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Abstract: The accurate modeling of the complex dynamic stiffness of inflated rubber diaphragms
in pneumatic springs is necessary for an efficient design of vibration isolation tables for precision
instruments, such as optical devices and nano-scale equipment. In addition to pressurized air, rubber
diaphragms, essentially employed for the prevention of air leakage, make a significant contribution
to the total complex stiffness. To reflect the effect of the dynamic stiffness of the inflated rubber
diaphragm on the total complex stiffness during the initial design or design improvement stage, it is
desirable to predict the complex stiffness of the inflated rubber diaphragm beforehand. In this paper,
an estimation method for the complex stiffness of inflated rubber diaphragms using the commercial
finite element method (e.g., ABAQUS) is proposed. The proposed method reflects their dynamic
characteristics under the large static deformation by the Mooney–Rivlin and Morman’s constitutive
equations. The results of comparison with experimental results indicate that the predictions obtained
by the proposed method are congruent with the experimental values of the diaphragm.
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1. Introduction

The vibration environments for precision instruments, such as optical devices and nano-scale
equipment, are frequently composed of pneumatic springs, which have lower stiffness than conventional
rubber or coil springs. However, as the vibration criteria for precision instruments [1–3] become
more stringent, it is required that pneumatic springs have better isolation performance, which can be
efficiently accomplished through design improvement using an accurate mathematical model for the
isolation system and experimental validation. For this purpose, first, a more accurate complex stiffness
model of pneumatic springs is necessary because it is difficult to estimate values and stiffness is a key
element to estimate the isolation performance.

A pneumatic spring comprises a piston and a diaphragm to enclose and seal the pressurized air
inside a chamber and to guide the principal axis of the pneumatic spring. The rigid piston supports the
payload mass consisting of an isolation table and/or a precision instrument. The diaphragm, a rubber
membrane with a relatively complicated shape, is installed for the prevention of air leakage. Therefore,
the air in the pneumatic chamber eventually works together with the diaphragm as a stiffness element
when the vibrations of the base or payload cause the compression/expansion of the air.

Harris et al. [4] and DeBra [5] proposed a model for pneumatic springs by describing just the
stiffness characteristic of air in a chamber through the consideration of a thermodynamic relationship.
However, a practical pneumatic spring exhibits not only a higher stiffness value but also higher
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damping characteristics than the model of the air inside the pneumatic chamber [6]. In other words,
the stiffness of the air only has a limitation to represent the actual behavior of the pneumatic spring,
which may be due to the effects of the diaphragm. As the diaphragm expands owing to pressurized air,
it functions as another complex stiffness element in the pneumatic springs. Hence, it is very natural to
include the complex stiffness of the diaphragm in the model of pneumatic springs. Research on the
behavior of the diaphragm was first conducted in 1970 by Yang and Feng [7]. They proposed a method
for modeling the behavior of the diaphragm, and presented a theoretical approach to mathematically
solve the swollen rubber membrane using the constitutive equation derived by Mooney and Rivlin [7].
However, there was no examination of the dynamic characteristics of viscoelastic materials. Since then,
research [8–10] has been actively conducted to determine the equivalent stiffness using constitutive
equations and the geometric shapes of materials. Recently, Xu et al. [11] proposed a method of
obtaining the equivalent stiffness by dividing the diaphragm into four divisions, and the effectiveness
was indirectly verified using the measured transmissibility performed on the pneumatic spring system,
including diaphragms and payloads. However, it was not easy to model the diaphragm accurately in an
analytical manner because it is a rubber membrane with a complicated shape and it has highly nonlinear,
frequency-dependent, and amplitude-dependent characteristics. In addition, this analysis has not
been reviewed in terms of dynamic stiffness coefficients representing dynamic behavior properties,
including the damping or dynamic behavior of viscoelastic materials. Viscoelastic materials have
dependence on the dynamic behavior. Therefore, according to the behavior of interest, the appropriate
constitutive equation should be used when performing analyses using the finite element method (FEM).
Therefore, in studies on rubber mounts [12–15], the analysis method and input material properties are
separately applied according to the behavior of interest. However, in most studies, the diaphragm
applied to the pneumatic spring only measures the equivalent dynamic stiffness, including the stiffness
of compressed air in the chamber, and there are relatively few studies on the examination of the
dynamic deformation characteristics, such as dynamic stiffness.

