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Abstract: Landslide early warning systems (EWSs) have been widely used to reduce disaster losses.
The effectiveness of a landslide EWS depends highly on the prediction methods, and it is difficult
to correctly predict landslides in a timely manner. In this paper, we propose a real-time prediction
method to provide real-time early warning of landslides by combining the Kalman filtering (KF),
fast Fourier transform (FFT), and support vector machine (SVM) methods. We also designed a
fast deploying monitoring system (FDMS) to monitor the displacement of landslides for real-time
prediction. The FDMS can be quickly deployed compared to the existing system. This system also
has high robustness due to the usage of the ad-hoc technique. The principle of this method is to
extract the precursory features of the landslide from the surface displacement data obtained by the
FDMS and, then, to train the KF-FFT-SVM model to make a prediction based on these precursory
features. We applied this fast monitoring and real-time early warning system to the Baige landslide,
Tibet, China. The results showed that the KF-FFT-SVM model was able to provide real-time early
warning for the Baige landslide with high accuracy.

Keywords: fast monitoring; early warning; real-time; landslide

1. Introduction

Landslide hazard is one of the most common geological hazards in the natural world. They are
also directly affected by human engineering activities. China is one of the countries most affected by
landslide disasters in the world [1]. After the Ms 8.0 Wenchuan earthquake on 12 May 2008, tens of
thousands of landslides over a broad area in west China were triggered. Some of these buried large
areas of the town and dammed the rivers [2]. Thus, how to reduce property damage and casualties has
always been an urgent problem. Landslide early warning systems (EWSs), which have already been
working in many places of the world, were developed to fulfil this work [3–7].

According to the definition of the United Nations International Strategy for Disaster Reduction
(UNISDR 2009), an EWS is defined as “the set of capacities needed to generate and disseminate timely
and meaningful warning information to enable individuals, communities and organizations threatened
by a hazard to prepare and to act appropriately and in sufficient time to reduce the possibility of harm
or loss.” Referring to the above definitions, an efficient landslide EWS should comprise of four main
sets of actions [8]: (1) monitoring activities, i.e., data acquisition, transmission, and maintenance of
the instruments; (2) analysis and modelling of the phenomenon; (3) warning, i.e., the dissemination
of simple and understandable information to the exposed elements; and (4) an effective response of
the elements exposed to risk and the risk knowledge. Among the four sets of actions, (1) and (2) are
critical for the successful early warning of an EWS.

Sensors 2020, 20, 6619; doi:10.3390/s20226619 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-1347-7030
https://orcid.org/0000-0001-6965-1256
http://www.mdpi.com/1424-8220/20/22/6619?type=check_update&version=1
http://dx.doi.org/10.3390/s20226619
http://www.mdpi.com/journal/sensors


Sensors 2020, 20, 6619 2 of 20

In the regional scale landslide EWSs, a statistical method is used to determine the warning
threshold. These landslide EWSs monitor the rainfall and make a classification early warning according
to the rainfall threshold and the soil moisture [1,9–14]. Regarding a single landslide EWS, an early
warning is made according to the induced factors and movement characters of the landslide [15].
Different instruments are used in single landslide EWSs to measure the induced factors and movement
characters, for example, an inclinometer for tilt [16,17], fiber Bragg grating for fissures [18], an acoustic
emission instrument for inner displacements [19,20], Ground-Based Synthetic-Aperture Radar,
LiDAR(Light Detection and Ranging), total station, GPS and photogrammetric techniques for surface
displacements [15,21–24], a geoelectrical monitor for soil moisture [25], and a wire extensometer for
rock fracture [26]. These measuring data can be used to make early warnings with a single model or
integrated models [27,28]. The majority of these models are derived from geological models. They
usually make a classified early warning which is a qualitative analysis [18,26–29].

