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Abstract: The intelligent condition monitoring of wind turbines reduces their downtime and increases
reliability. In this manuscript, a feature selection-based methodology that essentially works on
regression models is used for identifying faulty scenarios. Supervisory control and data acquisition
(SCADA) data with 1009 samples from one year and one month before failure are considered.
Gearbox oil and bearing temperatures are treated as target variables with all the other variables
used for the prediction model. Neighborhood component analysis (NCA) as a feature selection
technique is employed to select the best features and prediction performance for several machine
learning regression models is assessed. The results reveal that twin support vector regression (99.91%)
and decision trees (98.74%) yield the highest accuracy for gearbox oil and bearing temperatures
respectively. It is observed that NCA increases the accuracy and thus reliability of the condition
monitoring system. Furthermore, the residuals from the class of support vector regression (SVR)
models are tested from a statistical point of view. Diebold–Mariano and Durbin–Watson tests are
carried out to establish the robustness of the tested models.

Keywords: condition monitoring; wind turbines; support vector regression; SCADA; neural network;
neighborhood component analysis; residual analysis

1. Introduction

Growing energy demands globally have raised concerns leading stakeholders towards renewable
energy [1,2]. Industrial development in developing countries has called upon the need to increase
the installed capacity. In the past decade, it has been found that wind farms can serve both purposes
of increasing installed capacity and minimising environmental concerns. However, with increased
installation, more turbine failures occur, thereby driving the need for investment and research in
condition monitoring (CM) systems [3,4]. Wind turbines observe highly irregular loads due to
stochastic and turbulent wind conditions, which makes components undergo high stress throughout
their lifetime [5]. With increasing offshore wind farm installations, the operation and maintenance
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(O+M) cost is identified as an area with cost-saving potential [6]. Literature suggests that O+M costs
for offshore wind turbines can be up to 30% of the overall cost of energy [7]. A major part of CM
involves identifying patterns in wind turbine variables like rotor speed, power output, gearbox
temperature, gear bearing temperature and generator faults. A commonly used CM system in
modern-day wind turbines consists of sensor-based networks that create and record data streams
from which the failure is identifiable. Often, the prognosis of wind turbine components is carried
out by segmenting the same into different subsystems, such as mechanical and electrical components.
Basic CM techniques include vibration analysis (wheels and bearings of the gearbox, generator
bearings), oil analysis, thermography and acoustic monitoring (sensors mounted on the turbine
equipment) [8]. Nondestructive testing (NDT) is a common way to evaluate the structural integrity of
several underground structures [9,10] and aerospace applications [11]. Furthermore, integration of
sensors and data mining based technologies has enabled a reliable monitoring process [12].

Gill et al. studied condition monitoring based on a modeling wind turbine power curve where
an anomalous behavior in a wind turbine is identified from the deviation-caused turbine power [13].
Butler et al. discussed a similar approach based on Gaussian process models to model the wind
turbine power curve [14]. Results revealed a performance degradation three months before a failure
in the turbine main bearing. Studies have shown that gearbox bearing causes approximately 70%
and 50% of turbine downtime for small and medium-scale generators and large-scale generators,
respectively. Availability of gearbox bearing, oil, nacelle temperature through supervisory control
and data acquisition (SCADA) has emerged as a popular candidate among the research community
to facilitate data-based preventive maintenance for wind turbines. SCADA data are transmitted and
stored at an averages of 10 min, which makes the processing speed and storage much easier for the
operator. As far as fault identification and diagnosis are concerned, machine learning techniques are
often classified in two ways, that is, classification and regression-based approaches. Since machine
learning classification problems are based on the prediction of a discrete variable, the turbine condition
is classifiable into “healthy” or “abnormal” states, and algorithms used for classification are assessed
based on metrics such as accuracy, precision, recall and F1-score, while regression-based approaches
are based on the prediction of a continuous variable. The predicted variable is compared against the
measured one and error metrics such as mean squared error and mean absolute error are used to
compare model effectiveness.

