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Abstract: Using a standalone camera for pose estimation has been quite a standard task. However,
the point correspondence-based algorithms require at least four feature points in the field of view.
This paper considers the situation that there are only two feature points. Focusing on the attitude
estimation, we propose to fuse a camera with low-cost inertial sensors based on a nonlinear
complementary filter design. An implicit geometry measurement model is derived using two feature
points in an image. This geometry measurement is fused with the angle rate measurement and
vector measurement from inertial sensors using the proposed nonlinear complementary filter with
only two parameters to be adjusted. The proposed nonlinear complementary filter is posed directly
on the special orthogonal group SO(3). Based on the theory of nonlinear system stability analysis,
the proposed filter ensures locally asymptotic stability. A quaternion-based discrete implementation
of the filter is also given in this paper for computational efficiency. The proposed algorithm is
validated using a smartphone with built-in inertial sensors and a rear camera. The experimental
results indicate that the proposed algorithm outperforms all the compared counterparts in estimated
accuracy and provides competitive computational complexity.

Keywords: consumer electronics; attitude estimation; inertial sensors; camera; nonlinear
complementary filter

1. Introduction

Attitude estimation using low-cost sensors plays an important role in many consumer electronic
applications and has attracted much research attention. For example, in rehabilitation and biomedical
engineering, the attitude information is applied for elderly fall detection [1]. In indoor pedestrian dead
reckoning application, the attitude of the measurement unit is used for step detection and heading
estimation [2].

MARG (magnetic, angular rate, and gravity) sensors and monocular cameras are two kinds
of low-cost sensors that are widely used in consumer electronic applications to provide attitude
information [3–5]. However, using MARG sensors or camera standalone for attitude estimation has
some limitations.

On the one hand, the MARG sensors contain a magnetometer which is used to correct heading drift
of the attitude estimation. Generally speaking, the magnetometer is factory calibrated to compensate
for any error sources that are internal to the device. However, for the errors that are introduced
externally by mounting structures or adjacent devices, an additional calibration process is essential [6].
In order to calibrate the magnetometer, the device needs to be moved in all possible directions to
collect data. This is not user-friendly. Moreover, when it works in an environment with abnormal
magnetic fields, the attitude estimation performance will deteriorate significantly.
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On the other hand, when there are artificial vision fiducials arranged in the environment,
the attitude and position of a camera can be recovered from one image by solving the
perspective-and-point (PnP) problem [7,8]. The point correspondence-based algorithms require at least
four feature points in the field of view. However, in a dynamic and possibly cluttered environment,
the number of feature points may be less than four.

The goal of this work is to propose a low-cost fusion method to achieve absolute attitude
estimation in an environment with only two pre-calibrated artificial vision fiducials. The sensors to be
fused include gyroscope, accelerometer, and camera. The advantages of such a sensor combination
are twofold:

• Compared with the MARG sensor combination, our method can work in an abnormal magnetic
field environment, especially in an indoor environment.

• Compared with the combination of gyroscope and camera, our method still converges when there
are only two feature points in the image.

The second one is important for the resource-constrained artificial fiducial system, such as the
AprilTag system [9] and the visible light communication reference system [10,11].

The main contributions of our work are summarised as:

• We derive an implicit geometry measurement for camera-based attitude estimation.
This measurement is associated with attitude and is independent of the position of the camera.

• A nonlinear complementary filter is proposed to fuse angle rate measurement, vector measurement,
and geometry measurement. There are only two parameters to be adjusted.

The remainder of this paper is organized as follows. Section 2 explores the literature of
attitude estimation algorithms based on MARG sensors, camera standalone, and visual-inertial
fusion, respectively. Section 3 presents the sensor models including angle rate measurement,
vector measurement, and the proposed geometry measurement model. Section 4 presents the nonlinear
complementary filter fusing inertial sensors and a camera. The stability analysis of the proposed filter is
in this section. An attitude initial alignment method is proposed to provide the initial value of the filter.
The discrete implementation of the filter on quaternion is also given in this section. The algorithms
are validated using data collected by a smartphone with built-in inertial sensors and a rear camera.
Three other representative methods of attitude estimation algorithms are also implemented on the
collected data. The results are shown in Section 5. Finally, concluding remarks and future work are
presented in Section 6.

2. Related Works

Various solutions have been proposed for attitude estimation using low-cost sensors, including
(1) MARG (magnetic, angular rate, and gravity) sensors-based methods, (2) monocular camera-based
methods.

For MARG sensors-based methods, the gyroscope provides angle rate measurement.
The accelerometer and magnetometer provide attitude associated vector measurements. When the
initial attitude is known, attitude can be computed by integrating the angle rate measurement [12].
Meanwhile, the attitude can be constructed directly from the vector measurements [13]. To estimate the
attitude from vector measurements is to solve a least square problem, the Wahba’s problem. A unique
closed-form solution can be provided by the QUEST (quaternion estimator) algorithm in [14] and
singular value decomposition (SVD)-based method in [15].

The attitude estimation accuracy obtained by numerical integration of the angle rate measurement
is good in a short time. However, the bias and noise of the gyroscope make the estimated value deviate
more and more from the true value over time. On the other hand, the attitude recovered from vector
measurements hosts long-term stability. However, the instantaneous linear acceleration and magnetic
field anomalies will decrease the estimation accuracy.
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To achieve good bandwidth and long-term stability, many MARG sensors-based attitude
estimation algorithms resort to fuse the angle rate measurement and the vector measurements.
The classic fusion algorithms are based on the extended Kalman filter [16,17]. These stochastic
approaches involve the update of the error covariance matrix and gain matrix which will lead to a
large computational burden.

The Mahony’s nonlinear complementary filter formulates the fusion problem as deterministic
nonlinear observer kinematics on the special orthogonal group [18]. The observer kinematics include
a prediction term based on the angle rate measurement and a correction term derived from the
estimation residual. To calculate the correction term, the direct and passive versions of Mahony’s
complementary filter rely on the algebraic reconstruction of attitude from vector observations, while the
explicit version explicitly uses the cross product of the reference vectors and the observed vectors.
Mahony’s complementary filter has only two adjustable parameters and ensures almost global
asymptotic stability. Two passive nonlinear complementary filters algorithms that are implemented on
quaternion are proposed in [19,20]. The algebraic reconstruction of attitude from vector observation
is based on Levenberg–Marquardt optimization algorithm in [19] and singular value decomposition
(SVD) in [20], respectively.

