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Abstract: In recent years, integral imaging, a promising three-dimensional imaging technology,
has attracted more and more attention for its broad applications in robotics, computational vision,
and medical diagnostics. In the visible spectrum, an integral imaging system can be easily
implemented by inserting a micro-lens array between a image formation optic and a pixelated detector.
By using a micro-Fresnel Zone Plate (FZP) array instead of the refractive lens array, the integral
imaging system can be applied in X-ray. Due to micro-scale dimensions of FZP in the array and
current manufacturing techniques, the number of zones of FZP is limited. This may have an important
impact on the FZP imaging performance. The paper introduces a simulation method based on the
scalar diffraction theory. With the aid of this method, the effect of the number of zones on the FZP
imaging performance is numerically investigated, especially the case of very small number of zones.
Results of several simulation of FZP imaging are presented and show the image can be formed by a
FZP with a number of zones as low as 5. The paper aims at offering a numerical approach in order to
facilitate the design of FZP for integral imaging.
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1. Introduction

Integral imaging, a three-dimensional imaging approach first proposed by Lippmann in 1908 [1],
has been developed rapidly in the past two decades with the advances both in micro-scale optical
component and sensor fabrications, and in digital technology. The overall concept of integral imaging
consists in capturing simultaneously the spatial and angular information of the light ray intersecting
on the photosensor, the so-called 4D light field. The captured 4D light field allows us to refocus
the image on different planes and render a 3D model of the sample with one single exposure [2,3].
The application of integral imaging in X-ray can become an important complement to X-ray computed
tomography (CT). Nowadays, CT is one of the most common 3D imaging technique in clinical
diagnosis, providing high accurate information of internal structure and guiding medical treatment.
The principle of CT is rendering 3D image of the sample from multiple projections. It is apparent that
large projection number will bring a better reconstruction quality [4]. Unfortunately, at the meantime
it will deliver a high radiation dose for the patients and increase the probability of cancer [5,6].
Compared to CT, the X-ray integral imaging system has the prospect of reconstructing 3D images from
one capture, and consequently leads to a lower dose and a short exposure time.

Various integral imaging acquisition systems have been proposed, such as camera arrays [7],
micro-lens arrays [8], and amplitude masks [9]. For visible light, the design of placing a micro-lens
array (MLA) in the front of conventional camera’s photosensor is widespread, in view of the diversity
and accessibility of micro-lens array. However, the refractive index is very close to one for all materials
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at X-ray wavelengths, leading to a extremely long focal distances at kilometer scale for a single lens
and a low numerical aperture ([10] pp. 66–71). Therefore, for the application on X-ray, we must search
alternative optical components for the MLA.

The Fresnel Zone Plate (FZP), relying on the diffraction to realize X-ray focusing, is widely used
and has been demonstrated to achieve a high spatial resolution [11]. The FZP array is thus available
alternative to refractive lens array in X-ray imaging [12–14]. FZP imaging performance is dominated
by its geometry; therefore, its number of zones is one of the most important structural parameters.
For a desired focus, the larger the number of zones is, the higher resolution FZP can attain. Yet, due to
micro-scale dimensions of FZP in the array of integral imaging system and current manufacturing
techniques, the number of zones of FZP is limited.

Therefore, this paper attempts to numerically investigate the impact of FZP number of zones on
its imaging performance, especially the case of very small number of zones. Accordingly, a simulation
method based the scalar diffraction theory is introduced in this paper. Several simulation results of
FZP imaging are presented and discussed, then compared to ideal refractive lens.

2. Method

A Fresnel zone plate is a diffractive optic, its alternating transparent and opaque zones make the
incident light constructively interfere at the desired focus. The FZP’s focusing properties can be analyzed
by the scalar diffraction theory. Figure 1 represents a generalized schematic of a FZP optical system.

Figure 1. Generalized schematic of Fresnel Zone Plate (FZP) optical system: the point source P on
the plane (ξ, η) emitting a spherical wave is intercepted and diffracted by the FZP on the plane (x, y).
The image of the source is formed on the plane (u, v). z1 and z2 represent respectively the source–FZP
distance and the FZP–image distance.

