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Abstract: Tribological experiments (i.e., characterizing the friction and wear behavior of materials) 

are crucial for determining their potential areas of application. Automating such tests could hence 

help speed up the development of novel materials and coatings. Here, we utilize convolutional 

neural networks (CNNs) to automate a common experimental setup whereby an endoscopic camera 

was used to measure the contact area between a rubber sample and a spherical counterpart. Instead 

of manually determining the contact area, our approach utilizes a U-Net-like CNN architecture to 

automate this task, creating a much more efficient and versatile experimental setup. Using a 5× 

random permutation cross validation as well as additional sanity checks, we show that we 

approached human-level performance. To ensure a flexible and mobile setup, we implemented the 

method on an NVIDIA Jetson AGX Xavier development kit where we achieved ~18 frames per 

second by employing mixed-precision training. 

Keywords: convolutional neural network; tribology; semantic segmentation 

 

1. Introduction 

Tribology studies the interaction of surfaces in relative motion (i.e., friction and wear behavior 

of different parts in a mechanical system). For example, the performance of bearings or sealings are 

mainly controlled by the tribology. Tribological tests hence provide crucial insights into the friction 

and wear behavior of different materials under laboratory conditions. There exists a multitude of 

different test setups to investigate tribological behavior. Here, we focused on one common setup 

whereby an endoscopic camera is used to investigate the contact area between a rubber sample and 

a spherical counterpart (see Figure 1). The contact area is highly dependent on the viscoelastic 

properties of the material [1]. Surface properties like adhesion are hence directly related to the contact 

area [2]. Currently, the evaluation is done manually (i.e., the contact area is marked by hand) in 

selected frames of the resulting video. This is a tedious process that slows down und hence limits the 

experiments. 
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Figure 1. (Left) Experimental setup for measuring wear behavior of rubber samples. An endoscopic 

camera was used to detect changes in the contact area due to material wear. (Right) Sample image 

acquired with the setup. The dark sphere in the center is the contact area (marked with a red circle). 

It can be seen that multiple reflections are present, increasing the difficulty for contact area 

segmentation. 

Here, we automated this process using recent advances in semantic segmentation based on deep 

neural networks. For evaluation, we used two commonly used metrics for semantic segmentation 

(i.e., the mean intersection over union (mIoU) and the Sørensen–Dice coefficient (SDC)). Utilizing a 

U-Net [3] based network architecture with a pre-trained residual network [4], we consistently 

achieved mIoU > 0.92 and SDC > 0.96 on a manually labelled dataset, approaching human level 

performance. Furthermore, we confirmed the applicability of our approach in several sanity checks. 

To ensure a flexible and mobile setup, we implemented the method on an NVIDIA Jetson AGX Xavier 

(NVIDIA, Santa Clara, CA, USA) development kit. By utilizing mixed-precision training [5], we 

achieved close to real time evaluation with a frame rate of ~18 frames per second. Our method allows 

for a much more fine-grained temporal sampling of the changes in contact area size while freeing up 

valuable human resources. This not only allows for a more detailed analysis of wear behavior over 

time, but opens up the possibility of more elaborate experiments involving feedback loops, like 

changing the rotation speed or temperature depending on abrasion, possibly counteracting wear, and 

prolonging components lifetimes. The methods we applied here draw from recent developments in 

competitive data science settings and are likely to also benefit other new areas of applications that 

are still without existing benchmark datasets. 

State of the Art 

Convolutional neural networks (CNN) are the backbone for many improvements in image 

processing over the recent decade and are hence the key component in state-of-the-art solutions for 

popular benchmark datasets like ImageNet [6–8] or MS COCO [9–11]. This holds true for semantic 

segmentation (i.e., the pixel-wise labeling of input images). CNN-based algorithms are the top 

performing solutions for the PASCAL VOC 2012 [12–14] dataset, cityscapes [15–17], and ADE20K 

[10,18,19]. There have also been multiple proposals for using CNNs to analyze endoscopic camera 

images, predominantly in the medical field [20–22]. 