Research on the overall analysis method and procedure including the behavioral characteristics of
rubber using FEM is being carried out in various fields as FEM analysis [16–18] and pre/post-processing
technologies advance. Further, hyper-elastic theory for nonlinear analysis of static large deformation
using FEM analysis and design-related research based on theory have been conducted [19–21].
In addition, with the development of hardware and analysis tools, analysis methodologies for
reviewing detailed design results and design changes have been developed and are being used in
a wide variety of fields that include a lot of viscoelastic material [22–24]. However, the methods
developed in these studies might be difficult to apply in the initial design or concept design stage
because they focused on analysis methods that are more suitable for reality by increasing the accuracy
of analysis modeling. In addition, their related analyses focus on the nonlinearity due to the large
static deformation of viscoelastic material, thus it is difficult to provide necessary information for
estimation of dynamic characteristics. In other words, there are few studies related to a methodology
for extracting the characteristics to be used in the initial or conceptual design of a passive pneumatic
spring [25,26] or in a performance simulation of an active pneumatic spring system [27,28] that reflects
the dynamic characteristics of a diaphragm made of viscoelastic material.

In our earlier research [25,26], we indirectly estimated the complex stiffness of a diaphragm by
simply subtracting the stiffness of pressurized air from the measurement of the total complex stiffness
for a single chamber pneumatic spring. The estimated results obtained were highly congruent with the
typical characteristics of viscoelastic materials, which mainly constitute a diaphragm. Hence, it was
believed that the major portion of the estimated results was from the complex stiffness of the
diaphragm. However, the results might contain effects of unknown dynamics in addition to the
diaphragm. This factor has motivated us to validate the indirectly estimated results computationally
using FEM. Furthermore, to facilitate the initial design or design improvement stage of the pneumatic
spring, it was previously required to predict the complex stiffness of inflated rubber diaphragms.
Thus, this paper presents the computation procedure for the complex stiffness of inflated rubber
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diaphragms using the commercial finite element (FE) method (e.g., ABAQUS) to reflect its dynamic
characteristics under the large static deformation by Mooney–Rivlin and Morman’s constitutive
equations. Furthermore, a comparison with the indirectly estimated results is presented.

2. Estimation Procedure of the Diaphragm Complex Stiffness Using FEM

2.1. Proposed Estimation Method

The schematic diagram of a pneumatic spring is shown in Figure 1, where a piston and a diaphragm
enclose pressurized air inside a chamber. The rigid piston supports the payload mass consisting
of an isolation table and a precision instrument on it. The diaphragm, a rubber membrane with a
complicated shape, is installed for the prevention of air leakage. The air in the pneumatic chamber
eventually works together with the diaphragm as a stiffness element when the vibrations of the base or
payload cause the compression/expansion of the air.
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Figure 1. Schematic of the pneumatic spring.

In this study, two stages of FE analysis (i.e., nonlinear static and linear dynamic) were employed
for to calculate the diaphragm complex stiffness. The objective of the nonlinear static analysis is to
obtain the equilibrium configuration of the inflated rubber diaphragm after pressurization. In the
linear dynamic analysis, the inflated rubber diaphragm under static equilibrium was sinusoidally
excited to calculate its complex stiffness. An analysis procedure using ABAQUS, the most widely
used code among commercial FE analysis codes, is proposed. The overall procedure is summarized in
Figure 2. First, a simple-shape diaphragm material specimen that can easily exclude shape information
is made. Then, the material property required for the Mooney–Rivlin model, a representative
nonlinear constitutive equation for the static large deformation analysis, is extracted through a
static load-deflection experiment, which is based on the dynamic amplitude derived through the
static analysis.
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Figure 2. Estimation procedure of the dynamic complex stiffness of the diaphragm using finite
element method.