Considering a point source P(ξ,η), whose wave field distribution at a distance~r is given by

U0 =
ei~k·~r

~r
(1)

Assuming the point source illuminates the entire FZP at distance z1 on the plane (x, y), with the
paraxial approximation and neglecting a pure phase factor, the incoming wave field Uzp at the plane
of FZP becomes

Uzp =
1

iλz1
exp

{ ik
2z1

[(x− ξ)2 + (y− η)2]
}

(2)
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After passing through the FZP, the new wave field U′zp distribution can be written as

U′zp = t(x, y)×Uzp (3)

where t(x, y) is the transmission function of the FZP.
Then according to Huygens–Fresnel principle, at a distance z2 behind the FZP, the wave field

distribution at the image plane (u, v) is given by

Uzp =
1

iλz2

∫∫
U′zp × exp

{ ik
2z2

[(u− x)2 + (v− y)2]
}

dxdy (4)

On account of the linearity of the optical system [15], we can find the impulse response h(ξ, η, u, v)
of the FZP, also known as the Point Spread Function (PSF), by setting ξ = η = 0 in the above expression.
The PSF is thus expressed as

h(0, 0, u, v) =
z2

z1
exp [

ik
2z2

(u2 + v2)]

×
∫∫

t(x, y) exp [
ik
2
(

1
z1

+
1
z2
)(x2 + y2)] exp [− ik

z2
(ux + yv)] dxdy (5)

The integral term of the impulse response expression can be considered as a Fourier transform
with appropriate substitution of variables, yielding

h(0, 0, u, v) =
z2

z1
exp [

ik
2z2

(u2 + v2)]

×F
{

t(λz2x′, λz2y′) exp { ik
2
(

1
z1

+
1
z2
)[(λz2x′)2

+ (λz2y′)2
]}
}

(6)

with x′ = x
λz2

, y′ = y
λz2

.
The transformation of the expression in the previous step allows performing an efficient numerical

calculation with the help of Fast Fourier Transform (FFT) algorithm. Finally, the image Img(u, v) can be
obtained by the convolution of the image predicted by geometrical optics img(u, v) with the impulse
response h(ξ, η, u, v) [16]. It is worth noting that the application of the PSF on an image depends on
the degree of coherence of the source. At the moment, we only consider the fully incoherent cases:

Img(u, v) = |h(ξ, η, u, v)|2 ⊗ |img(u, v)|2 (7)

According to the convolution theorem, Equation (7) can be further converted to

Img(u, v) = F−1
{
F{|h(ξ, η, u, v)|2} × F{|img(u, v)|2}

}
(8)

This conversion reduces the complexity of the computation and allows greatly increasing the
computation speed thanks to the use of FFT.

3. Results

The proposed method is flexible for the definition of FZP and the adjustment of imaging system
structure, allowing to study the effects of different parameters on the FZP imaging performance.
For the following part, the energy of source is set to 11 keV. Several examples were performed and
discussed in this section in order to validate the simulation approach and, in particular, to explore the
impact of the FZP number of zones.
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3.1. FZP Multiple Foci Imaging

A FZP has more than one diffraction orders, noted m, generating multiple focal spots. The focal
length corresponding to the different orders is given by

fm =
f
m

(9)

for diffractive orders m = 0,±1,±3,±5 . . . and f is the first order focal length ([10] pp. 337–348).
This imaging characteristic of FZP can be well simulated by the method previously described.

We simulate a point source situated at a distance of 100 f to approximate the parallel beam incident on
a thin FZP. The transmission function of the FZP can be defined as

t(r) =

{
1, rn < r < rn+1

0, else
(10)

where the nth zone radius rn ≈
√

n f λ, λ is the wavelength of the source and n is the zone
sequence number.

The simulated PSF at f is shown in Figure 2. Several orders appear: the +1st order focal spot,
the 0th order undiffracted beam, the 3rd-order overlapped with the −1st order, etc. By the similar
triangles and the Equation (9), the radius Rm of each order circle at f is given by

Rm =

{
(m− 1)R, m > 0

(1−m)R, m ≤ 0
(11)

where R is the radius of FZP.