Different from the nonlinear complementary filter, the linear complementary filter linearly
combines the attitude quaternion integrated from the angular velocity with the one reconstructed
from the vector observations. Therefore, the linear complementary filter has a frequency domain
interpretation. The Madgwick’s linear complementary filter in [21] applies the gradient descent
algorithm to solve the quaternion version of Wahba’s problem. The optimization algorithm only
computes one iteration per time sample, provided that the convergence rate of the estimated attitude
is equal to or greater than the change rate of physical orientation. In [22], a fast complementary
filter is proposed by deriving a quaternion increment that is free of iterations. An improved gradient
descent based attitude complementary filter in [23] provides fast error convergence and robustness by
decoupling the magnetic field variance from roll and pitch. Gain-scheduled or adaptive complementary
filters are more robust to strong accelerations and magnetic field disturbances than gain-fixed
complementary filters [4,24].

For attitude estimation, in addition to MARG sensors, the monocular camera is also an attractive
low-cost sensor. Using a camera standalone for pose estimation is quite a standard task. When there
are artificial vision fiducials arranged in the environment, the attitude and position of the camera can
be recovered from one image by solving the PnP problem [7,8]. In an environment without artificial
fiducials, the relative rotation and scaled translation can be restored from two images with natural
features. This problem has been extensively researched, and a large number of algorithms have
been developed. The most well-known ones are the 8-point algorithm [25] and the 5-point minimal
algorithm [26].

Considering that the frame rate of the low-cost camera is relatively low, it is expected to fuse
inertial sensors and a camera to get a higher data rate. The monocular visual-inertial system (VINS)
based on extended Kalman filter [27] or bundle adjustment formulation [28] can provide relative
attitude estimation. However, VINS or standalone camera pose estimation simultaneously calculates
the attitude and position of the camera. When the attitude is the only one to be interested, position and
attitude should be decoupled to avoid unnecessary calculations.

Recently, a generalized linear complementary filter for attitude estimation from multi-sensor
measurements is proposed in [29]. The point-correspondence constraints of the camera are modeled as
vector measurements. This model allows the camera to be fused with a gyroscope in the same way
as an accelerometer and a magnetometer. However, to satisfy the premise of vector measurement,
the position of the camera must be close enough to the origin of the reference coordinate system.

An implicit measurement model proposed in [30] enables a strict decoupling of attitude and
position. The measurements of the camera are fused with angle rate measurement using a nonlinear
observer. However, this implicit measurement model is based on line-correspondences instead of
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point-correspondence. Compared with the point feature, tracking the line feature is computationally
more intensive.

In this paper, we use two feature points to derive an implicit geometry measurement that has the
same expression as the implicit measurement in [30], but without tracking the line-correspondences.
The new geometry measurement is fused with the vector measurement from accelerometers and the
angle-rate measurement from gyroscopes. This combination of sensors makes it possible to determine
the absolute attitude with only two feature points in the field of view. Meanwhile, the fusion of these
three kinds of measurements removes the restrictions on the position of the camera in [29].

3. Sensor Models

This section presents the sensor measurement models for attitude estimation. The angle-rate
measurement and vector measurement from gyroscopes and accelerometers are briefly described.
The camera geometry measurement that is associated with the attitude but is independent of the
position of the camera is derived in detail.

3.1. Inertial Sensors

In this paper, the body-fixed frame of reference {b} is a right-forward-up coordinate system.
The navigation frame of reference {n} is an east-north-up coordinate system. The direction cosine
matrix Cn

b denotes the relative orientation of {b} with respect to {n}. To avoid the repeated occurrence
of superscript and subscript, we use R to represent Cn

b . R and Cn
b belong to special orthogonal group

denoted by SO(3).
The measurements available from inertial sensors are 3 axis gyroscopes and 3 axis accelerometers.
Gyroscopes measure the angle rate of {b} relative to {n} expressed in {b}. We assume that the

initial bias of the gyroscope has been calibrated in the initial static stage and is subtracted from the
gyroscope measurement. Therefore, the angle-rate measurement model for a low-cost gyroscope is

ω̃ = ω + µω (1)

where ω denotes the true angle rate, µω denotes the additive error. It should be noticed that the earth
rotation angle rate is submerged in error µω for low-cost gyroscopes [31].

The kinematics of the true system that describe the relationship between attitude R and angle
rate ω is

Ṙ = Rω× (2)

where (·)× donates the skew-symmetric matrix form of the preceding vector

ω× =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (3)

Accelerometers provide the measurement of “up” acceleration against the earth’s gravity.
The measurement model of the corresponding “vector measurement” [13,29] is

ã = RTe3 + µa (4)

where e3 = [ 0 0 1 ]T is the reference vector of “up” in the navigation frame. ã is the normalized
measurement vector in the body frame {b} from the accelerometer. µa is the error term caused by
the measurement noise and the potential linear acceleration in which the latter one is small and
fast, varying about zero. That is to say, the gravity dominates the value of ã for sufficiently low
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frequency response. RT = Cb
n is the coordinate transformation matrix that can be used to transform

the components of a vector from {n} into {b}.

3.2. Monocular Camera

We assume that the reference frame of the camera {c} is aligned with the body frame so that
Cn

c = Cn
b = R. The z-axis of {c} is the optical axis shown in Figure 1. The geometric relationship

between the origins of {c} and {n} and any point P in the 3D world satisfies vector addition
−−→
OcP =

−−−→
OcOn +

−−→
OnP. Using this geometric relationship, an observation of the attitude and position of

the camera can be achieved as
P{c} = t + RTP{n} (5)

where P{c} and P{n} are the 3D coordinates of point P expressed in the camera frame and navigation
frame. t is a translation vector. The components of t are equal to the coordinates of On in camera
frame {c}.

P1

Oc

x

On

Xn

Yn

Zn

Zc=1

P2

p1 p2

Xc

Yc

Zc

OI

y

Zb

Xb

Yb

Ob

Figure 1. The frames of reference and camera model.

