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Abstract: Electroencephalogram (EEG)-based emotion recognition is receiving significant attention
in research on brain-computer interfaces (BCI) and health care. To recognize cross-subject emotion
from EEG data accurately, a technique capable of finding an effective representation robust to the
subject-specific variability associated with EEG data collection processes is necessary. In this paper,
a new method to predict cross-subject emotion using time-series analysis and spatial correlation is
proposed. To represent the spatial connectivity between brain regions, a channel-wise feature is
proposed, which can effectively handle the correlation between all channels. The channel-wise feature
is defined by a symmetric matrix, the elements of which are calculated by the Pearson correlation
coefficient between two-pair channels capable of complementarily handling subject-specific variability.
The channel-wise features are then fed to two-layer stacked long short-term memory (LSTM), which can
extract temporal features and learn an emotional model. Extensive experiments on two publicly
available datasets, the Dataset for Emotion Analysis using Physiological Signals (DEAP) and the
SJTU (Shanghai Jiao Tong University) Emotion EEG Dataset (SEED), demonstrate the effectiveness of
the combined use of channel-wise features and LSTM. Experimental results achieve state-of-the-art
classification rates of 98.93% and 99.10% during the two-class classification of valence and arousal in
DEAP, respectively, with an accuracy of 99.63% during three-class classification in SEED.
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1. Introduction

Emotions are fundamental in the daily lives of humans, and they play an essential role in
decision-making, human interactions, and even mental health [1]. For instance, in the medical
field of psychiatry, detected emotional states of patients help identify those at a high risk of
emotional disorders and depression [2]. Thus, there has been much research on emotion recognition
using facial expressions [3], thermography [4], motion capture system [5], text [6], and speech [7].
However, these modes are difficult for representing people’s true feelings because they are sensitive to
subject-specific variability. Moreover, people can express false emotions.

To solve this problem, electroencephalogram (EEG) has been considered as an alternative for
detecting emotions produced unintentionally by the human brain. As a typical central nervous
signal, the EEG signal directly reflects the strength and position of brain activity at a high temporal
resolution [8]. Therefore, EEG signals are more stable for extracting the actual emotional states of
humans. Benefiting from many non-invasive and easy-to-wear EEG measuring devices, it is easy to
monitor electrical brain activity with EEG. Due to these advantages, EEG-based research has been
relatively active.
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EEG-based emotion recognition model design can follow a user-dependent or a user-independent
approach. In the case of a user-dependent model, training and testing data are chosen from the same
subject. Therefore, an emotion recognition model typically shows high accuracy on a user-dependent
model. However, such a user-dependent model lacks generalization and a tuning process is necessary
for each new subject, which requires training data from each subject. Thus, it is desirable to develop a
user-independent model. In this scenario, a recognition system is trained using data from some subjects
while applied to new subjects in testing. In contrast, a user-independent model is more applicable to
new users because there is no need to create a new model [9].

The main issue about recognizing cross-subject emotion from EEG signals is to find effective
representations that are robust to subject-specific variability and noise associated with the EEG data
collection process. EEG signals have a low signal-to-noise ratio (SNR) and are affected by common
noise pattern of sensor systems, as well as unintentional physical activities such as eye blinks and
muscle movement, which make it difficult to recognize the emotion states from raw EEG signals.
Moreover, due to the subject-specific variability, it is difficult to find invariant emotion-related features
from different subjects. To handle these problems, various emotion-related feature extraction methods
have been developed. These methods can be sorted into two categories: human crafted feature-based
approaches and deep feature-based ones.

The most common methods to recognize human emotion from EEG signals have been relying
on some hand-crafted features. Some methods extracted delta, theta, alpha, beta, and gamma waves
using a bandpass filter [10], and other methods implemented the wavelet transform (WT) to extract
emotion-related features [11]. In addition, researchers focused on investigating critical emotion-related
frequency bands and channels. Zheng et al. found that different emotions have different emotion-related
bands and channels [12]. Although these signal processing methods can explicitly suppress noise and
artifacts, they did not consider the subject-specific variability of EEG.

Recently, deep learning techniques are applied to automatically model brain activity. Moreover,
with the discovery of the spatial connectivity of EEG, many studies have begun to combine the spatial
connectivity of different brain regions with the temporal change of EEG signals, for a more accurate
emotion recognition model. Yang et al. transformed the data into topology-preserving two-dimensional
(2D) EEG frames based on the International 10–20 system [13]. Then, the 2D matrices were input to
a parallel convolutional recurrent neural network to learn the spatial and temporal representation
separately. Wang et al. reshaped raw EEG data into three-dimensional (3D) tensors (2D electrode
topological structure × time samples) and used a 3D CNN architecture, named EmotioNet, to extract
the spatial and temporal features simultaneously [14].

The hand-crafted feature-based approaches can explicitly reduce the noise and find emotion-related
features. However, they rarely consider the subject-specific variability and usually required specified
domain knowledge to extract hand-crafted features. By deep learning methods, the relevant features
of the emotions are automatically extracted from the raw EEG signals. Generally, most of the works
only report the results achieved by deep learning, without detailed explanations or insights about the
results. Besides presenting the classification performance, it is also important to interpret the cause of
such classification success.

To overcome the mentioned limitations of feature representation methods, we present an
interpretable cross-subject EEG-based emotion recognition model using the combination of hand-crafted
features and a deep learning approach. More specifically, we extract channel-wise features that
integrate spatial connectivity of whole brain regions and use LSTM to learn temporal information.
The channel-wise feature is defined by a symmetric matrix and considers the linear combination of every
two-pair channels. In this way, the channel-wise feature is enabled to encode the features of individuals,
and capable of complementarily handling subject-specific variability. We include visualizations of
channel-wise features and show that the channel-wise features are robust to subject-specific variability.
Then, to reduce the bias of subject-specific variability, a sequence of channel-wise features is fed to
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two-layer stacked LSTM layers. We allow the LSTM layer to automatically learn emotional features for
discriminating between emotion type.