In this paper, we attempt to use the precursor features, specifically the vibration frequency, to carry
out a quantitative analysis of landslide prediction. The Kalman filtering (KF)-fast Fourier transform
(FFT)-support vector machine (SVM) model is proposed, which can build a grey box model for real-time
early warning based on displacement data. The KF-FFT-SVM model uses Kalman filtering (KF) to
make predications, fast Fourier transform (FFT) to extract precursor features, and the support vector
machine (SVM) method to classify the precursor features. To ensure the KF-FFT-SVM model worked
well, we fed it with real-time monitoring data. This required a stable and reliable monitoring system,
which is especially important in the case of an emergency. In practice, most of the existing landslide
monitoring systems are susceptible to breaking down in the field environment [30]. The measuring
station was built with concrete which needs several days to harden, so it usually takes some more time
to build a monitoring system, which therefore cannot immediately begin monitoring if a landslide
suddenly occurred.

Thus, the FDMS was designed. It can increase the integration and reliability of the monitoring
system and can be deployed immediately after a sudden landslide. In the FDMS, ad-hoc network
technology is used to improve the robustness of the monitoring network and the measuring equipment
is special designed to make it able to be installed quickly. The FDMS was applied in the Baige landslide,
Tibet. In the FDMS, Beidou receivers, which are based on China’s Beidou Navigation Technology,
and crack meters were used to monitor the displacements of the landslide. The KM-FFT-SVM model
was trained by the displacement data, and the landslide precursor features were extracted successfully.
Then, we used the testing data to verify the model. The results demonstrated that the KM-FFT-SVM
model can make a real-time precursor predication with high accuracy and good practicability.

2. Fast Deploying Monitoring System

2.1. Traditional Monitor System

The structure of a traditional landslide monitoring system is shown in Figure 1. In Figure 1,
all kinds of monitoring sensors are connected with the data transfer unit (DTU) by wires, and they
communicate with each other in accordance with the Modbus protocol or SDI-12 protocol. The DTU,
GPRS/3G/4G communication module, and power supply system constitute a remote measurement
unit (RTU). The monitoring data are sent to the mobile communication network by the communication
module and transmitted to the control center through the public network. In this way, the system
robustness is poor. If the GPRS/3G/4G communication module of one monitoring point breaks down,
all the data from the sensors under this monitoring point will not be submitted, which means a partial
paralysis of the monitor system. Therefore, a more flexible and stable networking structure is required
to improve the robustness of the traditional landslide monitoring system. This is the adaptive landslide
monitoring system.
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Figure 1. Traditional landslide monitoring system.

2.2. Composition of FDMS

An FDMS is an adaptive landslide monitoring system that is based on an ad-hoc network.
An ad-hoc network is more secure, robust, stable, and reliable when compared with traditional
bus and star networks. Figure 2 is the typical structure of a FDMS. In Figure 2, each station is
composed of several sensors, a data acquisition instrument, and an ad-hoc router. The ad-hoc routers
have GPRS/3G/4G communication modules and form a wireless local ad-hoc network using LoRa
technology. They communicate with each other by multi-hops and can also act as access point (AP)
nodes that have the ability to gain access to the external network. In the wireless local ad-hoc network,
when one node breaks down, the network will find new paths to skip this node through a routing
algorithm, which improves the network’s robustness. The FDMS has three working modes. One is
the Normal mode as shown in Figure 3a; another is the Communication fault mode as shown in
Figure 3b. In this mode, if the GPRS/3G/4G communication module in some of the ad-hoc routers
breaks down, the system finds a new routing path to send the data. The third is the Beidou satellite
communication mode as shown in Figure 3c. This mode means that if the GPRS/3G/4G communication
modules in all of the ad-hoc routers break down, then the Beidou satellite communication system
will be started. With the advantages mentioned above, the FDMS is highly robust and works well in
field environments, especially in places where there are no mobile signals, or the signals are weak.
Furthermore, the measuring equipment is specially designed to make it deployed easily and quickly,
as described in more detail below.
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2.3. FDMS in Baige Landslide