As seen from (5), if t is a zero vector, the normalized P{c} and P{n} can be used as a vector
measurement for attitude estimation. However, this assumption is not always feasible in practice.
To avoid restrictions on camera translation, we use two point-correspondences to derive a geometry
measurement. No translation vector t is in the new measurement model.

As shown in Figure 1, P1 and P2 are two artificial feature points that can be captured by a
camera. Considering that the camera is modeled by a perspective camera using the “frontal projection
model” [32], p1 and p2 are the projections on normalized image plane Zc = 1.

Let P{c}1 and P{c}2 denote the coordinates of feature points in frame {c}. Let p1 and p2 denote the
normalized image coordinate values obtained from the image. A homogeneous model describing the
relationship between pi and P{c}i is

pi =

[
P{c}i,x

P{c}i,z

P{c}i,y

P{c}i,z

1

]T

+ µpi, i = 1, 2 (6)

where µpi is the error of the projection model. P{c}i,z is the so-called “depth” of a feature point in the
camera frame.
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The plane formed by the camera center point and two feature points is defined as the
“feature plane” in this paper, as shown with light purple color in Figure 1. Let ỹ denote the computed
unit normal vector of the feature plane expressed in {c}. ỹ is calculated by

ỹ =
p1 × p2

norm(p1 × p2)
(7)

Let d denote the true unit normal vector of the feature plane expressed in {n}. Let r denote the
unit direction vector of

−−→
P1P2 expressed in {n}.

The explicit error model of the proposed geometry measurement is

ỹ = RTd + µy (8)

and the implicit model of geometry measurement is

ỹT RTr = 0 + µ′y (9)

where µy and µ′y are the measurement errors that come from the errors in p1 and p2.
The positions of artificial feature points in frame {n} can be pre-calibrated in the offline stage.

Therefore, r is a known reference vector, and the implicit geometry measurement in (9) can be used
for attitude estimation. The explicit geometry measurement model in (8) is not useless in this paper.
It appears in the stability analysis of the attitude observer in Section 4.2.

4. Attitude Estimation Algorithm

In this section, a nonlinear complementary filter on the special orthogonal group is introduced.
This filter fuses the angle-rate measurement, vector measurement, and implicit geometry measurement
to estimate the attitude in continuous dynamics. The attitude estimation algorithm for real-world
signals is also considered in this section. Specifically, it includes the initial alignment and the discrete
realization of the filter based on the unit quaternion.

4.1. Nonlinear Complementary Filter on SO(3)

The proposed attitude estimation algorithm is based on a nonlinear observer. The goal of the
attitude estimation observer is to provide a set of dynamics for an estimated attitude to drive the
estimation error converges.

The observer kinematics include a prediction term and a correction term. In this paper,
the prediction term is based on the angle rate measurement. The correction term is added to the
measured angle rate as it does in classic attitude observer design [18,30].

Let R̂ denote the estimated direction cosine matrix Cn′
b . The proposed attitude observer is

˙̂R = R̂(ω̃ + ∆ω)×, R̂(0) = R̂0 (10)

where the correction term ∆ω is

∆ω = ka∆ωa + kc∆ωc

∆ωa = ã× R̂Te3

∆ωc = −ỹT R̂Tr · ỹ× R̂Tr

(11)

∆ωa is the correction term caused by the vector measurement. Referring to the explicit version of
Mahony’s complementary filter [18], the cross product of the estimated vectors R̂Te3 and the observed
vectors ã is used to construct the correction term.

∆ωc is the correction term caused by the geometry measurement. This correction term is referred
from the observer design in [30] that fuses angle-rate measurement and geometry measurement.
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The rationale for the ∆ωc is the following. From the implicit geometry measurement Equation (9),
the ideal R̂ satisfies R̂Tr ∈ ker ỹ. If it is not satisfied, then a corrective angle rate should be applied.
The angle rate needed for this is directed along −ỹ× R̂Tr. The magnitude of the correction is simply
the ỹT R̂Tr.

In the above attitude observer, ka > 0 and kc > 0 are two fixed parameters. The stability of the
new attitude observer is analyzed in Section 4.2.

As [18] does, we also term the observer as a nonlinear complementary filter here.

4.2. Stability Analysis

The estimation error R̃ is defined as the relative rotation from the true navigation frame {n} to
the estimated navigation frame {n′}, that is

R̃ := RR̂T , R̃ = Cn
n′ (12)

Differentiate both sides of estimation error definition Equation (12) and it is straightforward to
verify that the error system is

˙̃R = ṘR̂T
+ R ˙̂R

T

= Rω× R̂T
+ R(ω̃ + ∆ω)×T R̂T

= Rω× R̂T − R(ω̃ + ∆ω)× R̂T

(13)

Substitute the angle rate measurement ω̃ using its true values ω. Using R∆ω× = (R∆ω)× R,
we obtain:

˙̃R = −R∆ω× R̂T

= −(R∆ω)× RR̂T

= −(R∆ω)× R̃

(14)

Based on the correction term in (11), the error system is given by

˙̃R = −ka(R∆ωa)× R̃− kc(R∆ωc)× R̃

= −ka(Rã× R̂Te3)× R̃

+ kcỹT R̂Tr · (Rỹ× R̂Tr)× R̃

(15)

Substitute the vector measurement ã and geometry measurement ỹ using their true values RTe3

and RTd. Here, the explicit geometry measurement model is used. It is straightforward that

˙̃R = −ka

[
R(RTe3)× R̂Te3

]
× R̃

+ kcdT RR̂Tr ·
[

R(RTd)× R̂Tr
]
× R̃

(16)

For any vector v, there is (RTv)× = RTv× R. Using this relationship, R is eliminated from the
error dynamics. The error system is

˙̃R = −ka(e3 × R̃e3)× R̃

+ kcdT R̃r · (d× R̃r)× R̃
(17)

The error system in (17) is a nonlinear time-varying system because the feature plane’s unit
normal vector d is varying with the position of the camera.
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It is easily verified that the identity matrix I is an equilibrium point of the error system.
According to the definition of the small perturbing rotation [32], the attitude error around the
equilibrium point R̃eq is approximated by

