 64.44%
ClassD 0.09% 63.87%
ClassE 0.22% 67.20%
ClassF 0.79% 68.28%

Low
Delay P

(LP)

ClassB 1.17% 69.88%
ClassC 0.71% 69.10%
ClassD 0.36% 68.72%
ClassE 1.49% 73.59%
ClassF 1.05% 76.01%

Low
DelayB

(LB)

ClassB 0.77% 69.54%
ClassC 0.48% 68.99%
ClassD 0.08% 68.55%
ClassE 0.52% 72.48%
ClassF 1.08% 75.10%

Summary

AI 0.20% 63.68%
RA 0.33% 65.09%
LP 0.96% 71.46%
LB 0.59% 70.93%

average overall 0.52% 67.79%

Table 6. BD performance and time reduction comparisons of three methods encoded with
AI configuration.

Proposed Sobel-Based EO [27] Depth-Based EO [28] Spatial Correlation-Based [30]Anchor(VTM5.0)
SAO Disabled

with 128 × 128 CTU Y BD-Rate ∆T Y BD-Rate ∆T Y BD-Rate ∆T Y BD-Rate ∆T

ClassB 0.15% 63.22% 0.12% 50.76% 0.07% 10.40% 0.12% 38.41%
ClassC 0.03% 62.87% 0.02% 53.43% 0.05% 2.90% 0.06% 51.47%
ClassD −0.04% 63.01% 0.01% 56.65% 0.35% 3.10% 0.04% 45.91%
ClassE 0.10% 64.43% 0.11% 52.42% 0.12% 14.80% 0.15% 50.55%

Sequence
Class

ClassF 0.77% 64.87% 0.42% 53.89% 0.73% 16.90% 0.36% 55.34%

average overall 0.20% 63.68% 0.14% 53.43% 0.26% 9.62% 0.15% 48.34%

Figure 13 evaluates the rate–distortion curves of Bit Rate and PSNR of Cactus sequence in AI,
RA, LP, and LB. It can be seen that the two curves almost coincide, which indicates that the encoding
performance of the fast SAO algorithm proposed in this paper is similar to the default algorithm of
VVC in terms of objective quality. It means that the proposed algorithm greatly reduces the SAO
encoding time and improves the encoding efficiency with almost no lose of SAO encoding quality
for VSNs.
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Figure 13. RD curve comparison of Cactus.

Figures 14 and 15 compare the subjective quality from Johnny and BasketballPass by using the
default algorithm in VVC and our algorithm in this paper, and we analyze the situation when QP is 22
under AI configuration. As shown in Figures 14 and 15, the differences of subjective quality between
the two algorithms are also barely visible to the naked eye, which shows that the subjective quality
loss caused by the algorithm in this paper can be ignored.

(a) Default SAO in VVC (b) The fast SAO proposed in this paper

Figure 14. Comparison of the decoding picture of the 45th of Johnny.
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(a) Default SAO in VVC (b) The fast SAO proposed in this paper

Figure 15. Comparison of the decoding picture of of the 3rd of BasketballPass.

6. Conclusions

Complex calculation of SAO is a bottleneck to realize real-time transmission for VVC in VSNs.
In order to solve the time-consuming problem of the SAO encoding process in VVC, this paper proposes
a fast sample adaptive offset algorithm jointly based on HOG features and depth information for VSNs.
First, the depth of each CTU is utilized to simplify the offset mode selection. Then, for EO mode,
the HOG features and SVM are used to predict the best pattern in EO mode, skipping 75% calculation
of the mode selection in EO mode. Finally, experimental results show that the proposed method
can reduce the SAO encoding time by 67.79% with negligible objective and subjective degradation
compared with the state-of-the-art method in VVC reference software, which is meaningful for real-time
encoding applications in VSNs. In addition, in our future work, finding the optimization method of
BO in VVC and making it suitable with all patterns and sequences will be studied.
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