Currently, the application of CNNs in tribological research is mostly focused on defect (i.e., wear 

detection). For example, Wen et al. [23] used CNNs to implement visual surface inspection of bearing 

rollers. Pen et al. [24] classified wear particles using a combination of CNNs and support vector 

machines (SVM). Chang et al. [25] successfully applied CNNs to the automatic detection and severity 

assessment of gear wear. 

However, there have also been approaches using computer vision to aid quantitative analysis of 

wear behavior. For example, Yu et al. [26] used background subtraction methods to segment wear 

particles, allowing them to quantify the wear of pivot bearings. Liu et al. [27] used the JPEG 
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segmentation algorithm (JSEG) [28] to segment wear particles in ferrographic images. More recently, 

Wang et al. [29] used CNNs to classify, quantify, and register wear debris. To the best of our 

knowledge, using CNN-based image segmentation techniques to quantify changes in contact area in 

tribological experiments is a novel approach that has not been presented before. 

2. Materials and Methods 

2.1. Setup 

Figure 1 shows the setup that was automated in this work. Using an endoscopic camera, the 

contact area between a rubber sample and a spherical counterpart with a diameter of 10 mm2 was 

examined. Each experiment consisted of three stages. In stage 1, the spherical counterpart is slowly 

lowered into the rubber sample. In stage 2, the rotary table is spun for a predetermined amount of 

time to create friction. In stage 3, the spherical counterpart is removed from the rubber sample. The 

aim of the experiment was to document material wear during stage 2. This is accomplished by 

evaluating changes in the contact area. At the beginning, the contact area measured approximately 

6.7 mm2. This contact area segmentation is currently done manually, which only allows for sparse 

temporal sampling. By automating contact area segmentation, it becomes possible to obtain fine-grained 

(i.e., frame-wise information about changes in contact area) sampling in a shorter amount of time 

while freeing up human resources. 

2.2. Dataset 

Our dataset consisted of 802 RGB images with 640 × 480 resolution extracted from 40 videos 

recorded with different materials at different temperatures. However, in this work, we downsampled 

the resolution to 320 × 240 as processing larger resolution images greatly increases the training and 

inference times with little to no expected benefit; due to motion blur, reflections, and noise, manual 

labels are subject to variance (more details in Section 2.7). The performance gain of using the full 

resolution images was expected to be negligible. 

Contact area masks were created by two different annotators. One annotator labeled the data 

connecting a series of lines (i.e., the “Lasso”-tool), while one annotator drew ellipses that fit the 

estimated contact area as close as possible. Sample images with corresponding segmentation masks 

for the contact area are shown in Figure 1. Since the labels were rather coarse, we also used three 

videos to execute sanity checks (i.e., test if the results matched our expectations/observations; a 

detailed description is provided in Section 2.7). 

2.3. Pre-Processing and Data Augmentation 

In order to possibly improve detection, we also created a pre-processed dataset where we added 

temporal information by replacing the red color channel of each image with the grayscaled first frame 

of the corresponding video (see Figure 2). Thus, the difference between the first frame and the 

respective image is highlighted, often corresponding to the contact area. 
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Figure 2. (Top) Sample images with different surface coatings and bearing area sizes. (Bottom) 

Corresponding bearing area masks. 

Ideally, taking the difference between the current and the first frame would be sufficient to 

automatically segment the bearing area, however, as can be seen in Figure 3, multiple fringe cases, 

like the occurrence of wear particles or the effect of different coatings, arise during application, which 

would have to be solved by human intervention. 

 

Figure 3. Sample images of pre-processed dataset, where the red color channel is replaced with the 

first frame of the corresponding video. (Left) Ideal case where only the contact area is highlighted. 

(Middle) Wear particles are also marked. (Right) Certain coatings diminish the effects of pre-processing. 