R̃ ≈ (I + φ×)R̃eq (18)

where vector φ is the angle-axis form of the small perturbing rotation.
The linearization of the error dynamics is computed to analyze the local stability of the equilibrium

point [33]. Substitute (18) into (17) with R̃eq = I, we get

φ̇× ≈ −ka (e3 ×φ× e3)×
+ kcdTφ× r(d× r)×

(19)

Using the properties of linear operations, including the skew-symmetric matrix transformation
and the vector cross product, the state equation describing the evolving of the φ is obtained as follows:

φ̇ = ka (e3×) (e3×)φ

− kc(d× r)(d× r)Tφ
(20)

For ka > 0, kc > 0, the linearized system is asymptotically stable as long as the third component
of d× r is not 0. Otherwise, the error of the yaw angle will not converge to zero. According to the
geometric relationship, d× r is the vector located in the feature plane and perpendicular to the line of
two feature points. This geometric structure is determined by the positions of features and camera.
Since the linearized error system is asymptotically stable, the nonlinear error system ensures locally
asymptotic stability around the equilibrium point I.

The nonlinear complementary filter proposed in this paper is based on observer design. The local
asymptotic stability of the filter ensures that the initial attitude estimation error will converge to zero
when the gains are any constant greater than zero. Generally speaking, the larger the gain, the faster
the error convergence. However, the observer design method is a deterministic method in which
the measurement errors are assumed to be zero. The measurement noise in practice will lead to
a big attitude estimation variance when the gains are tuned too large inappropriately. Therefore,
gains tuning is a compromise process. Moreover, a proper initial attitude guess is important for the
filter with local asymptotic stability.

4.3. Initial Alignment

The initial alignment is the problem of attitude determination in the initial static stage using
accelerometers and a camera. It is important since the attitude estimation filter in (10) requires a proper
initial value.

According to the chain rule, the direction cosine matrix’s transpose Cb
n can be written as the

multiplication of two rotation matrixes
Cb

n = Cb
hCh

n (21)

where {h} is an intermediate frame system, referred to as the horizontal frame, whose z-axis coincides
with the z-axis of {n}. Under the definition of the navigation frame and the body frame in this paper,
Cb

h and Ch
n can be written in the following form:

Cb
h =

 cos ϕ sin θsinϕ − cos θ sin ϕ

0 cos θ sin θ

sin ϕ − sin θ cos ϕ cos θ cos ϕ

 (22)
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Ch
n =

 cos ψ sin ψ 0
− sin ψ cos ψ 0

0 0 1

 (23)

The ( θ ϕ ψ ) is a set of Euler angles. θ is the pitch angle with θ ∈ [−90◦, 90◦) . ϕ and ψ are
the roll angle and yaw angle, where ϕ, ψ ∈ [−180◦, 180◦). The yaw angle ψ equals to the angle formed
by the y-axis of {h} and the y-axis of {n}.

The initial alignment method proposed in this paper includes horizontal alignment and azimuth
alignment and solution confirmation.

First, use normalized accelerometer vector measurement to calculate the horizontal attitude.
It is easily verified that the third column of Cb

h is the projection of the normalized “up” vector in
the body frame {b}. Therefore, Cb

h can be recovered roughly from the acceleration measurement by
following expressions

sinθ = ãy, cos θ =
√

1− ã2
y

sin ϕ =


−ãx√
1−ã2

y
, ã2

y 6= 1

0, ã2
y = 1

cos ϕ =


ãz√
1−ã2

y
, ã2

y 6= 1

1, ã2
y = 1

Second, determine the azimuth. After calculating of the Cb
h, use camera implicit

geometry constraint
ỹTCb

hCh
nr = 0 (24)

to construct one linear equation about sin ψ and cos ψ. With the constraint sin2 ψ + cos2 ψ = 1, two sets
of solutions can be found, one of which can be confirmed by the constraints of the camera’s field
of view.

Third, confirm the true direction cosine matrix. According to the camera model in (5) and (6), it is
straightforward that

Cb
n(P

{n}
1 − P{n}2 ) = z1 p1 − z2 p2 (25)

In (25), z1 and z2 are the depth of feature points P1 and P2 in the camera frame. Using (25),
three linear equations about z1 and z2 can be obtained. The Cb

n that leads to positive z1 and z2 will be
accepted as the initial direction cosine matrix.

4.4. Discrete Implementation on Quaternion

The filter in (10) is a continuous system. In practical implementation, sensor data will be sampled
and the filter needs to be integrated in discrete time. The unit quaternion representation of the rotations
is commonly used for the realization of algorithms on SO(3) since it offers considerable efficiency in
code implementation [18]. The proposed attitude observer in quaternion representation is

˙̂q =
1
2

Ω(ω̃ + ∆ω)q̂, q̂(0) = q̂0 (26)

where

Ω(ω) =


0 −ω1 −ω2 −ω3

ω1 0 ω3 −ω2

ω2 −ω3 0 ω1

ω3 ω2 −ω1 0

 (27)
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Since the term ω̃ + ∆ω can be seen as the corrected angle rate in the frame of {b}, according to
the quaternion-based attitude update algorithm [12], the discrete implementation of filter (26) is

q̂k = q̂k−1 ◦ ∆qω̃+∆ωk (28)

◦ in (28) is the quaternion multiplication operator. p ◦ q is defined by

p ◦ q =


p1q1 − p2q2 − p3q3 − p4q4

p1q2 + p2q1 + p3q4 − p4q3

p1q3 + p3q1 + p4q2 − p2q4

p1q4 + p4q1 + p2q3 − p3q2

 (29)

∆qω̃+∆ω,k in (28) is the quaternion increment from time tk−1 to time tk and is calculated by

∆qω̃+∆ω,k =

[
cos ∆θk

2
∆θk
∆θk

sin ∆θk
2

]
(30)

∆θk in (30) is the angle increment vector, ∆θk = |∆θk| and

∆θk = (ω̃k + ∆ωk)∆t (31)

where ∆t is the time interval between tk−1 and tk. ω̃k is calculated by the average value of the gyroscope
measurements in tk−1 and tk.