In the early morning of 11 October 2018, a large scale landslide occurred on the Tibetan Bank of
the Jinsha River at the junction of Baige Village, Boro Township, Jiangda County, Tibet Autonomous
Region and Zeba Village, Ronggai Township, Baiyu County, Sichuan Province. The landslide blocked
the Jinsha River and formed a barrier lake. Then, late on November 3, a second landslide occurred and
blocked the Jinsha River again. The location of the landslide is shown in Figure 4. Figure 5 shows a
photograph of the Baige landslide and the details of the sliding surface. In Figure 5, a fault extending
along the road at the back of the landslide can be seen. On the top of the landslide, the white/green
cataclastic serpentine is exposed, and its thickness is about 300 m. The serpentine is mainly located in
the up area of the landslide, between the elevations of 3400–3700 m. Below 3400 m, Gneiss is exposed
(Figure 6). The dip direction and the dip are 235◦ and 40◦, respectively. There are two structural planes
in the side of the landslide. The dip direction and the dip of one plane are from 60◦ to 80◦ and from
75◦ to 85◦, respectively. The other are 100◦ to 115◦ and 80◦. Because of the two structural planes,
which formed during the landslide, a wedge-shaped groove which is thick in the middle and thin in
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the sides was formed. The average slope length of the landslide was about 790 m and the width was
about 500 m. The average thickness of the landslide was about 50 m and the maximum thickness
may have been 80 m (Figure 5). In the first landslide, there were approximately 2.2 × 107 m3 of rock
and soil that fell into the Jinsha River and built a dam in the valley. Then, a barrier lake was formed
by the dam (Figure 5). The length of the barrier lake was about 1100 m, and the width was about
500 m. The maximum height of the dam over the original river surface was about 85 m. The second
landslide occurred at the back edge of the first landslide. In this case, the total volume of the rocks
falling down were about 8.5 × 106 m3. The unstable rock mass scraped the broken rock mass along the
way, which added 0.8 × 106 m3 more rock falling down. The rocks blocked up the Jinsha River again
and increased the height of the dam formed in the first landslide by 50 m [31]. The barrier lake formed
by the two landslides was a great threat to the people living in the lower reaches of the Jinsha River.

The Baige landslide occurred suddenly. There were no monitoring devices working there
previously. There were also no mobile signals. A monitoring system needed to be set up immediately
to ensure the safety of the emergency rescue workers dredging the barrier lake. Thus, the FDMS was
applied there. The locations of the monitoring equipment are shown in Figure 7. BD1, BD2, BD3,
and BD4 represent the Beidou receivers, while CM1, CM2, CM3, and CM4 represent the crack meters.
The equipment was located in the back edge of the slope to monitor the movements of the landslide.
In this FDMS, the surface displacements were measured by Beidou receivers and the crack widths by
the crack meters. The sampling time step was 10 min.

The Beidou receivers were Northdoo global navigation satellite system (GNSS) devices. Their plane
accuracy is (8 + 1 ppm) mm, and the elevation accuracy is (15 + 1 ppm) mm. This is much better
than the differential global position system (DGPS) working model, which has a plane accuracy of
(3 + 1 ppm) mm, and an elevation accuracy of (5 + 1 ppm) mm. The differential working model
requires a fixed base station on the stable rocks 1 km away from the moving Beidou receivers, as shown
in Figure 7. The installation of the Beidou receivers is shown on the left side of Figure 8a.

The traditional method is to fix the supporting stake with concrete, but it takes several days for
the concrete to harden. Here, no concrete was used. The Beidou receiver supporting stake was fixed
on a steel plate, which was nailed to the bottom of a 1 m deep hole. To make the foundation firmer,
the metal battery box was put on the steel plate as a counterweight. This installed method is time
saving comparing to the traditional method. The Beidou receiver is designed in accordance with the
IP67 (ingress protection rating 67). It is dust-proof, rain-proof, and snow-proof.