The literature on the classification and regression-based condition monitoring of wind turbines is
discussed. Leahy et al. presented a support vector machine (SVM)-based fault diagnosis and fault
classification using SCADA data for a 3 MW turbine located in Ireland [15]. A total of 29 features are
used to train the SVM algorithm. Results reveal an accuracy of 80% with a recall value in the range of
78–95%. Ibrahim et al. presented a neural network-based model for the detection of mechanical faults
in a wind turbine [16]. The model is based on a current signal acquired at different ranges of speed, used
as an input with classification accuracy in the range of 93–98%. In [17], authors implement Shannon
wavelet-based SVM technique for the fault classification of wind turbine gearbox faults. A non-linear
feature selection technique is used with SVM resulting in an accuracy of 92% compared to 72% with
standard SVM with radial basis function as a kernel. Jiang et al. studied a multi-scale convolutional
neural network (CNN) for fault diagnosis of a wind turbine [18]. In this method, the feature extraction
for classification task is carried out from the vibration signals. The performance of multi-scale CNN is
compared with the conventional CNN method which results in an accuracy of 98.53%. Jiminez et al.
studied linear and non-linear feature selection techniques for ice detection in wind turbines [19].
Among linear feature selection techniques, auto-regressive and principle component analysis (PCA)
is used, and in case of non-linear feature selection techniques, neighborhood component analysis
(NCA) and hierarchical non-linear PCA is used. Ice detection and diagnosis are carried out based
on SVM, decision tree, k-nearest neighbors (kNN) and discriminant analysis. In [20], a deep neural
network-based technique is applied for anomaly and fault detection in wind turbine components.
Based on SCADA data, a deep auto-encoder based deep neural network is established. Carroll et al.
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discussed logistic regression, two-class neural networks and SVM for classifying gear tooth and gear
bearing scenarios from SCADA data [21]. In [22], authors use signal processing techniques such as
sideband analysis, time-synchronous analysis, amplitude modulation to extract features for classifying
the healthy and abnormal state of a wind turbine. Algorithms like kNN, SVM and decision tree are
utilized to achieve the same with an accuracy of 90.2%, 91.3% and 91% respectively.

Anomaly detection can be seen as a problem of both, supervised and unsupervised machine
learning [23]. While a majority of anomaly detection problems have been addressed using
unsupervised learning such as K-means clustering and local outlier factor (LOF), that estimates
the distance between all the samples using K-nearest neighbor concept and deviation in density
function [24]. Japkowicz et al. [25] presented novelty detection using a classification approach. In the
classification-based approach, each sample in the training set has a labelled output for which the
anomalies are obtained. However, with a classification-based approach, the problem of imbalanced
instances may arise which deteriorates the quality of the classification model for unseen testing
samples. On the other hand, semi-supervised learning assumes that labelled instances are available for
normal or healthy classes. In the wind industry, the concept of anomaly detection is utilized to identify
vulnerable equipment in the machine using a data mining approach [26,27].

The motivation behind this work arises from the ability of a class of SVR models to yield excellent
results in the case of a wind speed forecasting scenario [28]. SVR models with a particular choice of
loss function result in an optimal estimate for a given noise model. For example, a quadratic loss
function in the least square support vector regression (LSSVR) model enables it to perform optimally
for a normally distributed noise. While a majority of the work on wind turbine condition monitoring
is reported as a classification task to the best of our knowledge, we are the first group to use a class of
SVR models and discuss residual analysis for gearbox condition monitoring. The main contributions
of this work are as follows:

1. Predictive analytics for wind turbine gearbox are studied based on a class of support vector
regression (SVR) models in the form of twin support vector regression combined with
neighborhood component analysis. The impact of feature selection is studied on the prediction
metrics of gearbox oil and bearing temperature.

2. The SCADA data procured consist of a list of variables that are scanned under the banner
of feature selection for the accurate prediction of gearbox oil and bearing temperature.
The performance of SVR based models as compared to the multi-layer perceptron neural network,
decision tree and logistic regression, is presented.

3. Statistical analysis is carried out for SVR based models to analyze residuals and their correlation.
Specifically, Diebold–Mariano and Durbin–Watson tests help analyze the residuals for establishing
the robustness among tested models.