The effectiveness of our model was examined on two publicly accessible datasets, specifically the
Dataset for Emotion Analysis using Physiological Signals (DEAP) [15] and the SJTU (Shanghai Jiao
Tong University) Emotion EEG Dataset (SEED) [16]. For the DEAP, our model achieves state-of-the-art
accuracy of 98.93% and 99.10% on two-class (high, low) valence and arousal classification tasks,
respectively, and achieves 98.32% on four-class (high valence high arousal, high valence low arousal,
low valence high arousal, low valence low arousal) classification in one model. For the SEED,
emotion classification with three classes (positive, neutral, negative) achieves an accuracy of 99.63%.

Our contributions are summarized as follows:

• We propose a cross-subject EEG-based emotion recognition model using a combination of
channel-wise features and LSTM. The channel-wise features consider the spatial connectivity
of whole brain regions, which have robust subject-specific variability, and LSTM can learn the
temporal information and extract the emotion-related feature.

• We implement extensive experiments in both the DEAP and SEED and carry out a systematic
comparison with different studies. Experimental results outperform the state of the art by a large
margin and demonstrate the effectiveness of the proposed model.

• We investigate the properties of channel-wise features and experimentally demonstrate that the
presented channel-wise features can reduce negative effects due to subject-specific variability.

The rest of this paper is organized as follows: Section 2 begins by introducing the previous research
of EEG-based emotion recognition and provides an understanding of some basic emotional feature
extraction concepts such as hand-crafted features and deep features. Section 3 summarizes the entire
process of our model. A detailed description of the proposed method and LSTM structure is presented
in Section 4. Section 5 contains the detailed information of the DEAP and SEED, experimental setting
and results to demonstrate the effectiveness of our model. Finally, the main conclusion of our research
is presented in Section 6.

2. Related Works

Until now, many studies have focused on finding emotion-related features from EEG raw signals
and developing classification methods using the extracted features. Some methods have tried to
extract the crucial features on a single EEG channel by frequency decomposition, and others have tried
to combine the spatial information and temporal information from raw signals using deep learning
techniques directly. Thus, the EEG-based emotion representation methods can mainly be divided into
two approaches: EEG representation on the time-frequency domain and spatiotemporal domain.

2.1. EEG Representation on Time-Frequency Domain

Traditionally, the most challenging task of extract EEG representation on the time-frequency
domain is to remove noise from raw EEG signals and to find the emotion-related features without
damaging the signals related to emotion. The EEG signals are divided into five bands: delta (0~4 Hz),
theta (4~7.5 Hz), alpha (7.5~12.5 Hz), beta (12.5~30 Hz), and gamma (30~40 Hz) [10,17,18]. Among them,
beta and gamma are more associated with brain activity (relevant to the active state of the mind).
The most used method to compute power spectral features are Fourier transform [10] and wavelet
transform [11,17]. Koelstra et al. developed the DEAP and extracted power spectral features from all
32 electrodes and achieve the emotion classification accuracy of 62.0% for two-class arousal classification
and 57.6% for two-class valence classification using a user-independent model [15]. Li et al. explored
the robustness of a wider range of EEG features, including nine kinds of time-frequency domain
features and nine kinds of dynamical system features from EEG measurements [19]. These features
were fed to the support vector machine (SVM) and achieve an accuracy of 59.06% on the DEAP and of
83.33% on the SEED using a user-independent model. Candra et al. extracted wavelet entropy features
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from the alpha, beta, gamma band and classified the emotion using SVM [20]. They also refined the
result by using 10 different window sizes of EEG segments. The result showed that 3–12 s window is
most suitable for emotion recognition. Based on this study, Tripathi et al. segmented EEG data into 6 s
range and extracted the mean, median, maximum, minimum, standard deviation, variance, range,
skewness, and kurtosis values from each segment [21]. These features were then input into DNN
for emotion classification and achieve the accuracy of 75.78% and 73.125% on two-class valence and
arousal classification using user-independent model, respectively.

There is growing interest in finding the emotion-related EEG channels and bands. Zheng et al.
developed SEED and use deep belief networks (DBNs) to classify three emotions [16]. By training
the DBNs, they found the four different profiles of 4, 6, 9, and 12 channels as critical channels, beta,
and gamma bands of EEG data are more related to emotion recognition. Gupta et al. investigated
the channel-specific nature of EEG signals based on a flexible analytic wavelet transform (FAWT) for
recognizing cross-subject emotions [22]. They also used 12 channels in SEED and 6 channels in DEAP,
which are more suitable for emotion recognition as suggested in [16]. Zheng et al. also found that
stable neural patterns of positive, neutral, and negative emotions [12]. The positive emotions have
higher beta and gamma responses at the lateral temporal areas, parietal and occipital sites are more
active for neutral emotions in the alpha band, and the negative emotion patterns have higher delta
responses at parietal and occipital sites and higher gamma response at prefrontal sites.

The abovementioned methods consist of two main modules: extracting hand-crafted features and
classifying emotions using machine learning techniques such as SVM, DBNs, and so on. Those methods
can effectively reduce the artifacts included in raw EEG signals and they used lightweight learning
models. Additionally, they investigated some features strongly related to some emotions and showed
the effectiveness of such emotion-specific features in the stage of classification. However, they show
a limitation in improving overall performance for all emotional categories. It remains a challenging
issue to identify features that are strongly related to all of the emotions.

2.2. EEG Representation on Spatiotemporal Domain

Tripathi et al. used a convolutional neural network (CNN) for the first time to classify the
classes of valence and arousal in the DEAP [21]. A CNN can capture the spatial dependencies of EEG
features through the utilization of relevant filters. Wang et al. reshaped raw EEG data into 3D tensors
and used a 3D CNN architecture to extract the spatial and temporal features simultaneously [14].
They then implemented a dense prediction approach to provide the network with general emotional
information more efficiently. Kim et al. applied convolutional LSTM to capture local dependencies
in the spatiotemporal domain [23]. Although this method can extract spatiotemporal features
automatically, the accuracy was lower than 80% in the user-independent model because it did not
consider subject-specific variability. Yang et al. found BaseMean, which is used to represent subjects’
basic emotional states, subtracting the BaseMean outcome from raw EEG data [13]. The preprocessed
data are then converted to 2D EEG frames based on the International 10–20 system, and the 2D matrices
are input into a parallel convolutional recurrent neural network to learn the spatial and temporal
representation separately. The accuracy of valence and arousal on the DEAP exceeded 90% in a
user-dependent model.

