

Sensors 2020, 20, 6703; doi:10.3390/s20226703 www.mdpi.com/journal/sensors

Letter

A U-Net Based Approach for Automating

Tribological Experiments

Benjamin Staar 1,2,*, Suleyman Bayrak 3, Dominik Paulkowski 3 and Michael Freitag 1,2

1 BIBA—Bremer Institut für Produktion und Logistik GmbH, University of Bremen, Hochschulring 20,

28359 Bremen, Germany; fre@biba.uni-bremen.de
2 Faculty of Production Engineering, University of Bremen, Badgasteiner Straße 1, 28359 Bremen, Germany
3 Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Wiener Strasse 12,

28359 Bremen, Germany; suleyman.bayrak@ifam.fraunhofer.de (S.B.);

dominik.paulkowski@ifam.fraunhofer.de (D.P.)

* Correspondence: sta@biba.uni-bremen.de

Received: 30 September 2020; Accepted: 18 November 2020; Published: 23 November 2020

Abstract: Tribological experiments (i.e., characterizing the friction and wear behavior of materials)

are crucial for determining their potential areas of application. Automating such tests could hence

help speed up the development of novel materials and coatings. Here, we utilize convolutional

neural networks (CNNs) to automate a common experimental setup whereby an endoscopic camera

was used to measure the contact area between a rubber sample and a spherical counterpart. Instead

of manually determining the contact area, our approach utilizes a U-Net-like CNN architecture to

automate this task, creating a much more efficient and versatile experimental setup. Using a 5×

random permutation cross validation as well as additional sanity checks, we show that we

approached human-level performance. To ensure a flexible and mobile setup, we implemented the

method on an NVIDIA Jetson AGX Xavier development kit where we achieved ~18 frames per

second by employing mixed-precision training.

Keywords: convolutional neural network; tribology; semantic segmentation

1. Introduction

Tribology studies the interaction of surfaces in relative motion (i.e., friction and wear behavior

of different parts in a mechanical system). For example, the performance of bearings or sealings are

mainly controlled by the tribology. Tribological tests hence provide crucial insights into the friction

and wear behavior of different materials under laboratory conditions. There exists a multitude of

different test setups to investigate tribological behavior. Here, we focused on one common setup

whereby an endoscopic camera is used to investigate the contact area between a rubber sample and

a spherical counterpart (see Figure 1). The contact area is highly dependent on the viscoelastic

properties of the material [1]. Surface properties like adhesion are hence directly related to the contact

area [2]. Currently, the evaluation is done manually (i.e., the contact area is marked by hand) in

selected frames of the resulting video. This is a tedious process that slows down und hence limits the

experiments.

Sensors 2020, 20, 6703 2 of 14

Figure 1. (Left) Experimental setup for measuring wear behavior of rubber samples. An endoscopic

camera was used to detect changes in the contact area due to material wear. (Right) Sample image

acquired with the setup. The dark sphere in the center is the contact area (marked with a red circle).

It can be seen that multiple reflections are present, increasing the difficulty for contact area

segmentation.

Here, we automated this process using recent advances in semantic segmentation based on deep

neural networks. For evaluation, we used two commonly used metrics for semantic segmentation

(i.e., the mean intersection over union (mIoU) and the Sørensen–Dice coefficient (SDC)). Utilizing a

U-Net [3] based network architecture with a pre-trained residual network [4], we consistently

achieved mIoU > 0.92 and SDC > 0.96 on a manually labelled dataset, approaching human level

performance. Furthermore, we confirmed the applicability of our approach in several sanity checks.

To ensure a flexible and mobile setup, we implemented the method on an NVIDIA Jetson AGX Xavier

(NVIDIA, Santa Clara, CA, USA) development kit. By utilizing mixed-precision training [5], we

achieved close to real time evaluation with a frame rate of ~18 frames per second. Our method allows

for a much more fine-grained temporal sampling of the changes in contact area size while freeing up

valuable human resources. This not only allows for a more detailed analysis of wear behavior over

time, but opens up the possibility of more elaborate experiments involving feedback loops, like

changing the rotation speed or temperature depending on abrasion, possibly counteracting wear, and

prolonging components lifetimes. The methods we applied here draw from recent developments in

competitive data science settings and are likely to also benefit other new areas of applications that

are still without existing benchmark datasets.

State of the Art

Convolutional neural networks (CNN) are the backbone for many improvements in image

processing over the recent decade and are hence the key component in state-of-the-art solutions for

popular benchmark datasets like ImageNet [6–8] or MS COCO [9–11]. This holds true for semantic

segmentation (i.e., the pixel-wise labeling of input images). CNN-based algorithms are the top

performing solutions for the PASCAL VOC 2012 [12–14] dataset, cityscapes [15–17], and ADE20K

[10,18,19]. There have also been multiple proposals for using CNNs to analyze endoscopic camera

images, predominantly in the medical field [20–22].