Figure 2. (a) False color image in logarithmic scale of the intensity distribution at the first focal plane
of a FZP. The parameters of the FZP are focal length f = 8.98 cm, radius r = 20 µm, and number of
zones N = 40. The point source was set at an energy of 11 keV and situated at 100 f prior the FZP.
(b) Central row intensity profile of panel (a): the radii of 0th order, 3rd/−1st order, and 5th/−3rd order
are, respectively, 20 µm, 40 µm, and 80 µm.
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Except the 1st order focal spot, the ratio of radii between 0th, 3rd/−1st, and 5th/−3rd order
measured from the Figure 2 is 1:2:4. The measured ratio of radii between different orders agrees well
with that calculated from Equation (11).

Further tests have been achieved by comparing the output of our model with theoretically
calculated PSF of the FZP with different number of zones from 5 to 200 (Figure 3). For this calculation,
a point source that emits a pure spherical wave is placed at 3 f from the FZP. Three examples of
numerical outputs with different number of zones N are displayed on Figure 3a–c. The variation of the
PSF spot radius (the distance between the central maximum and the first minimum) versus the number
of zones N is displayed in Figure 3d. When N increases, the PSF spot radius decreases. The theoretical
spot radius calculated by the classical formula set by the Rayleigh criterion [17] (see Equation (12)) is
reported and compared to the numerical results.

theoretical spot radius =
1.22λ

D
× z2 (12)

where D is the FZP diameter and z2 is the distance between the FZP and the image plane.
In general, the numerical results agree very well with theory, with a error within 2.4%. The errors

are introduced not only from measurement bias, but also from the application of FFT in computational
implementation. The errors and accuracy of numerical simulation due to the discrete sampling of FFT
have been discussed in more detail in [18,19].

Figure 3. (a–c) False color images of simulated Point Spread Function (PSF) on a logarithmic scale,
when the number of zones N equals to 10, 40, and 100. (d) Theoretical and simulated PSF spot radius
versus N.
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3.2. Variation of Detection Distance

After these conclusive tests of our numerical model, we performed optical simulation of the full
model by imaging a classical target. Figure 4 displays a series of numerical images of the 1951 USAF
resolution test chart before, at, and after the image plane. These numerical images are formed by the
FZP with the same parameters as in Figure 2. The object to FZP distance is 3 f , leading to the creation
of an image at 1.5 f . From Figure 4, we can clearly see the focusing process of FZP along the distance,
i.e., the improvement of the image contrast and its worsening, as well as the halo around the 1st order
image caused by the other diffraction orders. We may also observe the expected increase of the image
size for increasing FZP–detector distance.

Figure 4. False color numerical images of a USAF 1951 target are recorded at various distances from
the image plane in focus (called focus). The recorded distance is referred to the focal plane under each
image. The focus is taken as the origin, and the negative and positive signs, respectively, represent the
directions closer and further to the FZP. The FZP has the same parameters for Figure 2. The object to
FZP distance is 3 f and leading to the creation of an image on focus is at 1.5 f . Each image dimension is
120× 120 µm2.

3.3. Lateral Resolution of Number of Zones on the Image Formation

To our best knowledge, the quality of the image formed by a FZP versus the number of zones
has never been studied. In order to perform this study, a set of incoherent images of the test chart
were simulated for various numbers of zone N. The numerical images are carried out with the same
FZP as well as the same geometry as for Figure 4. The results are displayed in Figure 5a–e and the
part of interest on the test chart is zoomed in Figure 5f. It is apparent from Figure 5a–e that as N
increases, the image becomes sharper. As the radius of FZP is meanwhile broadened, the field of view
is enlarged.

The variation of image quality with the number of zones is more evident in the intensity profile
plot of bars. For example, the intensity profile of three groups of bars on the test chart (the blue-,
orange-, and green-colored parts in Figure 5f are, respectively, named as elements 2.2, 2.3, and 2.4 in
the following text) are plotted in Figure 6, varying the number of zones N. For the ease of comparison
of the profile shape, the intensity plots have been normalized. While N increases, the plot shape of a
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bar approaches to a rectangle,which indicates the decrease in the PSF spot size (see in the inserts of
Figure 6).