The graph theory approaches using Graph Neural Networks (GNN) to characterize the brain
connectivity are getting more attention. Song et al. presented a dynamical graph convolutional
neural networks (DGCNN) to model the multichannel EEG features and perform EEG emotion
classification [24]. This method can dynamically learn the spatial connectivity between different brain
regions, represented by an adjacency matrix by training the networks, and the user-independent
emotion recognition accuracy was 79.95% for the three-class valence on the SEED. Zhong et al. reported
a regularized graph neural network (RGNN), which captures both local and global inter-channel
relations [25]. The inter-channel relations are shown by the adjacency matrix, where the connection and
sparseness are supported by the neuroscience theories of the human brain structure. Although these
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methods can extract the connectivity between brain regions automatically, they did not consider the
subject-specific variability since the relevant channels vary from person to person.

As can be seen from the abovementioned methods, user-dependent models provide accurate
recognition performance, while most user-independent models show low recognition performance.
However, the user-dependent models lack generalization, so they should generate an individual
recognition model for each new user. Therefore, the user-independent model is more applicable
to new users because there is no need to create a new model [9]. However, the performance of
the user-independent model is not high enough to be used in a variety of practical applications.
For example, to the best of our knowledge, the recognition rate of the user-independent model with
the highest performance in the DEAP is less than 80%.

Until now, CNN based methods have achieved success in generating features important to emotion
classification from raw EEG data. They can effectively extract not only single channel information but
also the spatial correlation between adjacent channels through the convolution mechanism. However,
this interaction is only investigated between physically adjacent channels.

Because the relevant channels vary from person to person, it is important to consider the
connectivity between whole brain regions so as to reduce subject-specific variability.

3. Overview of the Proposed Method

We propose a novel EEG-based emotion recognition model that considers subject-specific variability
in predictions of the emotions of a user omitted from the training set. As we have argued above,
the main issue centers on how to identify the features that are strongly related to human emotions.
We believe that the spatial connectivity between whole brain regions is an important clue in finding the
emotion-specific features as well as subject-specific features. From this assumption, we first transform
raw EEG signals to channel-wise features that can effectively represent distinctive connectivity
patterns. It is assumed that a channel-wise feature can be separated into subject-specific patterns
and emotion-specific patterns. Therefore, by filtering the subject-specific patterns from channel-wise
features, only emotion-specific patterns can remain, which are used for emotion classification. In this
work, LSTM is employed to extract an emotion-specific pattern by modeling the temporal dynamic
behavior of channel-wise features.

A flowchart of our model is shown in Figure 1. First, we extracted single-channel features
from raw EEG data to reduce the data size. Second, we extracted channel-wise features to model
the spatial structure in neural correlations. Moreover, channel-wise features can explicitly model
interdependencies between all channels, and this method can determine the unique pattern of each
user’s EEG signal, allowing subject-specific variability to be considered. By successively extracting
channel-wise features from several time steps, which are flattened and input into long short-term
memory (LSTM), we can predict the emotions of users effectively. More formally, our model takes a
sequence of raw EEG data E ∈ RC×L×K×N (Figure 1a) as input, where C is the number of EEG channels,
L is the number of EEG data samples in each segment for each channel, K is the number of segments
needed for considering the correlation of all EEG channels and extracting the channel-wise feature,
and N is the number of time steps in the LSTM to extract the temporal emotional feature. Firstly,
our model calculated single-channel features S ∈ RC×K×N (Figure 1b) by the dimension reduction
from each L EEG data. Secondly, by considering the spatial connectivity between pairwise EEG
channels from K single-channel feature values per channel, our model generates N channel-wise
features F = {F1, F2, . . . , FN} (Figure 1c), where Fi ∈ RC×C. Then, we flatten the upper triangle of the
channel-wise features (Figure 1d) and input the data into LSTM (Figure 1e). By training the parameters
of LSTM, we can predict the emotional state accurately (Figure 1f).
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Figure 1. The architecture of our model. (a) Raw electroencephalogram (EEG) signals E. (b) Single-
channel features S. (c) Channel-wise features F. (d) Flattened vector of channel-wise features.
(e) Architecture of two-layer stacked Long Short-Term Memory (LSTM). (f) Emotion classification using
Multi-Layer Perceptron (MLP).

4. Proposed Method

4.1. Preprocessing

Let T be the optimal times to obtain the EEG data of an individual and let R represent the sampling
rate of the EEG signal. In the case of the DEAP, 32 EEG channels (C = 32) were recorded at 128 Hz
(R = 128). Therefore, as many studies used one second EEG signal to recognize emotion [13,22],
a one-second (T = 1) EEG signal of an individual has a data size of 32 × 128 × 1. If the raw data are
input into the model, it will incur a large computational cost.

In order to reduce the data size of the EEG signals, we calculate the mean value of a segmented
window from each EEG channel, which we term single-channel features. The input of our model
is a sequence of EEG data E ∈ RC×L×K×N that contains C channels and L × K ×N data per channel.
All C channels are initially cut into K ×N segments of the same length L. Hence, we obtain C×K ×N
segments, after which we calculate the mean value of the data within each segment. The value of the
single-channel feature can be formulated as:

Sc
k,n = mean

(
Ec

k,n

)
(1)

where c ∈ [1, C], k ∈ [1, K], n ∈ [1, N], and Ec
k,n ∈ R

L denote the input EEG data from the cth channel
and the k, nth segment. We then obtain the S ∈ RC×K×N matrix, termed the single-channel feature.

The top of Figure 1 shows the input EEG signal and extracted single-channel features from the
first subject in the DEAP. Each polyline represents a change in the trend of the single-channel features
of one channel. All channel positions correspond to the 10–20 system. As can be observed in Figure 1,
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some channels have similar data movement trends over time. For example, Fp1, AF3, and F3 change
with similar patterns, while P8, PO4, and O2 have similar patterns. On the other hand, certain channels
move conversely. For example, F7 and P8 and AF3 and P4 move precisely opposite to each other.
This indicates that some of the channels have high correlations with others, some of the channels have
low interdependency rates, and other channels have no such relationships.