∆ωk in angle increment vector (31) is the angle rate correction term constructed by the estimation
in time tk−1 and measurements in time tk as

∆ωk = ka∆ωa,k + kc∆ωc,k
∆ωa,k = ãk × C(q̂k−1)e3

∆ωc,k = −ỹT
k C(q̂k−1)r · ỹk × C(q̂k−1)r

(32)

C(q) is the coordinate transformation matrix and equals to q2
1 + q2

2 − q2
3 − q2

4 2(q2q3 + q1q4) 2(q2q4 − q1q3)

2(q2q3 − q1q4) q2
1 − q2

2 + q2
3 − q2

4 2(q3q4 + q1q2)

2(q2q4 + q1q3) 2(q3q4 − q1q2) q2
1 − q2

2 − q2
3 + q2

4


To get a high-bandwidth system, the sample interval of the gyroscope can be selected as the

discretization time interval of the filter. Considering that the measurements from the camera and
accelerometer play a role in providing long-term stability, they can be updated at a low frequency.
If vector or geometry measurement is not available in current sample time tk, the corresponding
correction term ∆ωk is set to zero, where x is a or c.

This structure of the proposed filter is the so-called “explicit version” of the nonlinear attitude
observer. As we discussed in the section “Related works”, Mahony provides three versions of
nonlinear attitude observer in his work: direct, passive, and explicit. The direct and passive versions
depend on the algebraic reconstruction of the attitude. For MARG sensors, the sampling frequencies
of accelerometer and magnetometer are the same. This will not cause any problems. However,
for inertial sensors/camera combination, the difference in sampling frequency makes the algebraic
reconstruction have to align with the sensor sampled in low-frequency. The consequence is that a lot of
information in the high-frequency sensor is lost. On the contrary, the angle rate correction term of the
explicit complementary filter in (32) is aligned with the sensor sampled in high-frequency. This is the
advantage of the explicit version of the nonlinear attitude observer in handling sensors with different
sample frequencies.
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5. Evaluation

5.1. Experiment Setup

To evaluate the performance of the proposed attitude estimation algorithm, an experiment system
is constructed as shown in Figure 2. A smartphone with built-in inertial sensors and a rear camera
is used as the measurement equipment. Two artificial fiducials from AprilTag family Tag36H11 are
placed on the ground. The 3DM-GX3-25 Attitude and Heading Reference System (AHRS) attached to
the smartphone is used as the ground truth provider.

AprilTag

3DM-GX3-25

AHRS
Rear Camera

Smartphone with camera 

and MARG sensors

(Back Side)

Figure 2. Experiment system for algorithm evaluation.

An Android application is developed to capture the data from inertial sensors and images from
the camera. The sampling frequency of inertial sensors and camera are 100 Hz and 5 Hz respectively.
All the data are time-stamped and stored in the smartphone’s SD card. The recorded data are processed
offline on the laptop so that the different algorithms and control variables can be evaluated on the
same recorded data.

To keep the AHRS from magnetic disturbance, the experiment is implemented in an outdoor
environment and the magnetometer of the 3DM AHRS is re-calibrated after installation. The y-axis of
the navigation frame is chosen as the magnetic north.

The intrinsic parameters and distortion parameters of the camera are pre-calibrated using the
geometric method proposed in [34]. The process of extracting the normalized image coordinates of the
feature points from the image is as follows. Undistort the image according to the distortion parameters.
Detect the AprilTag features using the Python package pupil_apriltags. Recover the normalized image
coordinates of features from the corresponding index coordinates using camera intrinsic parameters.

In Sections 2 and 3, we assume that the axis direction of the camera frame {c} is the same as that of
the body frame {b}. However, in our smartphone experiment platform, the optical axis of the camera
is opposite to the z-axis of the body frame. Moreover, in data collection software, the image orientation
is “Landscape” relative to the smartphone. The actual direction relationship between the body frame
Xb-Yb-Zb, image pixel frame u-v, and camera frame Xc-Yc-Zc is as shown in Figure 3. Therefore,
the normalized image coordinate values should be transformed to adapt to the complementary filter
algorithm. The coordinate transformation matrix M is

M =

 0 −1 0
−1 0 0
0 0 −1

 .
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Under the definition of the reference frames in Figure 3, the relationship between the normalized
image coordinates of the feature points and their camera coordinates is as follows.

pi =

[
P{c}i,x

−P{c}i,z

P{c}i,y

−P{c}i,z

P{c}i,z

−P{c}i,z

]T

+ µpi, i = 1, 2 (33)

This makes the third step of the initial alignment a little bit different from Section 4.3. Specifically,
the “depth equations” in (25) should be replaced by (34). The attitude solutions that lead to negative z1

and z2 will be accepted as the initial attitude.

Cb
n(P

{n}
1 − P{n}2 ) = −z1 p1 + z2 p2 (34)

Xb (Right)

Yb  (Forward)

Z b  (Up)
u

v

Z
 c

X
 c

Y
 c

Red: body frame

Green: image frame

Blue: camera frame

The front side of 

smartphone

Xb (Right)

Yb  (Forward)

Z b  (Up)
u

v

Z
 c

X
 c

Y
 c

Red: body frame

Green: image frame

Blue: camera frame

The front side of 

smartphone

Figure 3. Direction relationship between the body frame image pixel frame and camera frame in
experiment system.

Two sets of measurement data are collected to evaluate the static and dynamic performance of the
proposed attitude estimation algorithm.

(1) In the static case, the smartphone keeps static in each fixed attitude about 15 s. Moreover,
the smartphone in this case only makes the rotational motion between each fixed attitude without
displacement relative to the navigation frame.

(2) In the dynamic case, the smartphone makes arbitrary rotation and translation movements while
ensuring that the two visual labels are always within the camera’s field of view.

Representative algorithms are implemented to process the collected data for performance comparison.

(1) SINS: Attitude update algorithm of strap-down inertial navigation in [12].
(2) VIN-EKF: This is a vision-aided inertial navigation algotithm based on extended Kalman

filter (EKF). The system state vector of the filter includes unit quaternion, velocity, position,
gyroscope and accelerometer measurement bias. The measurement residual is computed by the
measured normalized image coordinates of the feature points with the predicted normalized
image coordinates in the filter. The linearized system model for the IMU error-state and the
linearized measurement model about the estimates for the attitude and position of the camera
are as described in [27]. The standard deviations of sensor noise are σgyro = 0.04◦/s, σacc = 1 mg,
and σcamera = 7/ fc, where fc is the camera focal length comes from the calibrated intrinsic
parameters. Fusing camera and inertial sensors in a tightly coupled scheme is the core idea of [10]
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so that the vision-based visible light communication positioning system is able to continually
provide location service when the number of the feature points is less than four.