Figure 5. (a–e) False color numerical images of the USAF 1951 test target imaged by FZP with different
number of zones. The object—FZP distance is 3 f and the FZP–image distance is 1.5 f . Each image
dimension is 200× 200 µm2. (f) Zoomed part of interest on the test chart: for the following part,
the blue, orange and green colored elements of bars in group 2 are respectively noted as elements 2.2,
2.3, and 2.4.

Figure 6. Intensity profile plots of images in focus with various numbers of zones: the images are
simulated under the same conditions of Figure 4. Three zoomed parts of plot corresponding to different
groups of bars are given below the main plot.
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3.4. Quantification of the Effect of Number of Zones on the Image Formation

In order to quantify the evolution of the image quality versus the number of zones, several criteria
might be use. One of the classical criteria, the contrast is chosen in this paper. It is defined as

Contrast =
Imax − Imin
Imax + Imin

(13)

with Imax and Imin representing the highest and lowest intensities in a studied zone.
The contrast of three sets of bars on the image of USAF1951 target (see in Figure 5f), respectively,

with the width 1.36 µm, 1.18 µm, and 0.99 µm on the image plane were measured in the numerical
images for different N. The results are plotted in the Figure 7. The contrast plots increase very quickly
for the small N then evolve slowly. The trend of the contrast plots is consistent with the variation
of the theoretical resolution of FZP with N. Moreover, the stabilization starting points vary with the
width of bars.

Figure 7. Contrast plots of different width bars versus number of zones N:the images are simulated
under the same conditions of Figure 4, the studied bars of test chart are shown in Figure 4f.

Compared to Figure 3d, the contrast plots reach stabilization with a larger N than that
corresponding to the needed PSF spot size (equal to the width of bar). Taking the bars of Element
2.3 as an example, the PSF spot size is already below the bars width when N = 7, but the contrast
plot roughly reaches stabilization at N = 27. This delay of N is due to the fact that the stabilization of
contrast requires the complete separation of points without overlap, which is stricter than the Rayleigh
criterion used in Equation (12). Another remark in Figure 7 is the contrast value, whose maximum is
as low as 0.2. In order to study its origin, we modeled the image formation with a theoretical perfect
refractive lens. Supposed the FZPs in Figure 7 can be replaced by the refractive lenses with the same
numerical aperture (NA), the transmission of refractive lens tLens(x, y) is defined as

tlens(x, y) =

exp[− ik
2 f (x2 + y2)],

√
x2 + y2 < R

0, else
(14)

where R and f are the radius and focal length of lens, respectively.
A group of images formed by the refractive lens is simulated under the same structure of Figure 7,

displayed in Figure 8. For the ease of comparison with Figure 7, the NA of refractive lens is written as
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a function of the number of zones. The contrast value measured from refractive lens images can reach
a maximum of 0.94, much higher than that of FZP images (see in Figure 9). Moreover, the contrast
plots of refractive lens are more continuous and smoother. This is because the first order image of FZP
overlaps with the other orders, resulting in a brightened and complex background.

Figure 8. False color numerical images of the USAF 1951 test target imaged by refractive lens. The NA
of the refractive lens equals to the NA of the FZP when the number of zones of FZP is 5, 20, 40, 60,
and 100. Each image dimension is 200× 200 µm2.

Figure 9. Contrast plots measured from the images formed by refractive lens: For the sake of clarity,
the horizontal axis displays the number of zones of the FZP having the same NA than the refractive
lens. Moreover, the images are simulated under the same conditions as for Figure 5.

4. Conclusions

The paper aims at offering a numerical approach in order to facilitate the design of FZP for a
integral imaging system in X-ray. In this paper, a simulation method based on the scalar diffraction has
been introduced. The presented method is able to simulate the images formed by FZP with different
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parameters and at different position. The effect of the number of zones on image formation has been
discussed, especially the case of very small number of zones. The results has shown that surprisingly
image can be formed with a number of zones as low as 5. However, the usable contrast starts around
20 zones. In practice, experimental devices such as center beam stopper, order sorting aperture and
Kohler illumination systems are commonly used to remove orders other than the 1st one of FZP.
Therefore, the contrast can be further enhanced than the simulation, allowing the FZP to be used with
very small number of zones. Future study can be extended to the axial effect of the number of zones,
the formation of images in the case of partially to fully coherent beam and the application on the full
set-up of integral imaging system.
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