4.2. Channel-Wise Features

To observe such spatial connectivity between brain regions, we undertake a preliminary study
using the DEAP. Among 32× 32 pair-wise relations, three examples extracted from different subjects are
shown in Figure 2. The data in Figure 2 are from Subject 1, 2, 3, and 4 in the DEAP when they feel high
valence high arousal emotion for 60 s. The number below each scatter plot is the correlation coefficient;
it is observed that a correlation does exist between the pair of channels and that its intensity and
signs are different per respective subject. We choose three pairwise channels Fp1-AF3, FP1-FC2, and
FP1-Oz and use scatterplots to show the relationship between the two channels. As shown in Figure 2a,
the location of AF3 is adjacent to FP1, the location of Oz is distant from FP1, and the distance between
FP1 and FC2 is not too far or too close. The coordinates of each point are the values of the single-channel
features of two channels from the same segment. Figure 2b shows that FP1 and AF3 have a positive
correlation in that as the value of AF3 increases, the value of FP1 also increases. In contrast, FP1 and
Oz show a negative correlation, and there is no such relationship between FP1 and FC2. In Figure 2c,
although the corresponding channel is identical to that in Figure 2b, the relationship between the two
channels differs. This shows that not only are adjacent channels correlated but that all channels also
have some correlations. Moreover, even with the same pairwise channels, the correlation from different
subjects behaves differently. As a result, to consider subject-specific variability, the correlations between
all channels must be considered.

From Figure 2, we can observe some interdependencies between channels, suggesting that the
use of the channel-wise feature is necessary to consider subject-specific variability and to recognize
emotions from the EEG signals of the subjects more accurately. Here, the channel-wise feature
represents the interdependence between two channels, as identified by the correlation between two
pairs of channels.

Therefore, we use the Pearson correlation coefficient to calculate the channel-wise feature.
The Pearson correlation coefficient is a measure of the linear correlation between two variables X and
Y. According to the Cauchy–Schwarz inequality, it has a value between +1 and −1, where 1 is a total
positive linear correlation, 0 is no linear correlation, and −1 is a total negative linear correlation [26].

These properties of the Pearson correlation coefficient can be used to quantify how similarly the
two channels change in terms of their patterns. Based on these properties, we compared every two
pairwise channels among all C channels. The N channel-wise features F = {F1, F2, . . . , FN} are then
computed as follows:

Fx,y
i = cov

(
Sx

i , Sy
i

)
/
(
σSx

i
·σSy

i

)
(2)

where x, y ∈ [1, C] refers to the channel number and Sx
i , Sy

i ∈ R
K denotes the single-channel features

from K consecutive segments at channel x and y. Accordingly, the channel-wise feature is described by
a C×C symmetric matrix.
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Figure 2. Some of the pairwise correlation between channels. (a) International 10–20 system for EEG
electrode placement; the location of Fp1 is circled in red, AF3, FC2 and Oz are circled in green. (b) DEAP
Subject 1, (c) DEAP Subject 2, (d) DEAP Subject 3, (e) DEAP Subject 4.
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4.3. Emotional Model and Classification

To consider the longer temporal domain further, we adopt a powerful recurrent neural
network (RNN) known as long short-term memory (LSTM) to model the context information of
the channel-wise features.

First, we extracted N channel-wise features from the continuous time step. They can be expressed
as F = {F1, F2, . . . , FN}, where Fi ∈ RC×C. Because the channel-wise features are symmetric, we only
use flattened data from the upper triangle of the channel-wise features. The size of the flattened upper
triangle of channel-wise features are C× (C− 1) ÷ 2×N and input the flattened vectors to a two-layer
stacked LSTM. The hidden sequence of the first LSTM layer is input into the second LSTM layer.
Accordingly, each layer has N LSTM units, and only the output from the last time step in the second
layer is fed into the fully connected layer. Because the values of the channel-wise features are between
−1 and 1, our model does not need a batch normalization layer, and only the dropout layer is used
in the fully connected layer. The number of nodes in the last fully connected layer is determined by
the number of emotion classes. The parameters in the LSTM and fully connected layer are trained to
differentiate between emotion labels.

5. Experiments

Our goal is to develop an accurate cross-subject EEG-based emotion recognition model that
considers subject-specific variability. To do this, we presented a novel emotional model with a
combination of channel-wise features and a two-layer stacked LSTM.

To verify the effectiveness of the proposed method, various experiments are conducted on
well-known datasets and the results are compared with those from state-of-the-art techniques. In this
section, we introduce the datasets in Section 5.1 and describe the details for the experiment setting
in Section 5.2. We then present hyperparameter optimization (Section 5.3), experimental results
(Section 5.4), and the effectiveness of the proposed features (Section 5.5).

5.1. Datasets

5.1.1. DEAP

The DEAP refers to the Database for Emotion Analysis using Physiological Signals. The EEG and
peripheral physiological signals of 32 healthy participants (16 males and 16 females, aged between 19 and
37) were recorded while each watched 40 one-minute-long excerpts of music videos. EEG was recorded
at a sampling rate of 512 Hz using 32 active AgCl electrodes (placed according to the international
10–20 system). The following peripheral nervous system signals were recorded: GSR, respiration
amplitude, skin temperature, electrocardiogram, blood volume by plethysmograph, electromyograms
of Zygomaticus and Trapezius muscles, and electrooculogram (EOG). The 32-channel EEG data
were downsampled to 128 Hz and EOG removal was done by filtering 4.0–45.0 Hz from the data.
Participants rated each video on a discrete nine-point scale for arousal, valence, like/dislike, dominance,
and familiarity [27]. We only measured EEG signals and self-assessment levels of valence and arousal
in our experiments. We set rating values more than 5 as high valence/arousal and less than 5 as low
valence/arousal. Figure 3 plots the rating values of valence and arousal in the DEAP. The points around
valence = 5 and arousal = 5 mean that subjects feel an ambiguous emotion when watching the music
video. Thus, the experimental results in DEAP are not too high in previous research.