(3) Proposed CF: This algorithm fuses inertial sensors and a camera using the quaternion-based
discrete implementation in (28) and (32). Two gain parameters of the proposed nonlinear
complementary filter are ka = 0.6 and kc = 0.8.

(4) CF-1: This algorithm also fuses inertial sensors and a camera using nonlinear complementary
filter. The main difference between CF-1 and the proposed CF is that in CF-1, the measurement
models of accelerometer and camera are all the vector measurements. The reference vectors are
the normalized gravity vector and the normalized image coordinates of feature points in the
initial frame [29]. Therefore, this is a relative attitude estimation method. To get the full attitude,
the initial attitude should be known. This filter is implemented as a quaternion filter in (28),
but the correction terms are all constructed using cross product of the estimated vectors and the
observed vectors. There are three parameters for CF-1 when two feature points are captured in
one image, that is, ka = 0.6, kc1 = 0.8 and kc2 = 0.8.

(5) CF-2: This algorithm fuses the gyroscope with a camera using nonlinear complementary filter.
Same as the proposed CF, CF-2 also uses the camera measurements as the implicit geometry
measurement. However, there is no gravity measurement in CF-2 [30]. This filter is implemented
as a quaternion filter in (28), but the accelerometer correction term is zero. There is only one
parameter for complementary filter when two feature points are captured in one image, that is,
kc = 0.8.

The gains of the proposed CF are tuned to achieve relatively good attitude estimation results in
our experimental conditions. To be fair, the gains of the other two complementary filter algorithms are
set to the same constant as the proposed CF. The parameters of VINS-EKF are chosen according to the
sensor measurement noise characteristics.

5.2. Result and Discussion

Figure 4 shows the attitude ground truth from 3DM AHRS, the attitude updated from the
gyroscope, and the attitude estimation results from four estimation algorithms, in the static
case. The attitude errors with respect to reference angles from AHRS are shown in Figure 5.
To further verify the performances, Table 1 gives the root-mean-squared errors (RMSEs) of various
estimation algorithms.

As can be seen from Figure 5 and Table 1, in the static case, the accuracy of the proposed algorithm
is as good as that of VIN-EKF. For the CF-1, the estimation error of pitch and roll is close to that of the
proposed filter, but the yaw angle error is the maximum among all the algorithms. This is due to the
fact that the CF-1 algorithm corrects the gyroscope prediction error resort to vector measurement and
the reference vectors of two feature points are near the gravity vector during the experiment. The result
of CF-2 is just the opposite. The yaw angle error is close to the proposed algorithm, but the pitch and
roll errors are almost equal to the errors of the SINS algorithm. The reason is that artificial vision
fiducials are arranged on the ground, which leads to a horizontal reference vector of r in the implicit
geometry measurement. Since no gravity vector or other reference vectors with vertical components
are fused in the filter, the pitch and roll errors cannot converge.
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Figure 4. Attitude estimation results in the static case.

Figure 5. Attitude estimation error in the static case.

Table 1. RMSE of attitude angles in the static case.

Algorithm Pitch Roll Yaw

CF-1 0.2701◦ 0.3575◦ 0.9912◦

CF-2 0.6538◦ 0.9769◦ 0.7974◦

Proposed CF 0.2195◦ 0.2008◦ 0.7977◦

VIN-EKF 0.2556◦ 0.2160◦ 0.7805◦
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Figure 6 shows the attitude ground truth from 3DM AHRS, the attitude updated from the
gyroscope, and the attitude estimation results from four estimation algorithms, in the dynamic case.
The attitude errors with respect to reference angles from AHRS are shown in Figure 7. Table 2 gives
the root-mean-squared errors (RMSEs) of various estimation algorithms.

Table 2. RMSE of attitude angles in the dynamic case.

Algorithm Pitch Roll Yaw

CF-1 1.3112◦ 1.0108◦ 2.1121◦

CF-2 0.6727◦ 1.2696◦ 1.7517◦

Proposed CF 0.2906◦ 0.3071◦ 1.6495◦

VIN-EKF 0.5077◦ 0.5211◦ 2.1093◦

Figure 6. Attitude estimation results in the dynamic case.

Figure 7. Attitude estimation error in the dynamic case.
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As can be seen from Figure 7 and Table 2, in the dynamic case, due to the translation motion
of the smartphone, the accuracy of the VIN-EKF and CF-1 is significantly reduced. The translation
motion even increases the attitude error of SINS in the early stage. In the dynamic case, the proposed
algorithm offers the best performance in estimation accuracy.

For the CF-1 algorithm, the translation motion increases the error of the camera vector
measurement model. The estimation accuracy of pitch and roll angle is obviously affected since
the reference vector is near the vertical line. Different from the CF-1, the proposed nonlinear
complementary filter fuses the implicit geometry measurement so that the position of the camera is
decoupled with the attitude estimation.

When it comes to the VIN-EKF, another reason for the performance degradation that must be
mentioned is the update rate of the filter. The filter propagates the state in 100 Hz and performs update
in 5 Hz. Although the gravity vector constraint is implicit in the velocity equation of the system model,
the innovation of this constraint becomes available only when a new image comes and the filter is
updated. The estimation error of pitch and roll angle using our method is less than VIN-EKF since the
gravity vector constraint is an explicit measurement and the corresponded error is corrected in 100 Hz.

Figure 8 shows the instantaneous magnitude of the accelerometer output during the static case
and dynamic case.
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Figure 8. Magnitude of the accelerometer output.

The mean time consumption and related standard deviation of different algorithms are presented
in Table 3. Here, time consumption refers to the execution time between two consecutive camera
sample updates. The mean values and the standard deviation are calculated after 700 image sample
updates. It can be seen that three nonlinear complementary filters show comparable time consumption.
The execution time of CF-2 is the smallest since there is no accelerometer correction. The execution
time of CF-2 is less than the proposed CF which means the update of vector measurement is simpler
than the update of implicit geometry measurement. The execution time of VIN-EKF is the largest due
to the calculation of the gain matrix and covariance matrix.