2.2. Extraction of Material Property for the Constitutive Equation in FEM

2.2.1. Extraction of the Nonlinear Static Material Property for the Mooney–Rivlin Model

Because the diaphragm presented in Figure 3 experiences a large deformation (extension) during
the inflation due to static pressure, a nonlinear static analysis is required. To this end, the cross-section
of the diaphragm was assumed to be a semicircle. The FE model shown in Figure 4 was first constructed
using one-dimensional (1D) axisymmetric elements (CAX4H [29]) based on the Mooney–Rivlin theory.
The constitutive equation of the Mooney–Rivlin model [30–32] that can represent well the nonlinear
static behavior is presented below. In a uniaxial uniform deformation, the stress σ is expressed by

σ = 2(C1λ+ C2)
(
λ−

1
λ2

)
, (1)

where the extensional stretch λ( = 1 + ε) is related to the engineering strain ε. In Equation (1),
the coefficients C1 and C2 are constants to be determined from the static test data.

In the case of contact condition, this work adopts the standard contact model that is readily
available in ABAQUS software. In other words, it is simply performed by leaving all relevant
parameters as default. The reason why the default is used and it is relatively neglected is twofold,
as follows. One, the frictional characteristic between the contact pairs (the diaphragm and the piston,
and chamber walls) was considered to be negligible. In other words, the walls do not seriously affect
the deformation of the diaphragm, but only prevents the diaphragm from inflating in an outward
direction. Another is concerned with the composition of the diaphragm. It is mainly made up of rubber
material, but also reinforced by a thin fabric. The role of fabric definitely is to restrict an excessive
inflation of the diaphragm, which relieves the interaction between the contact pairs.

Figure 5 shows a measurement setup for the static test, where the specimen (length: 17 mm,
width: 3 mm, thickness: 0.8 mm) was installed in the material testing system (model: DMA2980,
TA Instruments) driven via computer-controlled servo-electric motor actuation systems. The specimen
was stretched by 5%–30%, i.e., λ = 1.05–1.3, and stress measurements for each stretch were made after a
20-min relaxation. The square boxes in Figure 6 represent the measurement results that determine the
values of C1 and C2. The least square fit with Equation (1), when the values of C1 and C2 are 8.7 and
−0.8 MPa, respectively, is shown as a solid line in Figure 6. Applying the constants to the FE model of
the diaphragm can give a deformed (inflated) configuration under a static pressure, as shown by the
dotted line in Figure 4.
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Figure 3. Full view of the diaphragm.
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2.2.2. Extraction of the Complex Modulus for the Morman Model

One of the famous constitutive equations used to analyze the dynamic behavior of viscoelastic
materials in the commercial FE analysis is the Morman model [15]. The Morman model can be
simplified based on the finite linear viscoelasticity proposed by Coleman and Noll [13] and Lianis [14]
and is derived to a 1D form through the following equation:

σ∗d =
[
(1 + jωg∗(ω))(2C1(2λ2 + λ−1) + 2C2(λ+ 2λ−2))

]
ε∗

d
, (2)
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where C1 and C2 were previously derived through static experiments. The relationship between
1 + jω0g∗(ω0), which is a dynamic property value, and the dynamic complex modulus is summarized
as follows [12]:

1 + jω0g∗(ω 0) =
jωF[E(t)]

E∞
=

E∗(ω 0)

6(C 1+C2)
=

∆F∗/A0ε∗d
6(C 1+C2)

, (3)

The behavior of viscoelastic materials depends on various factors, such as dynamic amplitude, static
preload, and frequency. Because it is difficult to review all dependencies, this study considered only
the dependence due to the frequency- and dynamic amplitude-dependent characteristics. The dynamic
amplitude for a simple-shaped specimen should be defined when extracting the dynamic modulus to
reflect the dependence on the dynamic amplitude.