The organization of this manuscript is as follows: Section 2 gives an idea about the machine
learning-based regression methods considered in this analysis. Methods like SVR and its variants,
neural network, decision tree and logistic regression are presented with their mathematical formulation
and parameters involved. Furthermore, in Section 2, the feature selection technique based on
neighborhood component analysis is discussed with a graphical illustration. Section 3 consists of the
description of SCADA data where various feature variables are highlighted; the experimental results
concerning the prediction analysis are discussed followed by Conclusions in Section 4.

2. SVM-Based Data-Driven Models

Given the training set T = {(xi, yi) : xi ∈ Rn, yi ∈ R, i = 1, 2..., l }, with l samples, support vector
regression (SVR) models minimize a linear combination of the loss function and regularization term
for obtaining its linear estimate f (x) : wTx + b, w ∈ Rn, b ∈ R. For estimating the non-linear function,
it will find f (x) : K(xT , AT)u + b in feature space, where K is the appropriate kernel satisfying Mercer
condition [29].
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2.1. ε-Support Vector Regression Model

The ε-SVR model minimizes the ε-insensitive loss function along with the 1
2 wTw regularization.

It finds the solution of the following optimization problem

min
w,b

1
2

wTw + C
l

∑
i=1
|yi − f (xi)|ε, (1)

where |yi − f (xi)|ε = max(0, |yi − f (xi)| − ε) is the ε-insensitive loss function which can ignore an
error up to ε. After introducing the slack variable κi and κ∗i for i = 1, 2, ..., l, the ε-SVR problem (1) is
solved by converting the QPP:

min
w,b,κ,κ∗

1
2
‖w‖2 + C

l

∑
i=1

(κi + κ∗i )

subject to,

yi − (Aiw + b) ≤ ε + κi,

(Aiw + b)− yi ≤ ε + κ∗i , κi, κ∗i ≥ 0. (2)

2.2. Least Squares Support Vector Regression model

The LSSVR model [30] minimizes the quadratic loss function along with the 1
2 wTw regularization

term. It minimizes

min
w,b

1
2

wTw + C
l

∑
i=1

(yi − f (xi))
2, (3)

in its optimization problem along with the regularization term 1
2 ||w||2. The optimization problem of

the LSSVR model can be expressed as

min
w,b,ξ

c
2
‖w‖2 + C1

l

∑
i=1

(ξ2
i )

subject to, yi − (Aiw + b) = ξi, i = 1, 2, . . . , l, (4)

where C1 > 0 is a user-defined parameter. The solution of problem (4) can be obtained by solving the
system of equations.

2.3. Huber Support Vector Regression Model

Huber SVR uses a well defined Huber loss function to solve the regression problem.

min
w

1
2

wTw + C
l

∑
i=1

LHuber (yi − f (xi)) (5)

subject to

yi − (Aiw + b) ≤ ε + κi
1, (i = 1, 2, . . . , l)

(Aiw + b)− yi ≤ ε + κi
2, (i = 1, 2, . . . , l)

κi
1 ≥ 0, κi

2 ≥ 0, (i = 1, 2, . . . , l)
(6)

where C is the regularization term to improve the trade-off between training error and flatness of
the regressor.

LHuber(t) =

{
1
2 (t)

2, if |t| < c
c
(
|t| − c

2
)

, other wise
(7)
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2.4. Twin Support Vector Regression (TSVR)

Twin support vector regression (TSVR) works on the lines of twin support vector machines
(TSVM) [31]. TSVR estimates two non-parallel hyperplanes by solving two quadratic programming
problems (QPP), thereby reducing the computation effort. Mathematically, these QPPs can be
expressed as

min
1
2
(Y− eε1 − (Aw1 + eb1))

T(Y− eε1 − (Aw1 + eb1))

+C1eTκ (8)

s.t. Y− (Aw1 + eb1) ≥ eε1 − κ, κ ≥ 0

min
1
2
(Y− eε2 − (Aw2 + eb2))

T(Y− eε2 − (Aw2 + eb2))

+C2eTυ (9)

s.t. (Aw2 + eb2)−Y ≥ eε2 − υ, υ ≥ 0,

where C1, C2 > 0, ε1, ε2 ≥ 0 are parameters and κ, υ represent the slack variables. A detailed
explanation of optimization problem and KKT conditions can be found in [31]. In case of non-linear
regression, kernel technique can be used to solve the QPP. The kernel-based TSVR estimates the mean
of the two regressors g1(x) = K(xT , AT)w1 + b1 and g2(x) = K(xT , AT)w2 + b2.