For data augmentation (i.e., to artificially increase the amount of training data) we used image 

rotations within a range of ±10° as well as brightness and contrast variations as implemented in the 

fast.ai library [30]. Additionally, we added several methods from the albumentations library [31], 

namely contrast limited adaptive histogram equalization (CLAHE), decreasing JPEG compression 

(ImageCompression), camera sensor noise (ISONoise) as well as simulating sun flares 

(RandomSunFlare) (see Figure 4, left). For all but the latter method, we used the default settings. For 

random sun flares, we decreased the source radius to one hundred to better emulate the lighting 

effects present in the dataset. One of the main problems of the dataset were reflections, debris, and 

lighting. In order to increase the network’s robustness against these issues, we added a modified 

version of cutout [32], whereby random rectangular parts of the image are “cut-out” (i.e., replaced by 

a given fill value). In our modified version, we randomly switched between fill values between the 

lower and the upper limit of the image pixel value range, coarsely simulating additional lights and 

debris (Figure 4, right). 
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Figure 4. Examples for the data augmentation techniques used in this work (highlighted by red 

circles). (Left) RandomSunFlare as provided by the albumentations library with settings adjusted to 

fit our needs. (Right) Modified version of cutout data augmentation technique to coarsely simulate 

additional lights and debris. 

2.4. U-Net Architecture with Pre-Trained Head 

For our experiments, we used the unet_learner function as provided by the fast.ai library with 

the standard implementation for a U-Net [3] with a pre-trained head. As additional tweaks, we 

changed the activation function and added a post-processing filter after the output (see Section 2.5 

for details). The network architecture is illustrated in Figure 5. The incoming image is first processed 

by the network’s head, which in our case consisted of a pre-trained CNN. Thereby, the spatial 

resolution is decreased while the number of features is increased, a standard procedure adopted in 

almost all modern convolutional neural networks. Since we aimed for a pixel-wise classification, the 

spatial resolution needed to be restored. This was achieved by augmenting the network with an  

up-sampling part. A key feature of the U-Net architecture is the use of skip connections that combine 

high-level, low-resolution features with lower-level, higher-resolution features. Thereby, the output 

of a deeper (i.e., high-level) layer is up-sampled to match the spatial resolution of its preceding layer. 

The features are then concatenated and combined using additional convolutional layers. 

 

Figure 5. Schematic of the U-Net architecture. Bars indicates blocks of layers with the same spatial 

resolution: bar height illustrates spatial resolution, bar width the number of features. The input image 

was fed into the pre-trained network (left), whereby the spatial resolution was reduced while the 

number of features was increased. Spatial resolution was then restored by up-sampling low-spatial-

resolution features, concatenating them with the corresponding higher-resolution features and 

integrating the results with new additional layers (tail). The number of down- and up-sampling steps 

depends on the architecture of the pre-trained head. 
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The fast.ai implementation, aside from simplifying the use of pre-trained networks, increases the 

efficiency of the architecture by replacing the default up-sampling operation with pixel shuffling [33]. 

In our work, we tested two different pre-trained residual networks, ResNet18 and ResNet34 [4], 

since they provide a good trade-off between discriminative power and computation speed. Using 

models trained on one dataset to train a model for a novel dataset is called transfer learning [34] and 

has been shown to benefit a variety of image-processing tasks. Usually, pre-training is conducted on 

the ImageNet dataset [6], which is also the case in our experiments. As above-mentioned, we 

compared ResNet18 and ResNet34 whereby the respective number corresponded to the network’s 

depth and hence complexity. 

2.5. Network Tweaks 

The pre-trained models utilized in this work used the rectified linear unit (ReLU) as activation 

function [35], as in most fundamental research on CNNs. In academic research, this ensures 

comparability with previous work (if the focus of a paper is not introducing a novel activation 

function). However, multiple alternatives have been proposed that alleviate problems associated 

with ReLU (i.e., the dying ReLU-problem) and generally improve performance. One of these 

alternatives is the parametric ReLU (PReLU) activation function [36], which generalizes (i.e., includes) 

the ReLU function while keeping the benefit of a low computational cost: 

PReLU(�)= �
�,  if � ≥ 0

��,  otherwise
  

The learnable parameter α of the PReLU function is thereby flexible (i.e., it can be a single value 

that is shared by all channels or a vector with separate values for each channel). Here, we opted for 

the latter (i.e., a trainable value α for each channel). We replaced each ReLU activation function in the 

pre-trained head of the model with the PReLU activation function with initial values of α set to zero, 

effectively emulating the ReLU activation function at the start of training. In the additional layers 

(i.e., the networks tail), we initialized α with 0.25. 