Currently, the application of CNNs in tribological research is mostly focused on defect (i.e., wear

detection). For example, Wen et al. [23] used CNNs to implement visual surface inspection of bearing

rollers. Pen et al. [24] classified wear particles using a combination of CNNs and support vector

machines (SVM). Chang et al. [25] successfully applied CNNs to the automatic detection and severity

assessment of gear wear.

However, there have also been approaches using computer vision to aid quantitative analysis of

wear behavior. For example, Yu et al. [26] used background subtraction methods to segment wear

particles, allowing them to quantify the wear of pivot bearings. Liu et al. [27] used the JPEG

Sensors 2020, 20, 6703 3 of 14

segmentation algorithm (JSEG) [28] to segment wear particles in ferrographic images. More recently,

Wang et al. [29] used CNNs to classify, quantify, and register wear debris. To the best of our

knowledge, using CNN-based image segmentation techniques to quantify changes in contact area in

tribological experiments is a novel approach that has not been presented before.

2. Materials and Methods

2.1. Setup

Figure 1 shows the setup that was automated in this work. Using an endoscopic camera, the

contact area between a rubber sample and a spherical counterpart with a diameter of 10 mm2 was

examined. Each experiment consisted of three stages. In stage 1, the spherical counterpart is slowly

lowered into the rubber sample. In stage 2, the rotary table is spun for a predetermined amount of

time to create friction. In stage 3, the spherical counterpart is removed from the rubber sample. The

aim of the experiment was to document material wear during stage 2. This is accomplished by

evaluating changes in the contact area. At the beginning, the contact area measured approximately

6.7 mm2. This contact area segmentation is currently done manually, which only allows for sparse

temporal sampling. By automating contact area segmentation, it becomes possible to obtain fine-grained

(i.e., frame-wise information about changes in contact area) sampling in a shorter amount of time

while freeing up human resources.

2.2. Dataset

Our dataset consisted of 802 RGB images with 640 × 480 resolution extracted from 40 videos

recorded with different materials at different temperatures. However, in this work, we downsampled

the resolution to 320 × 240 as processing larger resolution images greatly increases the training and

inference times with little to no expected benefit; due to motion blur, reflections, and noise, manual

labels are subject to variance (more details in Section 2.7). The performance gain of using the full

resolution images was expected to be negligible.

Contact area masks were created by two different annotators. One annotator labeled the data

connecting a series of lines (i.e., the “Lasso”-tool), while one annotator drew ellipses that fit the

estimated contact area as close as possible. Sample images with corresponding segmentation masks

for the contact area are shown in Figure 1. Since the labels were rather coarse, we also used three

videos to execute sanity checks (i.e., test if the results matched our expectations/observations; a

detailed description is provided in Section 2.7).

2.3. Pre-Processing and Data Augmentation

In order to possibly improve detection, we also created a pre-processed dataset where we added

temporal information by replacing the red color channel of each image with the grayscaled first frame

of the corresponding video (see Figure 2). Thus, the difference between the first frame and the

respective image is highlighted, often corresponding to the contact area.

Sensors 2020, 20, 6703 4 of 14

Figure 2. (Top) Sample images with different surface coatings and bearing area sizes. (Bottom)

Corresponding bearing area masks.

Ideally, taking the difference between the current and the first frame would be sufficient to

automatically segment the bearing area, however, as can be seen in Figure 3, multiple fringe cases,

like the occurrence of wear particles or the effect of different coatings, arise during application, which

would have to be solved by human intervention.

Figure 3. Sample images of pre-processed dataset, where the red color channel is replaced with the

first frame of the corresponding video. (Left) Ideal case where only the contact area is highlighted.

(Middle) Wear particles are also marked. (Right) Certain coatings diminish the effects of pre-processing.

For data augmentation (i.e., to artificially increase the amount of training data) we used image

rotations within a range of ±10° as well as brightness and contrast variations as implemented in the

fast.ai library [30]. Additionally, we added several methods from the albumentations library [31],

namely contrast limited adaptive histogram equalization (CLAHE), decreasing JPEG compression

(ImageCompression), camera sensor noise (ISONoise) as well as simulating sun flares

(RandomSunFlare) (see Figure 4, left). For all but the latter method, we used the default settings. For

random sun flares, we decreased the source radius to one hundred to better emulate the lighting

effects present in the dataset. One of the main problems of the dataset were reflections, debris, and

lighting. In order to increase the network’s robustness against these issues, we added a modified

version of cutout [32], whereby random rectangular parts of the image are “cut-out” (i.e., replaced by

a given fill value). In our modified version, we randomly switched between fill values between the

lower and the upper limit of the image pixel value range, coarsely simulating additional lights and

debris (Figure 4, right).