The installation of the crack meter is shown on the left side of Figure 8b. The crack meter was
connected to a metal pole which was buried 1 m deep in the slope at one side of the ground crack.
A pull wire drawn from the crack meter was fixed on the metal pole at the other side of the ground
crack. The pull wire could extend as the ground crack expands, and so the width of the crack can be
determined by measuring the change of the pull wire. The measuring range of the crack meter was
5 m, and the accuracy was 0.5 mm.
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3. Early Warning Model

3.1. Kalman Filtering

Kalman filtering (KF), which was put forward by R.E. Kalman in 1960, is a linear recursive filtering
method based on linear unbiased minimum variance estimation theory. It combines the concept of
state space with filtering theory. The cores of this method are the transition equation and the recursive
formula. With them, new state and observation values can be predicted according to the estimated
value at a previous moment and the observation value at the present moment.

Given a discrete time system, X1, X2, X3, · · · ,Xk are the system state vectors at kTs, where Xk ∈ Rn,
Ts is the measuring interval of the system. We defined Uk as the system control input vector and Wk as
incentive noise vector, and the state transition equation is described in Equation (1).

Xk = AXk−1 + BUk + Wk (1)
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Defining Zk ∈ Rn as the observation vector and Vk as the observation noise vector, we obtained
the observation formula:

Zk = HXk + Vk. (2)

A, B, H is the state transition matrix, and Wk, Vk are the independent and normal distribution of
white noise:

Wk ∼ N(0, Q). (3)

Vk ∼ N(0, R). (4)

In the state estimating of a discrete time system, Formula (1) is used to obtain X̂ j|k, which is the
best estimating value of X j at Ts, and there are three situations:

(a) When j = k, X̂ j|k is the optimum filtering of Xk.

(b) When j > k, X̂ j|k is the optimum predicting of Xk.

(c) When j < k, X̂ j|k is the optimum smoothing of Xk.

The recursive formula can be described as time update process and state update process. The time
update process:

X̂k|k−1 = AX̂k−1|k−1 + BUk−1 (5)

Pk|k−1 = APk−1|k−1AT + Q (6)

where P is the error estimating covariance matrix:

Ek = Xk − X̂k (7)

Pk = E
(
EkET

k

)
. (8)

The state update process:

Kk = Pk|k−1HT(HPk|k−1HT + R)
−1

(9)

X̂k|k = X̂k|k−1 + Kk
(
Zk −HX̂k|k−1

)
, (10)

Pk|k = (I −KkH)Pk|k−1 (11)

The computational process of the KF algorithm is shown in Figure 9.
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3.2. Fast Fourier Transform

Fast Fourier transform (FFT) is an efficient algorithm for a discrete Fourier transform (DFT).
Given the finite sequence length x(n) with length N, the DFT is described as:

X(k) =
N−1∑
x=0

x(n)Wnk
N (12)

FFT uses the symmetry, periodicity, and reducibility characters of Wnk
N , i.e., Equations (13)–(15),

to decompose a large scale DFT into a combination of several small scale DFTs.

(Wnk
N )
∗
= W−nk

N = W(N−n)k
N = Wn(N−k)

N , (13)

Wnk
N = W(N+n)k

N = Wn(N−k)
N (14)

Wnk
N = Wmnk

mN = Wnk/m
N/m (15)

The following is a time-based 2-FFT algorithm. Given N = 2M, then x (n) can be divided into two
groups. When n is even, let n = 2r. When n is odd, let n = 2r+1. Let x (2r) = x1(r), X1 (k)= DFT [x1 (r)],
x (2r+1) = x2 (r), X2 (k) = DFT [x2 (r)], where r = 0, 1, . . . , N − 1. Then formula (12) can be rewritten as:

X(k) = X1(k) + Wk
NX2(k), (16)

X(k + N/2) = X1(k) + Wk
NX2(k). (17)

We can calculate that an N-point FFT operation needs (N/2) log2N complex multiplication and
Nlog2N complex addition, which greatly improves the operation efficiency of DFT.