2.5. Neighborhood Component Analysis

Modern day tasks such as classification, clustering, regression and pattern recognition work with a
significant amount of data in order to trace a meaningful relationship. High volumes of data in terms of
features can lead to the problem of over-fitting. To deal with such scenarios, neighborhood component
analysis (NCA) works on the principle of distance learning analogous to K-nearest neighbors (kNN).
The aim is to determine relevant/important features corresponding to the variable of interest (target
variable) [32]. Given a set of input training examples X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn}
being the target variable, NCA estimates a projection matrix S with dimension r× d, where B = STS
computes the training data in a r-dimension space. The elements of the projection matrix S can be
expressed as

p(xi, xj) = (Sxi − Sxj)
T(Sxi − Sxj), (10)

where p presents a distance metric given xi and xj as training and testing samples. In case of NCA,
a non-convex optimization problem is solved with marked labels being used to determine close
neighbors, which is not the case with PCA. Consider hij to be the probability of locating a label j close
to its neighbor i as

hij =
exp(− ‖ Sxi − Sxj ‖2)

∑k 6=i exp(− ‖ Sxi − Sxj ‖2)
. (11)

Furthermore, a correct classification of neighbors can be expressed in terms of an optimization
function f (S) as

f (S) = ∑
i

∑
j∈Ci

hij = ∑
i

hi (12)

∂ f
∂S

= −2S ∑
i

∑
j∈Ci

hij

(
xijx>ij −∑

k
hikxikx>ik

)
, (13)

where xij = xi − xj. Figure 1 depicts a flowchart for weight estimation of features based on NCA.
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Features like Gearbox oil temperature, Gear
bearing temperature, Nacelle temperature,
Power produced and Ambient temperature

are considered 

Use the selected features as input to
regression models SVR, LSSVR,
TSVR, MLPNN and Decision tree

Figure 1. Neighborhood component analysis (NCA) algorithm for feature selection in wind turbine
gearbox condition monitoring.

In the figure, li represents a loss function which can be expressed in terms of mean absolute
deviation. With respect to the current work, variables acquired from SCADA data are considered for
feature selection which are fed as an input to the regression models. Some of the variables are depicted
in Table 1. In the next Section, the performance parameters from regression models are discussed
considering feature selection based on NCA.

3. Results and Discussion

According to the National Renewable Energy Laboratory’s (NREL) Gearbox Reliability Database
(GRD), 76% of gearboxes failures happen due to bearings, and 17% from gear failures [33]. The gearbox
models include a low-speed planetary stage (LSS), an intermediate stage and a high-speed parallel
stage (HSS) as illustrated in Figures 2 and 3. The two gearbox models come from a different turbine
type. The gearbox configurations are used extensively for turbines rated 2 MW and 4MW, with rotor
diameter ranging between 80 to 120 m. Both turbine types use high-speed gearboxes with induction
generators. Gearbox “A” consists of two planetary stages and one parallel stage, while gearbox type
“B” consists of one planetary stage and two parallel stages.
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LSS

LSS

HSS

ACCELEROMETER

Figure 2. Gearbox type “A” configuration and location of accelerometer.

LSS

ACCELEROMETER

HSS

LSS

Figure 3. Gearbox type “B” configuration and location of accelerometer.