Sensors 2020, 20, 6703 5 of 14

Figure 4. Examples for the data augmentation techniques used in this work (highlighted by red

circles). (Left) RandomSunFlare as provided by the albumentations library with settings adjusted to

fit our needs. (Right) Modified version of cutout data augmentation technique to coarsely simulate

additional lights and debris.

2.4. U-Net Architecture with Pre-Trained Head

For our experiments, we used the unet_learner function as provided by the fast.ai library with

the standard implementation for a U-Net [3] with a pre-trained head. As additional tweaks, we

changed the activation function and added a post-processing filter after the output (see Section 2.5

for details). The network architecture is illustrated in Figure 5. The incoming image is first processed

by the network’s head, which in our case consisted of a pre-trained CNN. Thereby, the spatial

resolution is decreased while the number of features is increased, a standard procedure adopted in

almost all modern convolutional neural networks. Since we aimed for a pixel-wise classification, the

spatial resolution needed to be restored. This was achieved by augmenting the network with an

up-sampling part. A key feature of the U-Net architecture is the use of skip connections that combine

high-level, low-resolution features with lower-level, higher-resolution features. Thereby, the output

of a deeper (i.e., high-level) layer is up-sampled to match the spatial resolution of its preceding layer.

The features are then concatenated and combined using additional convolutional layers.

Figure 5. Schematic of the U-Net architecture. Bars indicates blocks of layers with the same spatial

resolution: bar height illustrates spatial resolution, bar width the number of features. The input image

was fed into the pre-trained network (left), whereby the spatial resolution was reduced while the

number of features was increased. Spatial resolution was then restored by up-sampling low-spatial-

resolution features, concatenating them with the corresponding higher-resolution features and

integrating the results with new additional layers (tail). The number of down- and up-sampling steps

depends on the architecture of the pre-trained head.

Sensors 2020, 20, 6703 6 of 14

The fast.ai implementation, aside from simplifying the use of pre-trained networks, increases the

efficiency of the architecture by replacing the default up-sampling operation with pixel shuffling [33].

In our work, we tested two different pre-trained residual networks, ResNet18 and ResNet34 [4],

since they provide a good trade-off between discriminative power and computation speed. Using

models trained on one dataset to train a model for a novel dataset is called transfer learning [34] and

has been shown to benefit a variety of image-processing tasks. Usually, pre-training is conducted on

the ImageNet dataset [6], which is also the case in our experiments. As above-mentioned, we

compared ResNet18 and ResNet34 whereby the respective number corresponded to the network’s

depth and hence complexity.

2.5. Network Tweaks

The pre-trained models utilized in this work used the rectified linear unit (ReLU) as activation

function [35], as in most fundamental research on CNNs. In academic research, this ensures

comparability with previous work (if the focus of a paper is not introducing a novel activation

function). However, multiple alternatives have been proposed that alleviate problems associated

with ReLU (i.e., the dying ReLU-problem) and generally improve performance. One of these

alternatives is the parametric ReLU (PReLU) activation function [36], which generalizes (i.e., includes)

the ReLU function while keeping the benefit of a low computational cost:

PReLU(�)= �
�, if � ≥ 0

��, otherwise

The learnable parameter α of the PReLU function is thereby flexible (i.e., it can be a single value

that is shared by all channels or a vector with separate values for each channel). Here, we opted for

the latter (i.e., a trainable value α for each channel). We replaced each ReLU activation function in the

pre-trained head of the model with the PReLU activation function with initial values of α set to zero,

effectively emulating the ReLU activation function at the start of training. In the additional layers

(i.e., the networks tail), we initialized α with 0.25.

Another tweak to our network was the addition of post-processing in the form of applying a 7 × 7

median filter to the output. This way, the output image is smoothed and outliers (i.e., small numbers

of incorrectly labelled pixels) are removed. The median filter was added directly as the last layer of

the networks using the Kornia library [37].

2.6. Optimization

We used the Ranger optimizer [38] (i.e., a combination of Rectified Adam [39], LookAhead [40]

and Gradient Centralization) [41]. According to the recommendations for using Ranger, we used a

flat + cosine annealing (fca) learning rate schedule, whereby the learning rate was kept constant for

75% of the training epochs and then decreased via cosine annealing (see Figure 6a for an example).

However, in our case, we found that this training policy regularly led to unstable training (i.e., sudden

and strong divergence in loss), resulting in very poor models. In order to alleviate this problem, we

started the annealing part earlier (i.e., before the epoch where we usually started observing the

unstable behavior). We thus started annealing at 50% of the training epochs, resulting in much more

stable training behavior.