3.3. Support Vector Machine

A support vector machine (SVM) is a supervised machine learning technique for constructing the
optimal hyperplane based on the principle of structural risk minimization. It maps the input vectors
into high dimensional feature space by non-linear transformation and finds the optimal classification
hyperplane in high dimensional feature space, which separates the data into two groups with a maximized
classification interval. Suppose a training sequence

{
xi, yi

}
, i = 1, 2, . . . , l; xi ∈ Rn, yi ∈ {−1,+1}; where l is

the number of samples, and n is the dimension of xi. In the case of linearly separable values, a classification
hyperplane w+ b = 0 can be found to separate

{
xi, yi

}
into two groups. For the nonlinearity situation, xi

is mapped from a low dimension feature space to a high dimension feature space by a nonlinear mapping
function Φ(x). Then, the classification hyperplane can be expressed as wΦ(x) + b = 0, where w, b are
constants to be determined. Finding the classification hyperplane equals maximizing 2/‖w‖. This problem
can be solved by the Lagrange multiplier method:

min ‖w‖
2

2 + C
l∑

i=1
ξi,

s.t. yi(w·xi + b) ≥ 1− ξi,
ξi ≥ 0, i = 1, 2 . . . , l

(18)

where ξi is the relaxation factor, and C is the penalty factor. The dual problem is given by the
Karush–Kuhn–Tucher (KKT) conditions:

max
l∑

i=1
αi −

1
2

l∑
i=1

l∑
j=1

αiα jyiy jϕ(xi)·ϕ
(
x j

)
s.t. 0 ≤ αi ≤ C,

l∑
i=1

αiyi = 0.
(19)

Solving the problem using the sequential minimal optimization (SMO) algorithm, we can obtain
the classification function:
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f (x) = sign

 l∑
i=1

αiyi[Φ(xi)·Φ(xi)] + b

 (20)

If the kernel function K(xi, xi) = Φ(xi)·Φ
(
x j

)
is found here, the function operation in Equation (20)

can be simplified to the inner product of the vectors. The commonly used kernels are the linear kernel
function, polynomial kernel function, radial basis (Gauss) function, and sigmoid kernel function.

3.4. The Proposed KF-FFT-SVM Model

A landslide can be treated as a multi-dimensional nonlinear dynamic system influenced by various
factors [32]. In practice, it is difficult to simulate a nonlinear dynamic system; however, we can treat it
as a linear model in a short time period. Therefore, we proposed the KF-FFT-SVM model. This model
can make a real-time prediction by analyzing and extracting the precursor features from the landslide
displacement data in a certain period of time. The whole process of the KF-FFT-SVM model is shown
in Figure 10. Firstly, we put Xk = (Sk, Vk, Ak), where Vk and Ak are the velocity and acceleration of the
landslide surface displacement data sequence Sk obtained by the Beidou receivers, into the Kalman
filtering to obtain the prediction result of An. Formula (21) is the prediction precision evaluation
of Kalman filtering. Secondly, we used FFT to analyze the spectrum characteristics of An near the
occurring time of the landslide and found the ‘step length m’, which represents the precursor vibration
period of the landslide slope failure. Finally, A′n = [An, An+1, . . . , An+m−1, label], which represents the
training data and testing data which were generated from An according to the precursor character
‘step length m’. Then, the SVM model was trained by the labelled training data, and the trained
SVM model could be used to make the real-time prediction. The prediction result Bn is a vector with
the same dimension of An and its value is either ‘−1′or ‘1′. ‘−1′ represents that there is no warning,
while ‘1′ represent that there is a warning. The classification accuracy of SVM is given in Formula (22).
The proof of the mathematical new relationships is in Appendix A.