Table 3. Mean and standard deviation of time consumption of various algorithms.

Algorithm Mean Time STD

CF-2 1.1162×10−4 s 3.7175×10−5 s
CF-1 1.4818×10−4 s 2.8018×10−5 s

Proposed CF 1.7010×10−4 s 4.3637×10−5 s
VIN-EKF 5.4172×10−4 s 8.3306×10−5 s
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6. Conclusions

In this paper, we consider the attitude estimation problem of fusing camera and inertial sensors
in an environment with only two pre-calibrated artificial vision fiducials. The main contributions of
this paper are twofold. First, we derive an implicit geometry measurement for camera-based attitude
estimation. Second, a nonlinear complementary filter with only two parameters to be adjusted is
proposed to fuse angle rate measurement, vector measurement, and geometry measurement.

Compared to MARG sensor-based attitude estimation, the method in this paper doesn’t rely
on a magnetometer. It provides an attractive solution for the environment with complex magnetic
field distribution. Compared to camera- and gyroscope-based attitude estimation, our method still
converges when there are only two feature points in the field of view. The experimental results show
that our algorithm outperforms all the compared counterparts in estimated accuracy and provides
competitive computational complexity.

We believe that the proposed method can potentially benefit related navigation applications.
The main drawback of our method is that the designed nonlinear complementary filter only ensures
locally asymptotic stability. Future work will focus on system improvements to achieve unrestricted
local stability and even global stability.

Author Contributions: Conceptualization and methodology, L.Z. and X.Z. (Xingqun Zhan); software and
validation, L.Z. and X.Z. (Xin Zhang); writing—original draft preparation, L.Z.; writing—review and editing, L.Z.,
X.Z. (Xingqun Zhan) and X.Z. (Xin Zhang). All authors have read and agreed to the published version of the
manuscript.

Funding: This work was supported in part by the Key R&D Program Projects in Jiangxi Province under Grant
20181ACE50027 and 20193ABC03A006.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Pierleoni, P.; Belli, A.; Palma, L.; Pellegrini, M.; Pernini, L.; Valenti, S. A High Reliability Wearable Device for
Elderly Fall Detection. IEEE Sens. J. 2015, 15, 4544–4553. [CrossRef]

2. Zheng, L.; Zhan, X.; Zhang, X.; Wang, S.; Yuan, W. Heading Estimation for Multimode Pedestrian Dead
Reckoning. IEEE Sens. J. 2020, 20, 8731–8739. [CrossRef]

3. Tian, Y.; Wei, H.; Tan, J. An Adaptive-Gain Complementary Filter for Real-Time Human Motion Tracking
with MARG Sensors in Free-Living Environments. IEEE Trans. Neural Syst. Rehabil. Eng. 2013, 21, 254–264.
[CrossRef] [PubMed]

4. Marantos, P.; Koveos, Y.; Kyriakopoulos, K.J. UAV State Estimation Using Adaptive Complementary Filters.
IEEE Trans. Control Syst. Technol. 2016, 24, 1214–1226. [CrossRef]

5. Königseder, F.; Kemmetmüller, W.; Kugi, A. Attitude Estimation Using Redundant Inertial Measurement
Units for the Control of a Camera Stabilization Platform. IEEE Trans. Control Syst. Technol. 2016, 24, 1837–1844.
[CrossRef]

6. Zhongguo, S.; Jinsheng, Z.; Xuehui, Z.; Xiaoli, X. A Calibration Method of Three-Axis Magnetometer with
Noise Suppression. IEEE Trans. Magn. 2014, 50, 1–4. [CrossRef]

7. Wu, Y.; Hu, Z. PnP Problem Revisited. J. Math. Imaging Vision 2006, 24, 131–141. [CrossRef]
8. Lepetit, V.; Morenonoguer, F.; Fua, P. EPnP: An Accurate O(n) Solution to the PnP Problem. Int. J.

Comput. Vision 2009, 81, 155–166. [CrossRef]
9. Wang, J.; Olson, E. AprilTag 2: Efficient and robust fiducial detection. In Proceedings of the 2016 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016;
pp. 4193–4198. [CrossRef]

10. Qin, C.; Zhan, X.Q. VLIP: Tightly Coupled Visible-Light/Inertial Positioning System to Cope With
Intermittent Outage. IEEE Photonics Technol. Lett. 2019, 31, 129–132. [CrossRef]

11. Chow, C.W.; Chen, C.Y.; Chen, S.H. Enhancement of Signal Performance in LED Visible Light
Communications Using Mobile Phone Camera. IEEE Photonics J. 2015, 7, 1–7. [CrossRef]

12. Savage, P.G. Strapdown inertial navigation integration algorithm design part 1: Attitude algorithms.
J. Guidance Control Dyn. Syst. 1998, 21, 19–28. [CrossRef]

http://dx.doi.org/10.1109/JSEN.2015.2423562
http://dx.doi.org/10.1109/JSEN.2020.2985025
http://dx.doi.org/10.1109/TNSRE.2012.2205706
http://www.ncbi.nlm.nih.gov/pubmed/22801527
http://dx.doi.org/10.1109/TCST.2015.2480012
http://dx.doi.org/10.1109/TCST.2015.2510324
http://dx.doi.org/10.1109/TMAG.2014.2327166
http://dx.doi.org/10.1007/s10851-005-3617-z
http://dx.doi.org/10.1007/s11263-008-0152-6
http://dx.doi.org/10.1109/IROS.2016.7759617
http://dx.doi.org/10.1109/LPT.2018.2883345
http://dx.doi.org/10.1109/JPHOT.2015.2476757
http://dx.doi.org/10.2514/2.4228


Sensors 2020, 20, 6752 18 of 19

13. Yun, X.; Bachmann, E.R.; McGhee, R.B. A Simplified Quaternion-Based Algorithm for Orientation Estimation
From Earth Gravity and Magnetic Field Measurements. IEEE Trans. Instrum. Meas. 2008, 57, 638–650.
[CrossRef]

14. Shuster, M.D.; Oh, S.D. Three-axis attitude determination from vector observations. J. Guidance Control
Dyn. Syst. 1981, 4, 70–77. [CrossRef]

15. Markley, F.L. Attitude determination using vector observations and the singular value decomposition.
J. Astronaut. Sci. 1988, 36, 245–258.