Another tweak to our network was the addition of post-processing in the form of applying a 7 × 7 

median filter to the output. This way, the output image is smoothed and outliers (i.e., small numbers 

of incorrectly labelled pixels) are removed. The median filter was added directly as the last layer of 

the networks using the Kornia library [37]. 

2.6. Optimization 

We used the Ranger optimizer [38] (i.e., a combination of Rectified Adam [39], LookAhead [40] 

and Gradient Centralization) [41]. According to the recommendations for using Ranger, we used a 

flat + cosine annealing (fca) learning rate schedule, whereby the learning rate was kept constant for 

75% of the training epochs and then decreased via cosine annealing (see Figure 6a for an example). 

However, in our case, we found that this training policy regularly led to unstable training (i.e., sudden 

and strong divergence in loss), resulting in very poor models. In order to alleviate this problem, we 

started the annealing part earlier (i.e., before the epoch where we usually started observing the 

unstable behavior). We thus started annealing at 50% of the training epochs, resulting in much more 

stable training behavior. 
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(a) (b) 

Figure 6. (a) Flat + cosine annealing (fca) learning rate schedule. The learning rate is kept steady for a 

certain percentage of the iterations and decreased afterwards. (b) Finding the optimal learning rate: 

the learning rate is increased at every iteration (batch) while the loss is monitored. The optimal 

learning rate range shows a steep decrease in loss, followed by a sudden increase. 

In order to increase inference speed, we employed mixed-precision training [5] as implemented 

in the fast.ai library. The resulting models therefore used half- instead of full-precision computations, 

allowing for significant speedup when using suitable hardware such as the NVIDIA Jetson AGX 

Xavier used in this work. 

As loss function, we combined the Sørensen–Dice coefficient (SDC) [42,43] and the binary cross 

entropy (BCE): 

SDC =
2TP

2TP + FP + FN
 (1)

BCE = −(�log(�) + (1 − �)log(1 − �)) (2)

Loss = 10(1 − SDC) + BCE (3)

where TP is the number of true positives; FP is the number of false positives; FN is the number of 

false negatives; y is the target; and p is the predicted value. TP, FP, and FN are all calculated with 

respect to pixel values. By adding BCE to SDC, we removed the occasional convergence issues we 

encountered by training with pure SDC loss. Since SDC is bounded between zero and one, the 

training tends to be dominated by the BCE term, especially at the beginning of training. To alleviate 

this problem, we increased the SDC term by one order of magnitude. Using weighted combinations 

of SDC and BCE is a commonly used tweak in competitive data science settings (e.g., on 

www.kaggle.com). It can be viewed as a less sophisticated version of Combo Loss [44] or exponential 

logarithmic loss [45], which also combines SDC and BCE. 

Initially, each model was trained for 10 epochs with fixed pre-trained weights (head). This was 

followed by an additional 20 epochs of finetuning with a trainable head, whereby the initial learning 

rate was decreased by two orders of magnitude. We found that training for more epochs only 

increased the risk for unstable training (i.e., some folds diverging to zero SDC and mIoU) without 

improvements in the results. In summary, we used the following training schedule for each model: 

 20 epochs: only tail weights trainable, fca schedule, maximum learning rate = ����  

 20 epochs: all weights trainable, fca schedule, maximum learning rate = ���� × 0.01 

The learning rates were determined using the learning rate finder proposed by Leslie N. Smith 

[46] as implemented in the fast.ai library v1. An illustration is provided in Figure 6b: before training, 

a test is run whereby the learning rate is increased for each batch starting at a very low value of 1 × 10−7. 
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The resulting loss vs. learning rate curve is then plotted. The curve usually shows a steady loss for 

low learning rates, a decrease for the optimal learning rate range, and a steep increase for learning 

rates that are too high. Through empirical tests, we found that learning rates in the mid-range of the 

decreasing part yielded the best results for the combination of the U-Net and Ranger optimizer. To 

obtain robust estimates, we repeated the learning finder five times and took the median suggested 

learning rate. Using this procedure, we chose an optimal learning rate for each model–parameter 

combination. The batch size was set to eight for all experiments. 