RMS =
1
M

√√√ N∑
i=1

(Xi −Zi)
2 (21)

Accuracy =
Right classi f ication numbers

whole samples
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4. Real-Time Prediction

4.1. Data Pre-Processing

The surface displacement data of the Baige landslide was recorded by the FDMS starting on
31 October 2018. On late 3 November, the second landslide occurred. To find the precursor feature,
we used the displacement data obtained by Beidou receivers from 31 October to 6 November to train
the KF-FFT-SVM model. Figure 11 shows the raw data of BD1, BD2, BD3, and BD4. The Beidou
receiver recorded the three-dimensional (X, Y, Z) displacements of the landslide, while, for simplicity,
only the horizontal (X) displacement data were used here. The raw displacement data were obtained
at an interval of 10 min. From Figure 11, there were no displacements within 30 min for the majority of
the time. Therefore, we sampled the raw data at intervals of 30 min. The sampling result is shown in
Figure 12, and this was used to train the KF-FFT-SVM model instead of the raw data.
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4.2. KF-FFT-SVM Model Building

4.2.1. KF Predicting

To build the KF model of the displacement data, we chose the displacement, displacement velocity,
and displacement acceleration as the state vectors, which are Sk, Vk, and Ak, respectively. The relations
between them are:

{

Xk = [Sk, Vk, Ak]
T,

Sk = Sk−1 + Vk−1·Ts + w1
k−1,

Vk = Vk−1 + Ak−1·Ts + w2
k−1,

Ak = Ak−1 + w3
k−1

(23)

where Ts is the data sampling interval, and w1
k , w2

k , and w3
k are the random errors. Let Ts = 1, then the

stochastic difference equation of the system state is:

Xk =


1 1 0
0 1 0
0 0 1

Xk−1 +
[
w1

k−1,w2
k−1, w3

k−1]
T (24)
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The observation formula is described as Formula (25):

Zk = [1 1 0]Xk−1 + vk−1 (25)
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where vk is the random error, A =


1 1 0
0 1 0
0 0 1

 and H = [1,1,0]. The random errors wk and vk are

unknown, and our purpose was to use Formulas (5)–(11) to determine them. To solve this problem,
we set Q and R with random values, and used the pre-processing data in Section 4.1 to find the values
of Q and R that made the KF model converge to the optimal solution. Figure 13 shows the estimated
result of BD1, BD2, BD3, and BD4, which are the red curves. In this KF model, Q = [5,3,3]T, and R = 3.
The maximum estimated error is 5.73 mm, which indicates that the KF model we built had a good
prediction and filtering result.

4.2.2. FFT Analysis

In the FFT analysis, we chose 64 displacement acceleration data values between 3 November and
4 November to conduct FFT, because during this period the secondary landslide happened. Figure 14
shows the FFT result. The FFT length N was 64, and the data sampling interval was Ts. Let Ts = 1,
and the sampling frequency can be simplified to 1 Hz. In Figure 14, there are two major amplitude
peak values near 0.2 Hz and 0.9 Hz, which indicate that the precursor vibration period of the landslide
was approximately 5Ts in the time domain. We chose the step length m = 2, 3, 4, 5, 6, 7, 8 to construct
the displacement acceleration sequence.
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4.2.3. SVM Model Training

Before the SVM model was trained, we marked the displacement acceleration data of BD1, BD2,
and BD3 manually. The data between 3 November and 4 November were marked with the label
“Positive”, which signified that there was an early warning, and the others were marked with the label
“Negative”, which signified that there was no early warning. Then, we use the marked BD1, BD2,
and BD3 data to construct the displacement acceleration sequence A′n,

A′n = [An, An+1, . . . , An+m−1, label] (26)
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where m = 2, 3, 4, 5, 6, 7, 8, which is given in part 4.2.2; n = 1, 2, . . . , 336−m; and label is the marked
value of An.