Figure 4 describes the correlation coefficient between gearbox oil and the bearing temperature.
Table 1 depicts the computations of the Pearson correlation coefficient for these variables in this
analysis. The sampling interval of these variables is 10 min, which is appropriate from an industrial
standpoint, as the majority of the market-clearing operations are taking place in this interval. The data
acquired are checked for missing values. After corroboration of the SCADA data quality, the sensor
temperature readings are subtracted from each other to obtain differences in temperature (∆T) to
train the supervised learning algorithms. For example, as acquired from SCADA data, a gear oil
temperature reading (Toil) and an ambient temperature reading (Tamb) are used to determine the
difference in temperatures as ∆T = Toil − Tamb. The ∆T provide extra variables for training and
testing.
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Figure 4. Pearson correlation plot for supervisory control and data acquisition (SCADA)
input variables.

Table 1. SCADA data feature index description.

Variable Index Particular

var1 Gear oil 1 temperature
var2 Gear oil 2 temperature
var3 Gear bearing 1 temperature
var4 Gear bearing 2 temperature
var5 Gear bearing 3 temperature
var6 Gear bearing 4 temperature
var7 Gear bearing 5 temperature
var8 Total power production

The experimental setup is as follows; all experiments have been performed on Intel Core i3 6th
generation processor with 4 GB of RAM in MATLAB 18.0 environment (http://in.mathworks.com/).
In this section, we discuss the experimental results for the predictive analytics performed on a wind
turbine. SCADA data available for 1 year and 1 month prior to failure consist of several variables,
as discussed in the previous section. Gearbox oil and bearing temperature are analyzed through
a regression-based approach. Since the temperature of oil and bearing is a continuous variable,
a regression-based approach helps one to identify abnormal trends in its time-series. Since the
available SCADA consists of 54 feature variables (27 from 1 year prior and rest from 1 month before
failure), it is important to identify important features and remove redundant ones. One such feature
selection technique is the neighborhood component analysis as described in Section 2. We choose
the best-suited features as input to the machine learning-based regression model. In this manuscript,
the prediction of the gearbox oil (sensor 1) and bearing temperatures takes place, using a set of ML
techniques. In Table 2, variable index 1 is treated as target variable, and the rest of the 53 (26 + 27)
variables are considered inputs to the model. It is important to note that machine learning algorithms
work well with a significant amount of data, and hence getting the right amount of data from SCADA
systems is essential for identifying faulty situations. SCADA data for this analysis consist of 1009
samples, out of which 800 samples are used in the training phase and rest for testing.

http://in.mathworks.com/
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Table 2. Detailed description of SCADA data variables.

Variable Index Particular Units

1 Gear oil 1 temperature (◦C)
2 Gear oil 2 temperature (◦C)
3 ∆T oil sensor 1 and oil sensor 2 (◦C)
4 ∆T oil sensor 1 and nacelle (◦C)
5 ∆T oil sensor 1 and ambient (◦C)
6 ∆T oil sensor 2 and nacelle (◦C)
7 ∆T oil sensor 2 and ambient (◦C)
8 Gear bearing 1 temperature (◦C)
9 Gear bearing 2 temperature (◦C)

10 Gear bearing 3 temperature (◦C)
11 Gear bearing 4 temperature (◦C)
12 Gear bearing 5 temperature (◦C)
13 ∆T bearing 1 and nacelle (◦C)
14 ∆T bearing 1 and ambient (◦C)
15 ∆T bearing 2 and nacelle (◦C)
16 ∆T bearing 2 and ambient (◦C)
17 ∆T bearing 3 and nacelle (◦C)
18 ∆T bearing 3 and ambient (◦C)
19 ∆T bearing 4 and nacelle (◦C)
20 ∆T bearing 4 and ambient (◦C)
21 ∆T bearing 5 and nacelle (◦C)
22 ∆T bearing 5 and ambient (◦C)
23 Nacelle temperature (◦C)
24 Rotor speed (RPM)
25 Wind speed (m/s)
26 Ambient temperature (◦C)
27 Total power production (Watts)

Figure 5 illustrates the weights corresponding to the feature variables.
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Figure 5. Weights based on NCA for corresponding feature variables.

A detailed description of SCADA variables can be found in Table 2. It is observed that feature
variables such as ∆T oil sensor 1 and ambient, gear bearing 1 temperature, ambient temperature and
nacelle temperature have significant weightage compared to others. Hence, in order to predict gearbox
oil temperature, these variables are treated as features or inputs to the prediction model.