Sinusoidal displacement excitations were applied to the piston side of the statically deformed
diaphragm obtained from the static analysis, while calculating the output force at that point, as depicted
in Figure 7. In particular, the static pressure used in the prior analysis must be excluded to reject the
transmitted force to the piston caused by pressure. In addition, the complex modulus of a typical rubber
material depends on the amplitude of the dynamic strain and pre-strain [30]. Therefore, the characterization
of the complex modulus subject to pre-strain ε0, which corresponds to the pressure-induced static
deformation, should be conducted in the dynamic analysis stage. In this study, the following scheme
was used to determine the pre-strain ε0 in the dynamic characterization:

ε0 =
ls:diaphragm − l0:diaphragm

l0:diaphragm
, (4)

where ls:diaphragm and l0:diaphragm are the statically deformed and initial length of the diaphragm,
respectively. In the same manner, the input dynamic strains εd for the dynamic characterization can be
resolved as follows:

εd =
ld:diaphragm − ls:diaphragm

ls:diaphragm
, (5)
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Figure 7. Linear dynamic analysis.

ld:diaphragm in the above equation denotes the deformed length of the diaphragm under dynamic
loading, as expressed in Figure 7. However, a bottleneck is that the dynamic deformation ld:diaphragm
cannot be precisely known without complex modulus data to be measured. To obtain the approximate
value of ld:diaphragm, instead, a secondary static analysis applying the dynamic displacement amplitude
at the piston side was performed. Table 1 summarizes the dynamic displacement amplitude at the
piston Xp used in the secondary static analysis and the resulting εd for the dynamic characterization of
the specimen.
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Table 1. Dynamic amplitude at the piston Xp and corresponding dynamic strain εd.

Xp [mm] 0.05 0.07 0.09 0.15 0.30 0.50

εd 1.3 × 10−5 1.8 × 10−5 2.4 × 10−5 4.0 × 10−5 8.1 × 10−5 14.1 × 10−5

By using the values of εd superimposed on the pre-strain ε0 (11%) of the specimen, measurements of
the complex modulus between 0.2 and 25 Hz were made, as presented in Figure 8.
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2.3. Calculation of the Diaphragm Complex Stiffness

The complex modulus data were applied to the complex stiffness calculation of the inflated rubber
diaphragm. For reference, different complex modulus data, which were obtained by the consideration
of the static-strain distribution in the diaphragm, needed to be employed for each element of the FE
model. This process may improve the quality of FE results, because the static-strain distributions of
the diaphragm are not uniform. However, it is tedious and time-consuming in the state of the art of
commercial FE method. Nonetheless, a systematic approach [12] can assign complex modulus data
by element. However, this technique was not used in this study while assigning a single complex
modulus data for all the elements.

The results calculated using ABAQUS, a commercial FE analysis code, are shown in Figure 9.
The FE model shown in Figure 4 was also employed using one-dimensional (1D) axisymmetric elements
(CAX4H [29]) based on the Mooney–Rivlin and Morman theories. The static conditions were calculated
by the Mooney–Rivlin model and dynamic movement according to each frequency was analyzed
by Morman’s constitutive model. Other conditions including contact condition were the same as
those described in Section 2.2.1. The findings confirmed that the dependence of the dynamic stiffness
on the static/dynamic deformation derived through the material property extraction experiment is
well represented by the analysis results. The analysis results are compared with the experimental
results presented in Section 3. In the FE analysis result of Figure 9, the phenomenon whereby the loss
factor near 19 Hz partially increases is observed because the loss factor measured in Figure 8 partially
increases around 19 Hz. Some increase in the measured loss factor is analyzed by the characteristics of
the measuring device rather than the characteristics of the rubber material constituting the diaphragm.
Many material testing devices have been observed to distort measurement results in some frequency
ranges due to equipment structure, resonance, and so on. Such a phenomenon was observed in the
DMA2980 device used in this study around 18 Hz, and in the INSTRON 8502 device, which measured
the air spring, around 40 Hz.
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Figure 9. Calculated complex stiffness of the inflated rubber diaphragm k*d; real part: Re[k*d]; loss factor:
Im[k*d]/Re[k*d].