Sensors 2020, 20, 6719 10 of 18

Figure 3. The scatter plot of rating values high valence high arousal (HVHA; green), high valence
low arousal (HVLA; red), low valence high arousal (LVHA; yellow), and low valence low arousal
(LVLA; blue) in the DEAP.

5.1.2. SEED

SEED is short for the SJTU Emotion EEG Dataset. The SEED contains 15 Chinese subjects’ (7 males
and 8 females, mean aged: 23.27, std: 2.37) EEG signals recorded as they watched 15 film clips.
The EEG data were downsampled to 200 Hz. A bandpass frequency filter from 0 to 75 Hz was applied.
For feedback, participants were told to report their emotional reactions to each film clip by completing
a questionnaire immediately after watching each clip [28]. The selected videos can be understood
without explanation and elicit a single desired target emotion. Thus, in our experiments, we used
the labels of trials instead of the information from the questionnaires. The emotional labels contain
positive, neutral, and negative attributes.

Table 1 shows the detailed information of the DEAP and SEED. As shown in this table, the two
datasets have completely different properties, such as the numbers and nationalities of the subjects,
and the number of trials and the channels. They also have different sampling rates. There is also an
issue with noisy labels. The music videos in the DEAP are ambiguous, such that subjects may feel
different emotions when watching the same video. In contrast, each film clip in the SEED is well
edited to create coherent emotion elicitations and to maximize emotional meaning. Consequently,
we choose the self-assessment labels in the DEAP and the categorical labels in the SEED to reduce the
number of noisy labels. When a subject starts watching a video, we think that it will take some time
to stimulate an emotion. Thus, we used EEG signals after 30 s in our experiments. If we can obtain
good experimental results with these two different datasets, it will sufficiently explain the excellent
capabilities of our model.

Table 1. Comparison of the two datasets.

DEAP SEED

Subjects 32 (Western) 15 (Eastern)

Trials 40 (63 s/trial) 15 (240 s/trial)

Channels 32 62

Sampling rate 128 Hz 200 Hz

Labels Valence, Arousal
(self-assessment)

Positive, Neutral, Negative
(categorical)
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5.2. Experiment Setting

For the two-layer stacked LSTM, we set the dimension of the hidden state in the LSTM unit
as 256. We adopt RMSProp to minimize the cross-entropy loss function, with a learning rate of
0.001 and a dropout probability of 0.5. Due to the limited sizes of the two EEG datasets, we apply
data augmentation to increase the diversity of the training set. As we mentioned above, the input
of our model is a sequence of EEG data E ∈ RC×L×K×N that contains C channels and L × K ×N data
per channel. From the recorded raw EEG signal G, we set ith training data Ei = G1:C

L×K×i:L×K×(i+N)
.

Thus, the overlap ratio of each two adjacent training data is (N − 1)/N. By this method, the datasets
are augmented and will represent a more comprehensive set of possible data points. Then, during
the training step, we randomly retrieved a mini-batch with a size of 240. We use Tensorflow 2.0.0
(Mountain View, CA, USA) and Nvidia GeForce GTX 1660 Ti (Santa Clara, CA, USA) to train our model.
We used a 10-fold cross validation strategy to evaluate the effectiveness of the E-EmotiConNet using a
user-independent model. We randomly split 10-fold that the same subject and the same stimuli could
be both in the training set and testing set. The accuracy of the whole system is the mean classification
accuracy on the test set 10 times.

5.3. Hyperparameter Optimization

The hyperparameters in our model are L, K, and N; specifically, we extract the channel-wise features
from K consecutive EEG segments and consider the changeability of N consecutive channel-wise features
in the LSTM. For DEAP, the size of the channel-wise features is 32× 32; accordingly, the dimension of
the upper triangle of the channel-wise feature is 496. For SEED, the size of the channel-wise features is
62 × 62, and the dimension of the upper triangle of the channel-wise feature is 1891. The flattened
upper triangle of channel-wise features is fed into the two-layer stacked LSTM. Hence, each layer has
N LSTM units.

Emotions are related to a time sequence, implying that it is important to observe emotions from
multiple time steps. The performance of the proposed system was affected by several parameters;
in this case, the number of data samples in each segment L, the number of segments K and the number
of time steps N. To evaluate the change of the accuracy considering such parameters, we performed
the first experiment. We increased the number of data samples L, using values of 2, 5, 10, 15, 20,
25, 30, 35, 40, 45, 50, 55, and 60, and extracted the channel-wise features identically to how this was
done earlier, inputting them into the LSTM. We also conducted an experiment while changing the
number of segments K from 4 to 12 and changing the number of channel-wise features N from 3 to
13 to measure the relationship between emotion recognition accuracy and the number of time steps in
LSTM. Figure 4 presents the accuracy of emotion recognition over two-class valence in DEAP when
changing the length of the segments L, the number of segments K, and the number of channel-wise
features N. The experimental results are shown in Figure 4 and it shows three important discoveries:

• When changing the length of the segments L, the accuracy rates of emotion recognition are similar.
We use a random number to initialize the parameters of LSTM. Thus, the accuracy may change
slightly, and all accuracy rates are within acceptable limits. However, as L increases, more EEG
data are needed. Thus, in our model, we set the length of the segments L to 2.

• We can also observe from the second plot that although the accuracy rates of emotion recognition
do not change greatly, the results show high accuracy in two datasets when the number of
segments K is 8.

• For the third plot in Figure 4, the accuracy of emotion recognition decreases when the number of
channel-wise features is reduced. This occurs because the EEG signal consists of sequence data
and the emotions change over time, implying that it is important to observe the emotions from
multiple time steps. However, too much data can also be computationally expensive. Thus, we set
the number of channel-wise features N to 10.
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Figure 4. Accuracy of emotion recognition when change the parameters (a) L, (b) K, and (c) N.