Sensors 2020, 20, 6703 7 of 14

(a) (b)

Figure 6. (a) Flat + cosine annealing (fca) learning rate schedule. The learning rate is kept steady for a

certain percentage of the iterations and decreased afterwards. (b) Finding the optimal learning rate:

the learning rate is increased at every iteration (batch) while the loss is monitored. The optimal

learning rate range shows a steep decrease in loss, followed by a sudden increase.

In order to increase inference speed, we employed mixed-precision training [5] as implemented

in the fast.ai library. The resulting models therefore used half- instead of full-precision computations,

allowing for significant speedup when using suitable hardware such as the NVIDIA Jetson AGX

Xavier used in this work.

As loss function, we combined the Sørensen–Dice coefficient (SDC) [42,43] and the binary cross

entropy (BCE):

SDC =
2TP

2TP + FP + FN
 (1)

BCE = −(�log(�) + (1 − �)log(1 − �)) (2)

Loss = 10(1 − SDC) + BCE (3)

where TP is the number of true positives; FP is the number of false positives; FN is the number of

false negatives; y is the target; and p is the predicted value. TP, FP, and FN are all calculated with

respect to pixel values. By adding BCE to SDC, we removed the occasional convergence issues we

encountered by training with pure SDC loss. Since SDC is bounded between zero and one, the

training tends to be dominated by the BCE term, especially at the beginning of training. To alleviate

this problem, we increased the SDC term by one order of magnitude. Using weighted combinations

of SDC and BCE is a commonly used tweak in competitive data science settings (e.g., on

www.kaggle.com). It can be viewed as a less sophisticated version of Combo Loss [44] or exponential

logarithmic loss [45], which also combines SDC and BCE.

Initially, each model was trained for 10 epochs with fixed pre-trained weights (head). This was

followed by an additional 20 epochs of finetuning with a trainable head, whereby the initial learning

rate was decreased by two orders of magnitude. We found that training for more epochs only

increased the risk for unstable training (i.e., some folds diverging to zero SDC and mIoU) without

improvements in the results. In summary, we used the following training schedule for each model:

 20 epochs: only tail weights trainable, fca schedule, maximum learning rate = ����

 20 epochs: all weights trainable, fca schedule, maximum learning rate = ���� × 0.01

The learning rates were determined using the learning rate finder proposed by Leslie N. Smith

[46] as implemented in the fast.ai library v1. An illustration is provided in Figure 6b: before training,

a test is run whereby the learning rate is increased for each batch starting at a very low value of 1 × 10−7.

Sensors 2020, 20, 6703 8 of 14

The resulting loss vs. learning rate curve is then plotted. The curve usually shows a steady loss for

low learning rates, a decrease for the optimal learning rate range, and a steep increase for learning

rates that are too high. Through empirical tests, we found that learning rates in the mid-range of the

decreasing part yielded the best results for the combination of the U-Net and Ranger optimizer. To

obtain robust estimates, we repeated the learning finder five times and took the median suggested

learning rate. Using this procedure, we chose an optimal learning rate for each model–parameter

combination. The batch size was set to eight for all experiments.

2.7. Evaluation

We used the Sørensen–Dice coefficient (SDC) as well as the mean intersection over union (mIoU)

as scalar metrics to rate the segmentation performance.

mIoU =
TP

TP + FP + FN
 (4)

Again, TP, FP, and FN were all calculated with respect to pixel values. In order to obtain robust

estimates of model performance, we used a 5-fold random permutation cross validation for each

scenario/parameter setting. Thereby, the data were randomly split five times, with 95% training and

5% validation data and a model was trained and evaluated on each split. The same splits were used

for all models to increase comparability. The resulting statistics (i.e., mean and standard deviation)

were used for comparison.

One issue when evaluating the model on human-labeled data is that the labels are not perfect

(i.e., there is some variance in the labels). In order to get an optimistic estimate on this human-induced

label-noise, we had three different people label the same ten images three times. By choosing a small

number of images, we tried to exclude the influence of fatigue. All labelers were told to work with

great care and that the results would be used to train our model. We then calculated the mean SDC

and mIoU between the labels created by different people at different times. We thus calculated a

mean SDC of 0.97 ± 0.04 as well as a mean mIoU of 0.94 ± 0.7.

While scalar metrics play an important role in model evaluation, assessing the performance with

a single value can hide important aspects that hinder the model’s application. Furthermore, the target

segmentation masks used here for training and evaluation were rather coarse, limiting the

expressiveness of SDC and mIoU metrics. As an additional sanity check, we hence applied each

model to three different videos of experiments with the same material. We then tested if the models

correctly predicted similar contact area curves across all three videos. We also tested the repeatability

of our approach by evaluating the similarity of the predicted curves across the 5-fold random

permutation cross validation. The contact area was thereby calculated by fitting the largest contour

in the segmentation mask and calculating the corresponding area. Contour detection was

accomplished using the respective function of the OpenCV library [47] for Python (i.e., via the

algorithm proposed by Suzuki and Be) [48]. The contour area was calculated by counting the number

of pixels inside the largest contour.