The detailed flowchart of the proposed methodology is illustrated in Figure 6. Since machine
learning models are stochastic, to validate the importance of training data, we perform 10-fold
cross-validation for all models and compute the accuracy results with a standard deviation error,
as depicted in Tables 3 and 4. The bold values indicate the prediction results when NCA is used as a
feature selection technique.



Sensors 2020, 20, 6742 10 of 16

Table 3. Performance metrics for Gearbox oil (sensor 1) temperature prediction.

Method RMSE MAPE (%) MAE % Acc NMSE

ε-SVR 38.73 ± 12.1 96.06 ± 1.31 38.15 ± 13.5 3.93 ± 2.31 10.60 ± 4.1
0.25 ± 1.01 0.46 ± 0.13 0.17 ± 0.62 99.5 ± 0.01 2.41 ± 1.52

LSSVR 3.08 ± 1.2 6.21 ± 2.4 2.54 ± 1.7 93.79 ± 1.41 2.13 ± 0.51
0.09 ± 1.01 0.17 ± 0.01 0.06 ± 0.001 99.82 ± 0.05 2.06 ± 0.41

Huber-SVR 5.40 ± 2.41 11.14 ± 4.13 4.76 ± 1.01 88.86 ± 2.14 3.13 ± 1.97
4.38 ± 0.91 8.24 ± 1.56 3.73 ± 0.51 91.76 ± 2.67 2.76 ± 0.14

TSVR 3.07 ± 0.71 6.18 ± 1.97 2.44 ± 0.12 93.82 ± 3.17 1.98 ± 0.51
0.04 ± 0.067 0.08 ± 0.07 0.03 ± 0.02 99.91 ± 0.007 1.91 ± 0.01

MLPNN 4.70 ± 0.04 8.39 ± 0.19 3.52 ± 0.09 91.60 ± 0.19 1.88 ± 0.45
0.18 ± 0.1 0.36 ± 0.14 0.14 ± 0.06 99.70 ± 0.001 0.03 ± 0.044

LR 2.22 ± 6.67 3.48 ± 2.67 1.45 ± 3.2 96.51 ± 1.07 0.42 ± 0.27
1.72 ± 3.69 2.44 ± 1.56 1.00 ± 1.6 97.55 ± 0.75 0.25 ± 1.67

DT 0.60 ± 3.14 0.35 ± 2.14 0.84 ± 5.13 99.65 ± 0.002 0.031 ± 2.12
0.43 ± 1.57 0.36 ± 1.07 0.74 ± 2.67 99.64 ± 0.001 0.016 ± 1.06

Table 4. Performance metrics for Gearbox bearing 1 temperature prediction.

Method RMSE MAPE (%) MAE % Acc NMSE

ε-SVR 54.54 ± 22.67 98.55 ± 0.37 54.13 ± 32.17 3.99 ± 1.02 135.8 ± 81.67
3.68 ± 1.07 5.53 ± 0.93 3.01 ± 3.13 94.46 ± 0.11 0.628 ± 1.41

LSSVR 5.91 ± 2.53 9.29 ± 5.07 4.87 ± 2.08 90.70 ± 5.33 1.594 ± 1.69
3.67 ± 1.25 5.52 ± 2.05 3.01 ± 1.04 94.47 ± 2.15 0.62 ± 1.34

Huber-SVR 6.40 ± 1.56 10.14 ± 3.63 5.76 ± 2.67 89.86 ± 3.95 2.13 ± 1.62
4.18 ± 0.78 8.46 1.81 4.03 ± 1.36 91.54 ± 1.97 2.06 ± 0.81

TSVR 5.80 ± 1.45 9.13 ± 3.55 4.80 ± 3.44 90.86 ± 4.24 1.53 ± 0.46
3.63 ± 0.89 5.50 ± 2.59 2.99 ± 2.91 94.50 ± 3.13 0.60 ± 0.31