Thus, in our model, we set the number of data samples in each segment L to 2, the number of
segments K to 8 and the number of channel-wise features N to 10 to consider changes of 10 consecutive
channel-wise features in the LSTM and classify the emotion accurately. Consequently, our model only
requires 2× 8× 10 data samples in each EEG channel for emotion recognition. Since the sampling rates
R in the DEAP and SEED are 128 Hz and 200 Hz, we only use 1.25 and 0.8 (L×K ×N/R) second EEG
data, respectively.
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5.4. Experiments Results

An experiment was performed to prove the effectiveness of the presented channel-wise features
and the two-layer stacked LSTM for cross-subject emotion classification. For DEAP, the proposed
method achieved accuracy rates of 98.93% and 99.10% over the two-class classification of valence
and arousal, respectively. Moreover, our model achieves high accuracy of 98.60% for four-class
emotion classification (high valence high arousal, high valence low arousal, low valence high arousal,
and low valence low arousal). The four-class classification model can classify valence and arousal
simultaneously, meaning that there is no need to train two models separately. It also can reduce by half
the number of parameters. For the SEED, the proposed method achieved an accuracy of 99.63% over
three-class (positive, neutral, negative) emotion classification. Although the two datasets are different
from each other, our model shows high accuracy on both datasets. This proves the robustness of the
proposed model. Figure 5 shows the confusion matrices of the experiment result. Although the labels
of EEG data are unbalanced, we observe that our model can recognize all the emotions correctly.

Figure 5. Confusion matrices of (a) two-class valence, (b) two-class arousal, (c) four-class classification
for the DEAP, and (d) three-class classification for the SEED.

The results with the presented channel-wise features and two-layer stacked LSTM are compared
with certain EEG-based emotion recognition models in Tables 2 and 3. Wen et al. found novel
convolutional neural networks for emotion recognition for the DEAP [8]. Yang et al. reported an
emotion recognition system with a combination of CNN-based features and LSTM-based features [13].
Their system shows high accuracy rates of 90.80% and 91.03% on valence and arousal, respectively,
but it is user-dependent in that a new model should be generated for each user. Tripathi et al. extracted
nine specific values of single channels as features, with these features then being fed into a CNN [21].
Although the model achieves corresponding accuracy rates of 81.406% and 73.36% on valence and
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arousal classification, it may be difficult for a user to wait 63 s for the collection of the EEG signals.
Wang et al. used a 3D convolutional neural network on 4-s EEG signals for emotion recognition for
the DEAP [14]. Yang et al. used a combination of 10 EEG features and developed a cross-subject
emotion recognition model that integrated the significance test/sequential backward selection and the
support vector machine (ST-SBSSVM) [10]. Gupta et al. used the flexible analytic wavelet transform
(FAWT) [22], testing their models for both the DEAP and SEED and showing accuracy rates for the
DEAP below 80%, while also achieving nearly 90% accuracy for the SEED. Li. Y et al. used region
and global features to develop a user-dependent emotion recognition model [29] and Li. X et al.
combined 18 EEG features and test the performance on SEED. Our model achieves state-of-the-art
classification rates of 98.93% and 99.10%, respectively, for two-class valence and arousal for the DEAP
and shows the accuracy of 99.63% for three-class classification for the SEED. It can prove that the
proposed channel-wise features and two-layer stacked LSTM can significantly improve the average
recognition accuracy.

Table 2. Comparison between classification accuracy rates of our models and previous studies for
two-class (high, low) valence and arousal classification of the DEAP.

User-
Dependent/Independent

Papers Features Length
Accuracy

Valence Arousal

User-dependent

Wen et al. [8]
2017

CNN-based
feature 1 s 77.98% 72.98%

Yang et al. [13]
2018

CNN LSTM
based feature 1 s 90.80% 91.03%

User-independent

Tripathi et al.
[21] 2016

CNN-based
feature 63 s 81.406% 73.36%

Wang et al. [14]
2018

3D CNN-based
feature 4 s 72.1% 73.1%

Yang et al. [10]
2019

Combination of
10 EEG features 63 s 72% -

Gupta et al.
[22] 2019

Flexible
analytic
wavelet

transform
(FAWT)

1 s 79.99% 79.95%

Ours Channel-wise
features 1.25 s 98.93% 99.10%

Table 3. Comparison between classification accuracy rates of our models and previous studies for
two-class (positive, neutral, negative) classification of the SEED.

User-
Dependent/Independent Papers Features Length Accuracy

User-dependent Li, Y et al. [29] 2019 Region and global
features – 88.90%

User-independent

Li, X et al. [19] 2018 Combination of
18 EEG features 4 min 83.33%

Yang et al. [10] 2019 Combination of
10 EEG features 4 min 89%

Gupta et al. [22] 2019 Flexible analytic
wavelet transform 1 s 90.48%

Ours Channel-wise
features 0.8 s 99.63%
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5.5. Effectiveness of the Proposed Features

5.5.1. Effectiveness of the Channel-Wise Features

The examples of the channel-wise features are shown in Figure 6. As shown in Figure 6,
the correlation is defined on two pairs of channels, and it is shown in different colors depending on the
strength of the correlation. For a strong positive correlation, the corresponding cell is shown in green,
while for a strong negative correlation, it is shown in red. Otherwise, for a weak correlation, the cell is
white. The size of channel-wise features from SEED and DEAP are 62× 62 and 32× 32, respectively,
since there are 62 and 32 EEG channels in the datasets.

The channel-wise features from the SEED were extracted from Subject 1, 2, 3, and 4 when they
were stimulated by positive, neutral, and negative emotions. Moreover, the channel-wise features
from the DEAP were extracted from Subject 1, 2, 3, and 4 when they were stimulated by high valence
high arousal (HVHA), high valence low arousal (HVLA), low valence high arousal (LVHA), and low
valence low arousal (LVLA) emotions. Through visualization, we discovered that although people
may experience the same stimuli when watching the same video, the channel-wise features varied
from person to person. Moreover, all channel-wise features of an individual from different stimuli had
similar patterns. This result demonstrated that the presented channel-wise feature could adequately
describe the uniqueness of the respective individuals’ EEG signals.

When comparing the channel-wise feature with the existing method, it has some advantages.
Channel-wise features have many excellent properties. First, no parameters are required when
extracting channel-wise features. Thus, no training steps are needed and the calculation speed is
fast. Second, unlike previous CNN-based methods, which consider only adjacent EEG channels,
channel-wise features calculate the interdependency of every two pairs of channels to consider the
subject-specific variability factor.