2.8. Software and Hardware

All experiments were executed using the Python programming language [49]. To implement

and train neural networks we used Pytorch [50] and the fast.ai library v1 [30]. All experiments were

conducted on a Desktop PC using an NVIDIA Geforce 1080 Ti GPU (NVIDIA, Santa Clara, CA, USA).

The algorithm was deployed on an NVIDIA Jetson AGX Xavier development kit.

3. Results

3.1. Performance

Figure 7 shows the resulting scores for ResNet18 and ResNet34 with and without pre-processing.

It can be seen that increasing the depth of the pre-trained head did not yield any performance gains

Sensors 2020, 20, 6703 9 of 14

(i.e., the same results were achieved with both ResNet18 and ResNet34). Pre-processing also did not

influence performance.

Figure 7. Sørensen–Dice (blue) coefficient as well as mean intersection over union (red) for different

pre-trained heads with and without data pre-processing (prefix “pre_”). Scores (rounded to third

decimal point) are written into bars.

Figure 8 shows the example results of the sanity checks (i.e., the predicted contact area for each

frame of three test videos). All models produced very similar curves, mirroring the observed

similarity in SDC and mIoU. The variance between experiments was thus much larger than the

variance introduced by different model and data pre-processing choices.

Figure 8. Contact area change over frames for all models trained in this work, color coded by video.

Frames 0 to ~2400 show stage 1 (i.e., the spherical counterpart being slowly lowered into the rubber

sample). Frame~2400 to ~6000 show stage 2 (i.e., the rotary table being spun to create friction). This is

followed by stage 3 (i.e., the spherical counterpart being removed from the sample). The curves for

each video were strongly aligned (i.e., model choice has little impact on the resulting contact area

curves). Visible differences only occurred at the very beginning as well as at the transition between

stages 1 and 2.

Sensors 2020, 20, 6703 10 of 14

3.2. Failure Cases

In order to gain further insight into network performance, we visually examined the validation

samples with the highest loss. Figure 9 shows the nine validation samples with the highest loss over

all folds when using a pre-trained ResNet18 as the U-Net head without pre-processing.

Figure 9. Nine validation samples with the highest loss, when using pre-trained ResNet without pre-

processing. Target area is outline in red, predicted area in green.

The target area is outlined in red, the predicted area in green. It can be seen that most of the top

failure cases came from the initial stage of the experiment (i.e., lowering the spherical counterpart

into the rubber sample). This stage starts with a small contact area that increases as the counterpart

is lowered. We thus investigated the dependency between contact area and loss. While there was

considerable variance, we found significant negative Spearman rank correlation between loss and

target area as well as a cluster of high-contact-area samples with comparably high losses (Figure 10a).

We also examined if there was a systematic discrepancy between predictions and target values (i.e.,

if there is a tendency toward under- or over-estimating the contact area with respect to the target

values provided by the dataset). We thus calculated the relative error (��) between the predicted and

target area:

�� =
�� − ��

��

 (5)

where �� is the predicted area and �� is the target area, both calculated in terms of pixels. The

results did not indicate any tendency toward under- or over-estimating the target area.

Sensors 2020, 20, 6703 11 of 14

Figure 10. (a) Dependency between validation loss and contact area. We found weak, but significant

(p < 1 × 10−27) negative Spearman rank correlation as well as a cluster of high-contact-area samples

with comparably high losses (marked by red circle). (b) Contact area distribution in the training data.

(c) Distribution of the relative error between target area and predicted area.

4. Discussion

All models tested in this work reached similar performances of 0.96 SDC and 0.92 mIoU,

mirrored by very similar contact area curves when applied to three example videos. Since these were

not the best possible values, it seems as if there is some type of performance bottleneck that could not

be overcome by using pre-trained residual networks with more layers or applying the

aforementioned pre-processing scheme. However, we found that, when applied to various videos

(not just the ones used for aforementioned sanity checks), the method produced satisfactory results

throughout (i.e., the predicted contact areas closely matched the visually observed contact areas). The

likely cause for this observation was imperfect labeling of the training data. Different parts of the data

were labeled by different annotators. One annotator labeled the data connecting a series of lines (i.e.,

the “Lasso”-tool), while one annotator simply drew ellipses that fit the estimated contact area as close

as possible. Neither of the techniques are completely accurate. Judging by visual examination when

applied to multiple videos, we found that the networks were able to extract the correct contact areas

despite this imperfect labeling.