3. Validations

3.1. Indirect Extraction of Diaphragm Complex Stiffness

As mentioned in the introduction, the diaphragm will deform together with the pressure change
inside the chamber. That is, the measurements of the complex stiffness of the pneumatic spring contain
effects of the air in the chamber and diaphragm in parallel, as shown in Figure 10. Therefore, the complex
stiffness of the diaphragm can be obtained by simply subtracting the theoretical air stiffness ks from the
measurements of the pneumatic spring as follows:

k∗d
(
Xp,ω

)
= k∗exp

(
Xp,ω

)
− ks, (6)

where k∗exp

(
Xp,ω

)
denotes the experimentally measured complex stiffness of the pneumatic spring,

which may have a frequency ω- and dynamic amplitude Xp-dependent characteristics. The stiffness
of air ks, which is essential for the extraction of the complex stiffness of the diaphragm, is shown in
Equation (7). Full derivation of ks requires consideration of the first law of thermodynamics and the
ideal gas law in the pneumatic chamber. More details can be found in reference [25].

ks =
κp0A2

p

V0
, (7)

κ(=1.4) in the above equation denotes the specific heat ratio. p0 and V0 designate the supplied pressure
and chamber volume, respectively, both of which are obtainable from direct measurements. Finally, Ap

represents the equivalent piston cross-sectional area under the assumption that the dynamic behavior
of the piston and diaphragm can be represented by that of a single piston.
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Figure 10. Equivalent mechanical model of the pneumatic spring.

Ap can be estimated with reference to Figure 11, which shows the deformation diagram of the
diaphragm under the piston displacement of dxp. The volume variation of the top chamber dVt is
approximated to be a part of a cone with cross-section ABCD, as depicted in the figure. Thus, the
equivalent piston area Ap is obtained by dividing dVt by dxp as follows:

Ap = dVt/dxp = π
(
r2

2 + 2r2r1 + 4r2
1/3

)
, (8)
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Using the variables described above and Equations (6)–(8), the complex stiffness of the diaphragm
can be measured indirectly.

An experimental apparatus to apply the indirect measurement method explained above is
shown in Figure 12. The pneumatic spring (specifications are shown in Table 2) with the applied
pressure p0 was installed in the INSTRON dynamic material testing system (model: 8502) driven via
computer-controlled servo-hydraulic actuation systems. The displacement and force signals were
measured by linear variable differential transformer and load cell, respectively. The measured signals
were post-processed to obtain the complex stiffness. The thick line in Figure 12 represents the pneumatic
transmission line, and a pressure gauge was installed to measure the applied pressure in the chamber
(i.e., the pressure at static equilibrium, p0). Various sinusoidal displacement excitations, all of which
are the same as those in the material characterization (Table 1), were applied to the piston under a
given preload corresponding to the weight of a payload mass (100 kg).
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Figure 12. Experimental setup used for the measurements of the complex stiffness of pneumatic
spring k* exp.

Table 2. Design specifications of the employed pneumatic spring for experiments.

Symbol Name Value

κ Specific heat ratio of air 1.4
p0 Supplied pressure 4.93 × 105 [Pa]
V0 Chamber volume 8.1 × 10−4 [m3]
Ap Effective piston area 5.3 × 10−3 [m2]

ks(=κp0A2
p/V0) Stiffness of air 23 [kN/m]

3.2. Comparison and Examination

The measured complex stiffness of the inflated rubber diaphragm obtained by Equation (6)
is shown as solid lines in Figure 13. The real part and loss factor are related to the stiffness and
damping characteristics, respectively. First, the measured complex stiffness of the diaphragm exhibits
frequency- and dynamic amplitude-dependent behaviors. More precisely, the real part representing
the elastic stiffness increases with frequency and decreases with dynamic amplitude, exhibiting the
behavior of a softening spring. In the case of the loss factor, it increases with the dynamic amplitude.
In addition, the results for the loss factor according to the frequency show that the loss factor has
a minimum point within the 1–10 Hz interval, and it might be the characteristics of viscoelastic
material. However, this frequency range includes the range where the natural frequency of the air
spring system, 3–5 Hz, is located when the payload is installed after designing the air spring. Therefore,
it is desired that the loss factor of the diaphragm be high in this range. In this regard, the characteristics
of the diaphragm extracted from the measured results will be discussed in more depth in future studies.