Due to these useful properties, inputting the channel-wise features into the model can filter the
bias of subject-specific variability and ensure good performance by the user-independent emotion
recognition model.

5.5.2. Effectiveness of the Emotional Features

Repurposing a pre-trained model in transfer learning tasks can reduce the training time and
increase accuracy. Thus, to explore the effectiveness of learned emotional features, we used a scatter plot
to visualize the output vectors from the last time step in the second LSTM layer. The emotional features
consist of 256 dimensions, since the hidden state in the LSTM unit has 256 nodes. We used principal
component analysis (PCA) to reduce the dimension of emotional features to two. Figure 7 shows the
scatter plot of the dimension-reduced emotional features from the DEAP. The results agree with our
observation in the following aspects: (1) emotional features coincide with corresponding emotions and
can be classified using a simple method such as clustering or SVM; (2) our trained model can be used
in transfer learning tasks such as intention detection or depression prediction.
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Figure 6. Visualization of channel-wise features and comparison between different subjects and trials.
Channel-wise features are from (a) the SEED and (b) the DEAP.

Figure 7. Visualization of LSTM features. The features were dimension-reduced by principal component
analysis (PCA).
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6. Conclusions

In this paper, we proposed a novel cross-subject EEG-based emotion recognition model that
uses a combination of channel-wise features and two-layer stacked LSTM. Our model considers
subject-specific variability and reduces the noise automatically to achieve high recognition accuracy.
We tested our model on two publicly available datasets, the DEAP and SEED. The accuracy rates for
two-class valence and arousal in the DEAP were 98.93% and 99.10%, respectively, and the accuracy for
three-class valence in the SEED was 99.63%, demonstrating that the proposed model outperforms the
state-of-the-art EEG-based cross-subject emotion recognition model.

Our model can be used in the brain-computer interface (BCI) area and the channel-wise features
can be used in other EEG-based tasks, such as motor imagery detection to reduce subject-specific
variability. Although our model can recognize multiple subjects’ emotions, it is not easy to apply to a
new subject whose data are not included in the training set. Thus, training time is needed to make
another model for a new group of subjects. We will solve this problem in future works.
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visualization, L.J.; writing—review and editing, supervision, funding acquisition, and formal analysis, E.Y.K.;
conceptualization, methodology, project administration, and validation, L.J. and E.Y.K. All authors have read and
agreed to the published version of the manuscript.

Funding: This paper was supported by Konkuk University 2017.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Damasio, A.R. Descartes’ Error: Emotion, Reason, and the Human Brain; Harper Perennial: New York, NY, USA, 1995.
2. Deng, Y.; Wu, F.; Du, L.; Zhou, R.; Cao, L. EEG-Based Identification of Latent Emotional Disorder Using the

Machine Learning Approach. In Proceedings of the 2019 IEEE 3rd Information Technology, Networking,
Electronic and Automation Control Conference (ITNEC), Chengdu, China, 15–17 March 2019; Institute of
Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2019; pp. 2642–2648.

3. Arriaga, O.; Valdenegro-Toro, M.; Ploger, P. Real-time convolutional neural networks for emotion and gender
classification. arXiv 2017, arXiv:1710.07557.

4. Rusli, N.; Sidek, S.N.; Yusof, H.M.; Ishak, N.I.; Khalid, M.; Dzulkarnain, A.A.A. Implementation of Wavelet
Analysis on Thermal Images for Affective States Recognition of Children With Autism Spectrum Disorder.
IEEE Access 2020, 8, 120818–120834. [CrossRef]

5. Kleinsmith, A.; Bianchi-Berthouze, N. Affective Body Expression Perception and Recognition: A Survey.
IEEE Trans. Affect. Comput. 2013, 4, 15–33. [CrossRef]

6. Muljono, M.; Winarsih, N.A.S.; Supriyanto, C. Evaluation of classification methods for Indonesian text
emotion detection. In Proceedings of the 2016 International Seminar on Application for Technology of
Information and Communication (ISemantic), 5–6 August 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 130–133.

7. Lotfidereshgi, R.; Gournay, P. Biologically inspired speech emotion recognition. In Proceedings of the 2017 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9
March 2017; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2017; pp. 5135–5139.

8. Wen, Z.; Xu, R.; Du, J. A novel convolutional neural networks for emotion recognition based on EEG
signal. In Proceedings of the 2017 International Conference on Security, Pattern Analysis and Cybernetics
(SPAC), Shenzhen, China, 15–17 December 2017; Institute of Electrical and Electronics Engineers (IEEE):
Piscataway, NJ, USA, 2017; pp. 672–677.

9. Alarcao, S.M.; Fonseca, M.J. Emotions Recognition Using EEG Signals: A Survey. IEEE Trans. Affect. Comput.
2019, 10, 374–393. [CrossRef]

10. Yang, F.; Zhao, X.; Jiang, W.; Gao, P.; Liu, G. Multi-method Fusion of Cross-Subject Emotion Recognition
Based on High-Dimensional EEG Features. Front. Comput. Neurosci. 2019, 13. [CrossRef] [PubMed]

11. Piho, L.; Tjahjadi, T. A Mutual Information Based Adaptive Windowing of Informative EEG for Emotion
Recognition. IEEE Trans. Affect. Comput. 2020, 11, 722–735. [CrossRef]

http://dx.doi.org/10.1109/ACCESS.2020.3006004
http://dx.doi.org/10.1109/T-AFFC.2012.16
http://dx.doi.org/10.1109/TAFFC.2017.2714671
http://dx.doi.org/10.3389/fncom.2019.00053
http://www.ncbi.nlm.nih.gov/pubmed/31507396
http://dx.doi.org/10.1109/TAFFC.2018.2840973


Sensors 2020, 20, 6719 18 of 18

12. Zheng, W.-L.; Zhu, J.-Y.; Lu, B.-L. Identifying Stable Patterns over Time for Emotion Recognition from EEG.
IEEE Trans. Affect. Comput. 2019, 10, 417–429. [CrossRef]

13. Yang, Y.; Wu, Q.; Qiu, M.; Wang, Y.; Chen, X. Emotion Recognition from Multi-Channel EEG through Parallel
Convolutional Recurrent Neural Network. In Proceedings of the 2018 International Joint Conference on
Neural Networks (IJCNN), Rio de Janeiro, Brazil, 8–13 July 2018; Institute of Electrical and Electronics
Engineers (IEEE): Piscataway, NJ, USA, 2018.