Nevertheless, a few actual failure cases remained and further diminished the results. Looking at

the samples with the largest validation loss for all models, we found a prevalence of samples with

very low and very high contact areas. Figure 10a shows the dependency between the target contact

area and validation loss. There was a significant (p < 1 × 10−27) negative Spearman rank correlation

between the contact area and loss. However, the high variance suggests that there are other important

factors at play. Furthermore, there was a cluster of high contact area samples with comparably high

loss. Examining the contact area distribution in the dataset, we could identify a likely reason for this,

as these cases were less well represented in the data. Adding such samples could hence further

improve the quality of the results.

It should also be noted that contact area segmentation, while an important step, is not sufficient

to correctly calculate the contact area in terms of mm2. In order to fully utilize the setup, we also had

to account for image distortions due to the spherical counterpart. This will hence be one of the main

areas for future improvements.

Finally, we would like to note, that while there were various fringe cases, contact area

segmentation as discussed in this work could likely also be solved by the clever combination of

methods from “classical” computer vision. The main advantage of using CNNs is that excellent

results can be achieved while the implementation effort shifts from algorithm development toward

dataset creation, a task that can be solved by a much broader part of the population. Although we

encountered difficulties regarding training stability, we think that as these methods are increasingly

applied to industrial problems, more stable default approaches will emerge. Solving computer vision

Sensors 2020, 20, 6703 12 of 14

problems would thus become a lot more accessible, without the need for hiring specialists. Therefore,

the development of such methods is an important part of our future research.

Author Contributions: Conceptualization, B.S. and S.B.; methodology, B.S., S.B., and D.P.; software, B.S.;

validation, B.S. and S.B.; formal analysis, D.P. and M.F.; investigation, B.S. and S.B.; resources, S.B. and D.P.; data

curation, S.B. and B.S.; writing—original draft preparation, B.S.; writing—review and editing, S.B. and M.F.;

visualization, B.S.; supervision, M.F. and D.P.; project administration, D.P. All authors have read and agreed to

the published version of the manuscript.

Funding: This research used methods developed during the project “InspectionCopter” funded by the German

Federal Ministry of Economic Affairs and Energy (BMWi), grant number 16KN069933.

Acknowledgments: This work was carried out with rubber material provided by the Leibniz-Institut für

Polymerforschung Dresden e.V. The discussions and the support by Sven Wießner, Klaus Werner Stöckelhuber,

and René Jurk are gratefully acknowledged.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Persson, B.N.J.; Albohr, O.; Heinrich, G.; Ueba, H. Crack propagation in rubber-like materials. J. Physics:

Condens. Matter. 2005, 17, R1071–R1142, doi:10.1088/0953-8984/17/44/r01.

2. Greenwood, J.A.; Johnson, K.L. The mechanics of adhesion of viscoelastic solids. Philos. Mag. A 1981, 43,

697–711, doi:10.1080/01418618108240402.

3. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation.

In Proceedings of the Medical Image Computing and Computer-Assisted Intervention (MICCAI 2015),

Munich, Germany, 5–9 October 2015; pp. 234–241.

4. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016), Las Vegas, NV, USA, 27–30

June 2016; pp. 770–778.

5. Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen, E., Garcia, D., Wu, H. Mixed Precision Training.

arXiv 2017, arXiv:1710.03740.

6. Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image

database. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR

2009), Miami, FL, USA, 20–25 June 2009; pp. 248–255.

7. Touvron, H.; Vedaldi, A.; Douze, M.; Jégou H. Fixing the train-test resolution discrepancy: Fix efficient net.

arXiv 2020, arXiv:2003.08237.

8. Xie, Q.; Luong, M.-T.; Hovy, E.; Le, Q.V. Self-training with noisy student improves ImageNet Classification.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2020),

Seattle, WA, USA, 16–18 June 2020, 10684–10695.

9. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft

COCO: Common objects in context. In Proceedings of the European Conference on Computer Vision

(ECCV 2014), Zurich, Switzerland, 6–12 September 2014; pp. 740–755.

10. Zhang, H.; Wu, C.; Zhang, Z.; Zhu, Y.; Zhang, Z.; Lin, H.; Li, M. ResNeSt: Split-attention networks. arXiv

2020, arXiv:2004.08955.

11. Du, X.; Lin, T.-Y.; Jin, P.; Ghiasi, G.; Tan, M.; Cui, Y.; Le, Q.V.; Song, X. SpineNet: Learning scale-permuted

backbone for recognition and localization. In Proceeding of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR 2020), Seattle, WA, USA, 13–19 June 2020, 11589–11598.