These observed behaviors of the complex stiffness of the inflated rubber diaphragm approximate
the typical characteristics of viscoelastic materials [25,30]. From the above observations, it is reasonable to
regard that the indirectly estimated complex stiffness is due to one of the diaphragms, mainly consisting
of viscoelastic materials. However, the indirectly estimated results may contain the effects of
unknown dynamics in addition to the diaphragm, such as nonlinearity of air due to compressibility.
Hence, these experimental data need to be compared to the calculated data.
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Figure 13. Comparison between measured and calculated complex stiffness of inflated rubber
diaphragm k*d; real part: Re[k*d], loss factor: Im[k*d]/Re[k*d].

The calculation results using the FE method are signified by dotted lines in Figure 13. To examine
the error between the experimental and analysis results, the mean absolute error (MAE) and root mean
squared error (RMSE) defined according to Equations (9) and (10) are introduced [19].

MAE =
1
m

m∑
i=1

∣∣∣∣∣∣kExp.,i − kAna.,i

kExp.,i

∣∣∣∣∣∣ (9)

RMSE =

√√√
1
m

m∑
i=1

(kExp.,i − kAna.,i

kExp.,i

)2

(10)

The calculated errors by the above equations are described in Table 3. In the case of the real
part, the results of the experiments and calculations exhibit qualitatively well-matching characteristics
for frequency- and dynamic amplitude-dependent behaviors (the discrepancies are from 4% to
15%). Furthermore, the difference between the FE analysis and experimental results progressively
decreases with a lower dynamic amplitude. The phenomenon wherein the dynamic stiffness decreases
as the dynamic amplitude increases is one of the typical nonlinearities of viscoelastic material.
However, in this study, Morman’s linearized constitutive equation for dynamic deformation analysis
is used. As the dynamic deformation increases, the linear assumption according to dynamic amplitude
dependency deviated, and it is believed that the linear dynamic analysis did not fully reflect that part
even though the complex elastic modulus according to the dynamic amplitude were applied. In addition,
the loss factor shows a maximum discrepancy of 40%. Practically, it is extremely difficult to obtain
a good prediction quality for the loss factor of viscoelastic materials, which is also applicable in our
case. In addition, based on a simple analysis of the pneumatic spring, the stiffness of the diaphragm
rather than the loss factor diminishes the improvement of the vibration isolation performance of the
pneumatic spring. That is, more focus on the real part of the complex stiffness is needed in evaluating
the quality of calculations with FE method. By referring again to the results of the real part in Figure 13,
the calculation method proposed in this study can be validated. Furthermore, a major portion of the
indirectly measured results can be attributed to the complex stiffness of the diaphragm.

Table 3. Comparison between measured and calculated complex stiffness of inflated rubber diaphragm
by mean absolute error (MAE) and root mean squared error (RMSE).

Dynamic Amplitude 0.05 mm 0.07 mm 0.09 mm 0.15 mm 0.3 mm 0.5 mm Average

Real Part
MAE 8.4% 7.2% 4.4% 9.0% 17.8% 26.7% 12.3%

RMSE 9.3% 7.7% 4.8% 9.4% 18.3% 27.3% 14.9%

Loss Factor
MAE 39.5% 32.7% 34.1% 32.8% 28.7% 21.3% 31.5%

RMSE 39.8% 33.4% 34.7% 33.6% 29.7% 23.0% 32.8%
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4. Conclusions

This paper discussed how to compute the complex stiffness of an inflated rubber diaphragm using
commercial FE method, in which two stages of FE analysis (i.e., nonlinear static and linear dynamic)
were employed. The calculated results were compared with the indirectly measured results obtained
through the subtraction of the stiffness of the air in the chamber from the measured complex stiffness
of the pneumatic spring. The real part of the complex stiffness, which is of primary importance in
the improvement of the vibration isolation performance in the pneumatic spring, was matched well
(the discrepancies ranged from 4% to 15%), and the frequency and dynamic amplitude dependency
was well described through the proposed method. Thus, the calculation method proposed in this
paper can be reasonably used for the calculation and prediction of the diaphragm complex stiffness,
and it can be employed in the early design stage of pneumatic springs.
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