14. Wang, Y.; Huang, Z.; McCane, B.; Neo, P. EmotioNet: A 3-D Convolutional Neural Network for EEG-based
Emotion Recognition. In Proceedings of the 2018 International Joint Conference on Neural Networks
(IJCNN), Rio de Janeiro, Brazil, 8–13 July 2018; Institute of Electrical and Electronics Engineers (IEEE):
Piscataway, NJ, USA, 2018.

15. Koelstra, S.; Muhl, C.; Soleymani, M.; Lee, J.-S.; Yazdani, A.; Ebrahimi, T.; Pun, T.; Nijholt, A.; Patras, I. DEAP:
A Database for Emotion Analysis; Using Physiological Signals. IEEE Trans. Affect. Comput. 2011, 3, 18–31. [CrossRef]

16. Zheng, W.-L.; Lu, B.-L. Investigating Critical Frequency Bands and Channels for EEG-Based Emotion
Recognition with Deep Neural Networks. IEEE Trans. Auton. Ment. Dev. 2015, 7, 162–175. [CrossRef]

17. Pfurtscheller, G.; da Silva, F.L. Event-related EEG/MEG synchronization and desynchronization:
Basic principles. Clin. Neurophysiol. 1999, 110, 1842–1857. [CrossRef]

18. Costa-García, A.; Iáñez, E.; Ubeda, A.; Hortal, E.; Del-Ama, A.J.; Gil-Agudo, A.; Azorín, J.M. Decoding the
Attentional Demands of Gait through EEG Gamma Band Features. PLoS ONE 2016, 11, e0154136. [CrossRef]

19. Li, X.; Song, D.; Zhang, P.; Zhang, Y.; Hou, Y.; Hu, B. Exploring EEG Features in Cross-Subject Emotion
Recognition. Front. Neurosci. 2018, 12, 162. [CrossRef] [PubMed]

20. Candra, H.; Yuwono, M.; Chai, R.; Handojoseno, A.; Elamvazuthi, I.; Nguyen, H.T.; Su, S.W. Investigation
of window size in classification of EEG-emotion signal with wavelet entropy and support vector machine.
In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), Milan, Italy, 25–29 August 2015; Institute of Electrical and Electronics Engineers
(IEEE): Piscataway, NJ, USA, 2015; Volume 2015, pp. 7250–7253.

21. Tripathi, S.; Acharya, S.; Sharma, R.D.; Mittal, S.; Bhattacharya, S. Using deep and convolutional neural
networks for accurate emotion classification on DEAP dataset. In Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence, San Francisco, CA USA, 4–9 February 2017; pp. 4746–4752.

22. Gupta, V.; Chopda, M.D.; Pachori, R.B. Cross-Subject Emotion Recognition Using Flexible Analytic Wavelet
Transform From EEG Signals. IEEE Sens. J. 2019, 19, 2266–2274. [CrossRef]

23. Kim, B.H.; Jo, S. Deep Physiological Affect Network for the Recognition of Human Emotions. IEEE Trans.
Affect. Comput. 2018, 1. [CrossRef]

24. Song, T.; Zheng, W.; Song, P.; Cui, Z. EEG Emotion Recognition Using Dynamical Graph Convolutional
Neural Networks. IEEE Trans. Affect. Comput. 2020, 11, 532–541. [CrossRef]

25. Zhong, P.; Wang, D.; Miao, C. EEG-Based Emotion Recognition Using Regularized Graph Neural Neworks;
Computer Visioin and Pattern Recognition; IEEE: Piscataway, NJ, USA, 2019.

26. Wikipedia Page of Pearson Correlation Coefficient. Available online: https://en.wikipedia.org/wiki/Pearson_
correlation_coefficient (accessed on 8 January 2020).

27. DEAP Dataset Homepage. Available online: https://www.eecs.qmul.ac.uk/mmv/datasets/deap/readme.html
(accessed on 15 December 2019).

28. SEED Dataset Homepage. Available online: http://bcmi.sjtu.edu.cn/~seed/seed.html (accessed on
15 December 2019).

29. Li, Y.; Zheng, W.; Wang, L.; Zong, Y.; Cui, Z. From Regional to Global Brain: A Novel Hierarchical Spatial-Temporal
Neural Network Model for EEG Emotion Recognition. IEEE Trans. Affect. Comput. 2019, 1. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TAFFC.2017.2712143
http://dx.doi.org/10.1109/T-AFFC.2011.15
http://dx.doi.org/10.1109/TAMD.2015.2431497
http://dx.doi.org/10.1016/S1388-2457(99)00141-8
http://dx.doi.org/10.1371/journal.pone.0154136
http://dx.doi.org/10.3389/fnins.2018.00162
http://www.ncbi.nlm.nih.gov/pubmed/29615853
http://dx.doi.org/10.1109/JSEN.2018.2883497
http://dx.doi.org/10.1109/TAFFC.2018.2790939
http://dx.doi.org/10.1109/TAFFC.2018.2817622
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://www.eecs.qmul.ac.uk/mmv/datasets/deap/readme.html
http://bcmi.sjtu.edu.cn/~seed/seed.html
http://dx.doi.org/10.1109/TAFFC.2019.2922912
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Works 
	EEG Representation on Time-Frequency Domain 
	EEG Representation on Spatiotemporal Domain 

	Overview of the Proposed Method 
	Proposed Method 
	Preprocessing 
	Channel-Wise Features 
	Emotional Model and Classification 

	Experiments 
	Datasets 
	DEAP 
	SEED 

	Experiment Setting 
	Hyperparameter Optimization 
	Experiments Results 
	Effectiveness of the Proposed Features 
	Effectiveness of the Channel-Wise Features 
	Effectiveness of the Emotional Features 


	Conclusions 
	References