MLPNN 7.26 ± 4.56 10.22 ± 1.73 5.92 ± 0.94 89.77 ± 1.73 1.97 ± 0.512
2.84 ± 2.23 3.54 ± 0.86 2.00 ± 0.47 96.45 ± 0.83 0.05 ± 0.25

LR 12.4 ± 2.09 18.00 ± 2.09 10.13 ± 1.39 82.00 ± 2.09 2.26 ± 1.40
5.25 ± 1.04 6.24 ± 0.06 3.64 ± 0.43 93.75 ± 0.62 0.40 ± 0.74

DT 4.50 ± 5.70 8.53 ± 1.44 5.39 ± 0.765 89.64 ± 1.44 1.65 ± 0.42
1.18 ± 2.35 1.26 ± 0.79 0.72 ± 0.384 98.74 ± 0.91 0.02 ± 0.35

Among the tested regression techniques, decision trees give minimum RMSE values. This behavior
of decision trees can be understood with its simplicity while predicting unseen data once trained with
an optimal number of features. Out of the tested models, for condition monitoring of wind turbine, it is
observed that for diagnosing a failure associated with gearbox oil temperature, TSVR gives accurate
prediction. However, for raising alarms regarding failures in gearbox bearing, a decision tree-based
model yields highest accuracy. This analysis is carried out with SCADA data 1 month and 1 year prior
to failure. Reducing the dimension of feature space using NCA reduces computational effort and
increases reliability of an intelligent condition monitoring system for wind turbines.
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SCADA signals like gearbox oil temp, bearing
temp, nacelle temp, ambient temp and power

produced

Data cleaning and pre-processing: Normalization
for training machine learning algorithms

Feature selection based on Neighborhood
component analysis

Train ML regression models like SVR, LSSVR,
TSVR, MLPNN and Decision tree. 

Cross-validated training followed by testing and
generation of trip signals

RESIDUAL ANALYSIS

Durbin-Watson
Test

Diebold-Mariano
Test

Residuals from class of SVR models
analyzed for prediction superiority and

statistical modeling 

Trip/Alarm signal

Figure 6. Flowchart for wind turbine gearbox condition monitoring via class of support vector
regression (SVR) models.

4. Residual Analysis

In this section, the residuals from gearbox oil temperature prediction are analyzed from a statistical
point of view. Methods like TSVR, LSSVR and Huber-SVR are tested against standard-SVR using
a Diebold–Mariano (DM) test that compares the accuracy of two forecasting models. According to
a DM test, when two prediction models have similar accuracy, a null hypothesis is adopted [34].
With respect to the current objective, the DM test is conducted with TSVR (Test 1), LSSVR (Test 2) and
Huber-SVR (Test 3) to test its accuracy against standard the SVR model. The results are depicted in
Table 5 with 1% significance level, and it is observed that, TSVR, LSSVR and Huber-SVR models have
substantial prediction edge over a standard SVR (ε-SVR) model, thereby establishing the robustness of
the tested models.
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Table 5. Diebold–Mariano test for wind turbine gearbox temperature prediction.

Residual DM Statistic
Test 1 Test 2 Test 3

Gearbox oil temperature 44.9821 −21.0747 19.2741
Gearbox bearing temperature 34.1874 −20.1813 10.0529

Furthermore, in order to examine the nature of residuals and potential auto-correlation among
them, the Durbin–Watson (DW) statistic is computed for the class of SVR models. The test is based
on the fact that for a statistical regression model, the errors are independent. The DW statistic can be
given as

DW =
∑n

i=2 (ei − ei−1)
2

∑n
i=1 e2

i
, (14)

where ei denotes the ith error term of a n× 1 error column vector. The error vector for class of SVR
models is tested for potential autocorrelation which can be modeled in the form of a hypothesis
as follows

If DW < dL reject H0 : ρ = 0

If DW > dU do not reject H0 : ρ = 0

If dL < DW < dU test is inconclusive.

(15)

where dL and dU are the lower and upper critical limits which can be found from the DW table for any
α-level of significance [35]. In this manuscript, the DW statistic is calculated at 1% significance level
and is tabulated in Table 6.

Table 6. Durbin–Watson statistic for SVR models.