Formula (27) is an example of data set when m = 2. Here, A′
n(BD1)

, A′
n(BD2)

, and A′
n(BD3)

were

chosen as training data. We also constructed A′
n(BD4)

as testing data with the same method.
A′

n(BD1)
= [An, An+1, . . . , An+m−1, label](BD1)

training data : A′
n(BD2)

= [An, An+1, . . . , An+m−1, label](BD2)

A′
n(BD3)

= [An, An+1, . . . , An+m−1, label](BD3)

testing data : A′
n(BD4)

= [An, An+1, . . . , An+m−1, label](BD4)

(27)
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In SVM training, the radial basis function (RBF) function and SMO algorithm are used to search
for the best C and γ. The early warning prediction results of the testing data A′

n(BD4)
with different step

sequences are shown in Figure 15. Figure 15 also shows the three step length training data scattered
in 3D space, and it is clear that they cannot be well-separated in 3D space. Therefore, we separated
them in a higher dimension. From Figure 15, we know that when m = 6, the optimal result is achieved.
In this situation, the highest accuracy = 0.915, C = 4, and γ = 1. The result is in great agreement with
the FFT analysis, which shows the best precursor landslide character is near 0.2 Hz, which is equal to
six step lengths in the time domain.

4.3. Application of the Real-Time Prediction Method

The real-time prediction method based on the KF-FFT-SVM model makes landslide predictions
according to the principle that the mechanical vibrations of the landslide slope failure are recorded in
the displacement data. In this study, the Beidou receivers had the ability to measure the displacement
of the landslide at the frequency of every 10 min with an accuracy of 3 mm, which was given by the
manufacturer. The raw displacement data are shown in Figure 11, and it is clear that there are random
errors from the Beidou receivers as the displacement curves are not continuous in their rise in several
periods. Thus, the raw data were pre-processed, and the 30 min statistics of the raw displacement data
are given in Figure 12. Supposing 30 min as the unit time, then the KF method was used to filter the
random error and to make a prediction of the displacement for the next 30 min. FFT, here, was used to
find the precursory vibration frequency of the displacement acceleration before the landslide slope
failure. When the precursory vibration frequency was found, we could generate the training data from
the BD1, BD2, and BD3 and train the SVM by these data. The trained SVM was tested by the data
obtained by BD4 as shown in Figure 15.

The trained KF-FFT-SVM model can make online predictions. The displacement data obtained by
the FDMS acts as the input for the KF-FFT-SVM model. The outcome of the KF-FFT-SVM model is the
precursory warning of a landslide. If the outcome of the KF-FFT-SVM model is “Positive”, the early
warning will be triggered. However, if the outcome is “Negative”, there will be no early warning.
In this study, the sample period of the data was 30 min; therefore, the KF could predict the landslide
displacement in the next 30 min. This indicates that the KF-FFT-SVM model can forecast landslide
slope failure at least 30 min in advance. In practice, the parameters of KF-FFT-SVM model are pre-set;
however, the model can be retrained, and the parameters can be adjusted dynamically.

5. Discussion

Landslide EWSs are widely used to reduce disaster losses. The effectiveness of a landslide EWS
depends on the reliability of monitoring and accurate early warnings. In this paper, we focused on
the monitoring and warning methods of a landslide EWS. Effective responses after the landslide are
beyond the discussion of this paper. To improve the robustness of the monitoring system of a landslide
EWS, we designed the FDMS. With the real-time monitoring landslide displacement data obtained
by the FDMS, we used the KF-FFT-SVM model to predict landslide slope failure with high accuracy.
The prediction method we proposed here could forecast the landslide in advance, and is a timely online
prediction method.

Although the real-time prediction method proposed here showed a good result in the Baige
landslide, there are still limitations in practice. The precursory features of different landslides may
be different, and thus the trained SVM model cannot be effective for all type of landslides. The SVM
model should be trained by the critical slide data of the landslide; however these critical slide data are
difficult to obtain as there may be no monitoring equipment working wherever a landslide occurs, or if
the equipment is destroyed after the landslide slope failure.

In this study, we were lucky to obtain the critical slide data to train the KF-FFT-SVM model.
To make the model effective for more landslides, we should use as many historical critical slide data as
possible to train the model and adjust the model parameters for different types of landslides. There are
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also uncertainties in the application of the real-time prediction method. The most important feature of
this method is that it uses the surface displacement data to find the precursory features. The problem
is that, in the KF-FFT-SVM model, we consider the surface displacement data measured by the Beidou
receivers as the mechanical vibration of the landslide, but there must be distortions when the vibration
signals are transmitted to displacement signals.