2.7. Evaluation 

We used the Sørensen–Dice coefficient (SDC) as well as the mean intersection over union (mIoU) 

as scalar metrics to rate the segmentation performance. 

mIoU =  
TP

TP + FP + FN
 (4)

Again, TP, FP, and FN were all calculated with respect to pixel values. In order to obtain robust 

estimates of model performance, we used a 5-fold random permutation cross validation for each 

scenario/parameter setting. Thereby, the data were randomly split five times, with 95% training and 

5% validation data and a model was trained and evaluated on each split. The same splits were used 

for all models to increase comparability. The resulting statistics (i.e., mean and standard deviation) 

were used for comparison. 

One issue when evaluating the model on human-labeled data is that the labels are not perfect 

(i.e., there is some variance in the labels). In order to get an optimistic estimate on this human-induced 

label-noise, we had three different people label the same ten images three times. By choosing a small 

number of images, we tried to exclude the influence of fatigue. All labelers were told to work with 

great care and that the results would be used to train our model. We then calculated the mean SDC 

and mIoU between the labels created by different people at different times. We thus calculated a 

mean SDC of 0.97 ± 0.04 as well as a mean mIoU of 0.94 ± 0.7. 

While scalar metrics play an important role in model evaluation, assessing the performance with 

a single value can hide important aspects that hinder the model’s application. Furthermore, the target 

segmentation masks used here for training and evaluation were rather coarse, limiting the 

expressiveness of SDC and mIoU metrics. As an additional sanity check, we hence applied each 

model to three different videos of experiments with the same material. We then tested if the models 

correctly predicted similar contact area curves across all three videos. We also tested the repeatability 

of our approach by evaluating the similarity of the predicted curves across the 5-fold random 

permutation cross validation. The contact area was thereby calculated by fitting the largest contour 

in the segmentation mask and calculating the corresponding area. Contour detection was 

accomplished using the respective function of the OpenCV library [47] for Python (i.e., via the 

algorithm proposed by Suzuki and Be) [48]. The contour area was calculated by counting the number 

of pixels inside the largest contour. 

2.8. Software and Hardware 

All experiments were executed using the Python programming language [49]. To implement 

and train neural networks we used Pytorch [50] and the fast.ai library v1 [30]. All experiments were 

conducted on a Desktop PC using an NVIDIA Geforce 1080 Ti GPU (NVIDIA, Santa Clara, CA, USA). 

The algorithm was deployed on an NVIDIA Jetson AGX Xavier development kit. 

3. Results 

3.1. Performance 

Figure 7 shows the resulting scores for ResNet18 and ResNet34 with and without pre-processing. 

It can be seen that increasing the depth of the pre-trained head did not yield any performance gains 
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(i.e., the same results were achieved with both ResNet18 and ResNet34). Pre-processing also did not 

influence performance. 

 

Figure 7. Sørensen–Dice (blue) coefficient as well as mean intersection over union (red) for different 

pre-trained heads with and without data pre-processing (prefix “pre_”). Scores (rounded to third 

decimal point) are written into bars. 

Figure 8 shows the example results of the sanity checks (i.e., the predicted contact area for each 

frame of three test videos). All models produced very similar curves, mirroring the observed 

similarity in SDC and mIoU. The variance between experiments was thus much larger than the 

variance introduced by different model and data pre-processing choices. 

 

Figure 8. Contact area change over frames for all models trained in this work, color coded by video. 

Frames 0 to ~2400 show stage 1 (i.e., the spherical counterpart being slowly lowered into the rubber 

sample). Frame~2400 to ~6000 show stage 2 (i.e., the rotary table being spun to create friction). This is 

followed by stage 3 (i.e., the spherical counterpart being removed from the sample). The curves for 

each video were strongly aligned (i.e., model choice has little impact on the resulting contact area 

curves). Visible differences only occurred at the very beginning as well as at the transition between 

stages 1 and 2. 
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3.2. Failure Cases 

In order to gain further insight into network performance, we visually examined the validation 

samples with the highest loss. Figure 9 shows the nine validation samples with the highest loss over 

all folds when using a pre-trained ResNet18 as the U-Net head without pre-processing. 