12. Everingham, M.; Van-Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The PASCAL Visual Object Classes

Challenge 2012 (VOC2012) Results. Available online: http://www.pascal-

network.org/challenges/VOC/voc2012/workshop/index.html (accessed on 20 September 2020).

13. Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with Atrous separable

convolution for semantic image segmentation. In Proceedings of the European Conference on Computer

Vision (ECCV 2018), Munich, Germany, 8–14 September 2018; pp. 801–818.

14. Zhang, Z.; Zhang, X.; Peng, C.; Xue, X.; Sun, J. ExFuse: Enhancing feature fusion for semantic segmentation.

In Proceedings of the European Conference on Computer Vision (ECCV 2018), Munich, Germany, 8–14

September 2018; pp. 269–284.

Sensors 2020, 20, 6703 13 of 14

15. Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B.

The cityscapes dataset for semantic urban scene understanding. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR 2016), Las Vegas, NV, USA, 27–30 June 2016; pp. 3213–

3223.

16. Yuan, Y.; Chen, X.; Wang, J. Object-contextual representations for semantic segmentation. arXiv 2020,

arXiv:1909.11065.

17. Mohan, R.; Valada, A. EfficientPS: Efficient panoptic segmentation. arXiv 2020, arXiv:2004.02307.

18. Zhou, B.; Zhao, H.; Puig, X.; Xiao, T.; Fidler, S.; Barriuso, A.; Torralba, A. Semantic understanding of scenes

through the ADE20K dataset. Int. J. Comput. Vis. 2019, 127, 302–321, doi:10.1007/s11263-018-1140-0.

19. Zhang, X.; Xu, H.; Mo, H.; Tan, J.; Yang, C.; Ren, W. DCNAS: Densely connected neural architecture search

for semantic image segmentation. arXiv 2020, arXiv:2003.11883.

20. Hirasawa, T.; Aoyama, K.; Tanimoto, T.; Ishihara, S.; Shichijo, S.; Ozawa, T.; Ohnishi, T.; Fujishiro, M.;

Matsuo, K.; Fujisaki, J.; et al. Application of artificial intelligence using a convolutional neural network for

detecting gastric cancer in endoscopic images. Gastric Cancer 2018, 21, 653–660, doi:10.1007/s10120-018-

0793-2.

21. Shichijo, S.; Nomura, S.; Aoyama, K.; Nishikawa, Y.; Miura, M.; Shinagawa, T.; Takiyama, H.; Tanimoto,

T.; Ishihara, S.; Matsuo, K.; et al. Application of convolutional neural networks in the diagnosis of

helicobacter pylori infection based on endoscopic images. EBioMedicine 2017, 25, 106–111,

doi:10.1016/j.ebiom.2017.10.014.

22. Rodrigues, P.; Antunes, M.; Raposo, C.; Marques, P.; Fonseca, F.; Barreto, J.P. Deep segmentation leverages

geometric pose estimation in computer-aided total knee arthroplasty. Heal. Technol. Lett. 2019, 6, 226–230,

doi:10.1049/htl.2019.0078.

23. Wen, S.; Chen, Z.; Li, C. Vision-based surface inspection system for bearing rollers using convolutional

neural networks. Appl. Sci. 2018, 8, 2565, doi:10.3390/app8122565.

24. Peng, Y.; Cai, J.; Wu, T.; Cao, G.; Kwok, N.; Zhou, S.; Peng, Z. A hybrid convolutional neural network for

intelligent wear particle classification. Tribol. Int. 2019, 138, 166–173, doi:10.1016/j.triboint.2019.05.029.

25. Chang, H.; Borghesani, P.; Peng, Z. Automated assessment of gear wear mechanism and severity using

mould images and convolutional neural networks. Tribol. Int. 2020, 147, 106280,

doi:10.1016/j.triboint.2020.106280.

26. Yu, S.Q.; Dai, X.J. Wear particle image segmentation method based on the recognition of background color.

Tribol. (Beijing) 2007, 27, 467.

27. Liu, H.; Wei, H.; Li, J.; Yang, Z. The segmentation of wear particles images using j-segmentation algorithm.

Adv. Tribol. 2016, 2016, 1–10, doi:10.1155/2016/4931502.

28. Deng, Y.; Manjunath, B. Unsupervised segmentation of color-texture regions in images and video. IEEE

Trans. Pattern Anal. Mach. Intell. 2001, 23, 800–810, doi:10.1109/34.946985.

29. Wang, H.; Yuan, F.; Gao, L.; Huang, R.; Wang, W. Wear debris classification and quantity and size

calculation using convolutional neural network. In Proceedings of the International 2019 Cyberspace

Congress, CyberDI and CyberLife, Beijing, China, 16–18 December 2019; pp. 470–486.