The method proposed in this study provides a new idea for the real-time early warning of
landslides. In this method, a landslide is considered as a quadratic dynamical system, and we extracted
the precursory features from the surface displacement data of the landslide and used machine learning
to construct the early warning model. By introducing the concept of quadratic dynamical systems and
machine learning, the real-time prediction method makes the landslide early warning easier, and the
only thing needed is to train the model with plenty of data.

The real-time prediction method is also practical and has strong promotion value. The majority
of the landslide EWSs in the literature have very complex monitoring systems and make an early
warning simply by a pre-set threshold, which produces a lack of accuracy and timeliness [27,28]. In the
real-time prediction method, all the displacement data obtained by different instruments can be used
to extract precursory features and train the KF-FFT-SVM model. In this study, we only used the surface
displacement data, and this method would be even more effective if the deep-seated information of the
landslide is used.

6. Conclusions

In conclusion, the monitoring and early warning method proposed in this paper improved
the effectiveness of the landslide EWS. This FDMS is simple, low-cost, and has high robustness.
The real-time prediction method made the landside early warning more accurate and timelier by
extracting the precursor features, which are considered as the inner mechanical vibrations of the
landslide slope failure, from the landslide surface displacement data.

The key to the real-time prediction method lies in correctly extracting the inner vibrations of
the landslide. In future studies, we will perform research on the relationship between the surface
displacements and inner vibration of the landslide, which is measured by rock or soil press sensors.
We will also study the method of extracting precursory features from 2D and 3D surface and deep-seated
displacement data.
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Appendix A

Proof of Mathematical New Relationships

In the KF-FFT-SVM model, the KF algorithm is used for predicting Ak, which is the acceleration of
landslide displacement. Ak represents the high frequency component of the landslide displacement,
which may contain more useful feature information. This is why we chose Ak as an analysis object.



Sensors 2020, 20, 6619 18 of 20

The prediction of Ak is expressed as An here. The FFT algorithm is used for analyzing and extracting the
feature information in An. In this study, the feature information was the vibration frequency indicated in
An. If the characteristic frequency is f, then we construct the sequence A′n = [An, An+1, . . . , An+m−1, label]
(m is an integer here, m = 1/f ), which represents the one period characteristic waveform. Then, we used
A′n to train the SVM model. However, 1/f is not always an integer. In this situation, given that the
approximation of m is p, then the sequences should be constructed like this:

A′n(p− q− 1) = [An, An+1, . . . , An+p−q−1, label]
A′n(p− q) = [An, An+1, . . . , An+p−q, label]

...
A′n(p− 1) = [An, An+1, . . . , An+p−1, label]

...
A′n(p + q− 2) = [An, An+1, . . . , An+p+q−2, label]
A′n(p + q− 1) = [An, An+1, . . . , An+p+q−1, label]

(A1)

Here, q is an integer, 0 ≤ q ≤ p− 2. Then, we used the sequence list in Formula (A1) one by one to
train the SVM and find the best fitting one as the feature ‘step length’.

In this study, the characteristic frequency f = 0.2 and 0.9. Thus, we chose the step length
m = 2, 3, 4, 5, 6, 7, 8 and constructed sequences like this:

A′n(2) = [An, An+1, label]
A′n(4) = [An, An+1, An+2, label]

A′n(4) = [An, An+1, . . . , An+3, label]
A′n(5) = [An, An+1, . . . , An+4, label]
A′n(7) = [An, An+1, . . . , An+5, label]
A′n(7) = [An, An+1, . . . , An+6, label]
A′n(8) = [An, An+1, . . . , An+7, label]

(A2)

We trained the SVM with these eight sequences, respectively, with the method in Section 4.3,
and found the best fitting ‘step length’ was six. Then, we used m = 6 to build the SVM model and
make early warnings.
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