16. Sabatini, A.M. Quaternion-based extended Kalman filter for determining orientation by inertial and magnetic
sensing. IEEE Trans. Biomed. Eng. 2006, 53, 1346–1356. [CrossRef] [PubMed]

17. Marins, J.L.; Xiaoping, Y.; Bachmann, E.R.; McGhee, R.B.; Zyda, M.J. An extended Kalman filter for
quaternion-based orientation estimation using MARG sensors. In Proceedings of the 2001 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Maui, HI, USA, 29 October–3 November 2001;
pp. 2003–2011. [CrossRef]

18. Mahony, R.; Hamel, T.; Pflimlin, J.M. Nonlinear complementary filters on the special orthogonal group.
IEEE Trans. Autom. Control 2008, 53, 1203–1218. [CrossRef]

19. Fourati, H.; Manamanni, N.; Afilal, L.; Handrich, Y. A Nonlinear Filtering Approach for the Attitude and
Dynamic Body Acceleration Estimation Based on Inertial and Magnetic Sensors: Bio-Logging Application.
IEEE Sens. J. 2011, 11, 233–244. [CrossRef]

20. Guerrero-Castellanos, J.F.; Madrigal-Sastre, H.; Durand, S.; Torres, L.; Muñoz-Hernández, G.A. A robust
nonlinear observer for real-time attitude estimation using low-cost MEMS inertial sensors. Sensors 2013,
13, 15138–15158. [CrossRef]

21. Madgwick, S.O.H.; Harrison, A.J.L.; Vaidyanathan, R. Estimation of IMU and MARG orientation using a
gradient descent algorithm. In Proceedings of the 2011 IEEE International Conference on Rehabilitation
Robotics (Icorr), Zurich, Switzerland, 29 June–1 July 2011; pp. 1–7.

22. Wu, J.; Zhou, Z.B.; Chen, J.J.; Fourati, H.; Li, R. Fast Complementary Filter for Attitude Estimation Using
Low-Cost MARG Sensors. IEEE Sens. J. 2016, 16, 6997–7007. [CrossRef]

23. Wilson, S.; Eberle, H.; Hayashi, Y.; Madgwick, S.O.H.; McGregor, A.; Jing, X.; Vaidyanathan, R. Formulation
of a new gradient descent MARG orientation algorithm: Case study on robot teleoperation. Mech. Syst.
Sig. Process. 2019, 130, 183–200. [CrossRef]

24. Yoo, T.S.; Hong, S.K.; Yoon, H.M.; Park, S. Gain-scheduled complementary filter design for a MEMS based
attitude and heading reference system. Sensors 2011, 11, 3816–3830. [CrossRef] [PubMed]

25. Hartley, R.I. In defense of the eight-point algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 1997, 19, 580–593.
[CrossRef]

26. Nister, D. An efficient solution to the five-point relative pose problem. IEEE Trans. Pattern Anal. Mach. Intell.
2004, 26, 756–770. [CrossRef] [PubMed]

27. Mourikis, A.I.; Roumeliotis, S.I. A multi-state constraint Kalman filter for vision-aided inertial navigation.
In Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Roma, Italy,
10–14 April 2007; p. 3565. [CrossRef]

28. Qin, T.; Li, P.; Shen, S. VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator.
IEEE Trans. Rob. 2018, 34, 1004–1020. [CrossRef]

29. Wu, J.; Zhou, Z.B.; Fourati, H.; Li, R.; Liu, M. Generalized Linear Quaternion Complementary Filter
for Attitude Estimation From Multisensor Observations: An Optimization Approach. IEEE Trans. Autom.
Sci. Eng. 2019, 16, 1330–1343. [CrossRef]

30. Rehbinder, H.; Ghosh, B.K. Pose estimation using line-based dynamic vision and inertial sensors. IEEE Trans.
Autom. Control 2003, 48, 186–199. [CrossRef]

31. Zhang, P.; Zhan, X.; Zhang, X.; Zheng, L. Error characteristics analysis and calibration testing for MEMS
IMU gyroscope. Aerosp. Syst. 2019, 2, 97–104. [CrossRef]

32. Barfoot, T.D. State Estimation for Robotics: A Matrix Lie Group Approach; Cambridge University Press:
Cambridge, UK, 2016; pp. 199, 242.

http://dx.doi.org/10.1109/TIM.2007.911646
http://dx.doi.org/10.2514/3.19717
http://dx.doi.org/10.1109/TBME.2006.875664
http://www.ncbi.nlm.nih.gov/pubmed/16830938
http://dx.doi.org/10.1109/IROS.2001.976367
http://dx.doi.org/10.1109/TAC.2008.923738
http://dx.doi.org/10.1109/JSEN.2010.2053353
http://dx.doi.org/10.3390/s131115138
http://dx.doi.org/10.1109/JSEN.2016.2589660
http://dx.doi.org/10.1016/j.ymssp.2019.04.064
http://dx.doi.org/10.3390/s110403816
http://www.ncbi.nlm.nih.gov/pubmed/22163824
http://dx.doi.org/10.1109/34.601246
http://dx.doi.org/10.1109/TPAMI.2004.17
http://www.ncbi.nlm.nih.gov/pubmed/18579936
http://dx.doi.org/10.1109/Robot.2007.364024
http://dx.doi.org/10.1109/TRO.2018.2853729
http://dx.doi.org/10.1109/TASE.2018.2888908
http://dx.doi.org/10.1109/TAC.2002.808464
http://dx.doi.org/10.1007/s42401-019-00028-8


Sensors 2020, 20, 6752 19 of 19

33. Khalil, H.K. Nonlinear Systems; Prentice Hall: Upper Saddel River, NJ, USA, 2002; pp. 156–162.
34. Zhang, Z. A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000,

22, 1330–1334. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/34.888718
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Sensor Models
	Inertial Sensors
	Monocular Camera

	Attitude Estimation Algorithm
	Nonlinear Complementary Filter on SO(3) 
	Stability Analysis
	Initial Alignment
	Discrete Implementation on Quaternion

	Evaluation
	Experiment Setup
	Result and Discussion

	Conclusions
	References