30. Howard, J.; Gugger, S. Fastai: A Layered API for deep learning. Information 2020, 11, 108,

doi:10.3390/info11020108.

31. Buslaev, A.; Iglovikov, V.I.; Khvedchenya, E.; Parinov, A.; Druzhinin, M.; Kalinin, A.A. Albumentations:

Fast and flexible image augmentations. Information 2020, 11, 125, doi:10.3390/info11020125.

32. DeVries, T.; Taylor, G.W. Improved regularization of convolutional neural networks with cutout. arXiv

2017, arXiv:1708.04552.

33. Shi, W.; Caballero, J.; Huszar, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-time single

image and video super-resolution using an efficient sub-pixel convolutional neural network. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016), Las Vegas,

NV, USA, 27–30 June 2016; pp. 1874–1883.

34. Tan, C.; Sun, F.; Kong, T.; Zhang, W.; Yang, C.; Liu, C. A Survey on deep transfer learning. In Proceedings

of the Artificial Neural Networks and Machine Learning (ICANN 2018), Rhodes, Greece, 4–7 October 2018;

pp. 270–279.

35. Nair, V.; Hinton, G.E. Rectified linear units improve restricted Boltzmann machines. In Proceedings of the

27th International Conference on Machine Learning (ICML 2010), Haifa, Israel, 21–24 June 2010; pp. 807–

814.

Sensors 2020, 20, 6703 14 of 14

36. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on

ImageNet classification. In Proceedings of the IEEE International Conference on Computer Vision (ICCV

2015), Santiago, Chile 7–13 December 2015; pp. 1026–1034.

37. Riba, E.; Mishkin, D.; Ponsa, D.; Rublee, E.; Bradski, G. Kornia: An open source differentiable computer

vision library for PyTorch. In Proceedings of the IEEE Winter Conference on Applications of Computer

Vision (WACV 2020), Snowmass Village, CO, USA, 1–5 March 2020; pp. 3663–3672.

38. Ranger-Deep-Learning-Optimizer. Available online: https://github.com/lessw2020/Ranger-Deep-

Learning-Optimizer (accessed on 20 September 2020).

39. Liu, L.; Jiang, H.; He, P.; Chen, W.; Liu, X.; Gao, J.; Han, J. On the variance of the adaptive learning rate and

beyond. arXiv 2019, arXiv:1908.03265

40. Zhang, M.R.; Lucas, J.; Hinton, G.; Ba, J. Lookahead Optimizer: K steps forward, 1 step back. In Proceedings

of the 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada, 8–

14 December 2019; pp. 9597–9608.

41. Yong, H.; Huang, J.; Hua, X.; Zhang, L. Gradient centralization: A new optimization technique for deep

neural networks. arXiv 2020, arXiv:2004.01461.

42. Sørensen, T. A method of establishing groups of equal amplitude in plant sociology based on similarity of

species and its application to analyses of the vegetation on Danish commons. K. Dan. Videnskabernes Selsk.

1948, 5, 1–34.

43. Dice, L.R. Measures of the amount of ecologic association between species. Ecology 1945, 26, 297–302,

doi:10.2307/1932409.

44. Taghanaki, S.A.; Zheng, Y.; Zhou, S.K.; Georgescu, B.; Sharma, P.; Xu, D.; Comaniciu, D.; Hamarneh, G.

Combo loss: Handling input and output imbalance in multi-organ segmentation. Comput. Med Imaging

Graph. 2019, 75, 24–33, doi:10.1016/j.compmedimag.2019.04.005.

45. Wong, K.C.L.; Moradi, M.; Tang, H.; Syeda-Mahmood, T. 3D segmentation with exponential logarithmic

loss for highly unbalanced object sizes. In Proceedings of the Medical Image Computing and Computer

Assisted Intervention (MICCAI 2017), Quebec City, Canada, 11–13 September 2017; pp. 612–619.

46. Smith, L.N. A disciplined approach to neural network hyper-parameters: Part 1—Learning rate, batch size,

momentum, and weight decay. arXiv 2018, arXiv:1803.09820.

47. OpenCV. Available online: https://opencv.org/ (accessed on 28 August 2020).

48. Suzuki, S.; Be, K. Topological structural analysis of digitized binary images by border following. Comput.

Vis. Graph. Image Process. 1985, 30, 32–46, doi:10.1016/0734-189x(85)90016-7.

49. Van Rossum, G. Python programming language. In Proceedings of the USENIX Annual Technical

Conference, Santa Clara, CA, USA, 17–22 June 2007; p. 36.

50. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.;

Antiga, L.; et al. PyTorch: An imperative style, high-performance deep learning library. In Proceedings of

the 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada, 8–14

December 2019; pp. 8026–8037.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional

affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