 

Figure 9. Nine validation samples with the highest loss, when using pre-trained ResNet without pre-

processing. Target area is outline in red, predicted area in green. 

The target area is outlined in red, the predicted area in green. It can be seen that most of the top 

failure cases came from the initial stage of the experiment (i.e., lowering the spherical counterpart 

into the rubber sample). This stage starts with a small contact area that increases as the counterpart 

is lowered. We thus investigated the dependency between contact area and loss. While there was 

considerable variance, we found significant negative Spearman rank correlation between loss and 

target area as well as a cluster of high-contact-area samples with comparably high losses (Figure 10a). 

We also examined if there was a systematic discrepancy between predictions and target values (i.e., 

if there is a tendency toward under- or over-estimating the contact area with respect to the target 

values provided by the dataset). We thus calculated the relative error (��) between the predicted and 

target area: 

�� =  
�� − ��

��

 (5)

where ��  is the predicted area and ��  is the target area, both calculated in terms of pixels. The 

results did not indicate any tendency toward under- or over-estimating the target area. 
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Figure 10. (a) Dependency between validation loss and contact area. We found weak, but significant 

(p < 1 × 10−27) negative Spearman rank correlation as well as a cluster of high-contact-area samples 

with comparably high losses (marked by red circle). (b) Contact area distribution in the training data. 

(c) Distribution of the relative error between target area and predicted area. 

4. Discussion 

All models tested in this work reached similar performances of 0.96 SDC and 0.92 mIoU, 

mirrored by very similar contact area curves when applied to three example videos. Since these were 

not the best possible values, it seems as if there is some type of performance bottleneck that could not 

be overcome by using pre-trained residual networks with more layers or applying the 

aforementioned pre-processing scheme. However, we found that, when applied to various videos 

(not just the ones used for aforementioned sanity checks), the method produced satisfactory results 

throughout (i.e., the predicted contact areas closely matched the visually observed contact areas). The 

likely cause for this observation was imperfect labeling of the training data. Different parts of the data 

were labeled by different annotators. One annotator labeled the data connecting a series of lines (i.e., 

the “Lasso”-tool), while one annotator simply drew ellipses that fit the estimated contact area as close 

as possible. Neither of the techniques are completely accurate. Judging by visual examination when 

applied to multiple videos, we found that the networks were able to extract the correct contact areas 

despite this imperfect labeling. 

Nevertheless, a few actual failure cases remained and further diminished the results. Looking at 

the samples with the largest validation loss for all models, we found a prevalence of samples with 

very low and very high contact areas. Figure 10a shows the dependency between the target contact 

area and validation loss. There was a significant (p < 1 × 10−27) negative Spearman rank correlation 

between the contact area and loss. However, the high variance suggests that there are other important 

factors at play. Furthermore, there was a cluster of high contact area samples with comparably high 

loss. Examining the contact area distribution in the dataset, we could identify a likely reason for this, 

as these cases were less well represented in the data. Adding such samples could hence further 

improve the quality of the results. 

It should also be noted that contact area segmentation, while an important step, is not sufficient 

to correctly calculate the contact area in terms of mm2. In order to fully utilize the setup, we also had 

to account for image distortions due to the spherical counterpart. This will hence be one of the main 

areas for future improvements. 

Finally, we would like to note, that while there were various fringe cases, contact area 

segmentation as discussed in this work could likely also be solved by the clever combination of 

methods from “classical” computer vision. The main advantage of using CNNs is that excellent 

results can be achieved while the implementation effort shifts from algorithm development toward 

dataset creation, a task that can be solved by a much broader part of the population. Although we 

encountered difficulties regarding training stability, we think that as these methods are increasingly 

applied to industrial problems, more stable default approaches will emerge. Solving computer vision 
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problems would thus become a lot more accessible, without the need for hiring specialists. Therefore, 

the development of such methods is an important part of our future research. 
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