Model DW Statistic Result

ε-SVR 0 H0 rejected
LSSVR 0.284 H0 rejected

Huber-SVR 0.0234 H0 rejected
TSVR 0.0302 H0 rejected

The results of the DW test indicate that for the class of SVR models, the errors are auto-correlated
and can be represented by an auto-regressive (AR) process of suitable lag. For example, Figure 7
illustrates the autocorrelation at various lag instants. It is observed that till lag instant 6, the errors
indicate a high level of autocorrelation. A typical p-order AR process with lag coefficients β1, β2, . . . , βp

and noise ε can be expressed as follows

yt = β0 + β1yt−1 + β2yt−2 + · · ·+ βpyt−p + εt. (16)

The main idea behind carrying out residual analysis is to identify the time-series relationship
for a class of SVR models. The residuals obtained from ε-SVR, LSSVR, TSVR and Huber-SVR are
tested for the identification of the orders of ARIMA models. Table 7 depicts statistical parameters
of ARIMA models, and we observe that LSSVR and TSVR follow ARIMA order (4,1,1) and (3,1,1)
respectively. We find that the Akaike information criteria (AIC) and Bayesian information criteria
(BIC) values for LSSVR and TSVR are lower as compared to SVR and Huber-SVR, indicating that
the fitted ARIMA orders reflect the true model. AIC and BIC of the ARIMA models for residuals are
computed in R studio. Figure 8 represents the fitting of residuals obtained from a class of SVR methods.
The residuals obey a certain distribution. The majority of the time for wind speed and power forecast
errors, the distribution that fits well is Gaussian distribution. It is observed that for residuals of TSVR,
the distribution closely follows normal distribution, hence making it feasible to forecast the gearbox oil
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and bearing temperature with higher accuracy. Regression-based approach for condition monitoring
may be further extended to minimize the false positive rate that is a pertinent issue with most of the
classification algorithms. Since the gearbox oil and bearing temperature is essentially a time-series,
statistical modeling of residuals can help in increasing the turbine reliability in terms of the generation
of trip signals. It would also help the operator to schedule the timely maintenance of an unhealthy
wind turbine(s). In future, a time-series can be analyzed adaptively to identify instances of anomalous
behavior and reduce the false-positive rate which is an issue with classification-based approaches [21].
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Table 7. Statistical analysis of residuals from class of SVR models.

SVR LSSVR TSVR Huber-SVR

ARIMA Order (p,d,q) 1,1,3 4,1,1 3,1,1 1,1,3
AIC 1198.46 691.53 696.62 1199.18
BIC 1215.15 711.55 713.31 1215.87

5. Conclusions

This manuscript highlights the importance of feature selection for condition monitoring of wind
turbine. Modern day SCADA data contain a lot of variables from which redundant data need to be
removed. Neighborhood component analysis for regression aids this process by calculating feature
weights. Features with higher importance are considered for regression analysis with methods like
SVR, neural network, decision tree and logistic regression under evaluation. Based on the experimental
results, we observe that with an accuracy of 99.91± 0.007%, a TSVR-based model outperforms all other
models for gearbox oil temperature prediction followed by MLPNN. However, for gearbox bearing
temperature, decision tree outperforms TVSR, MLPNN and logistic regression with an accuracy of
98.74 ± 0.91%. Quantitatively, with NCA, the prediction accuracy is found superior to without NCA.
This is indicative of the fast computation aided by relevant features. From statistical point of view,
the residuals are evaluated using the Diebold–Mariano and Durbin–Watson statistics, where the
robustness of the tested models is ascertained. For the Durbin–Watson test, ε-SVR, LSSVR, Huber-SVR
and TSVR obtain statistic values of 0, 0.284, 0.0234 and 0.0302 respectively, which rejects null hypothesis
and indicates the presence of autocorrelation among residuals for tested models. The residuals are also
analyzed for their ARIMA orders and it is observed that LSSVR and TSVR depict close relationship in
their AIC values of 691.53 and 696.62 respectively. Furthermore, it must be noted that in this study
Bayesian analysis is not considered because of the dependency among feature variables.
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