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Abstract: The human activities in the offshore oil and gas, renewable energy and construction industry
require reliable data acquired by different types of hydrographic sensors: DGNSS (Differential Global
Navigation Satellite System) positioning, attitude sensors, multibeam sonars, lidars or total stations
installed on the offshore vessel, drones or platforms. Each component or sensor that produces
information, unique to its position, will have a point that is considered as the reference point of that
sensor. The accurate measurement of the offsets is vital to establish the mathematical relation between
sensor and vessel common reference point in order to achieve sufficient accuracy of the survey data.
If possible, the vessel will be put on a hard stand so that it can be very accurately measured using
the standard land survey technique. However, due to the complex environment and sensors being
mobilized when the vessel is in service, this may not be possible, and the offsets will have to be
measured in sea dynamic conditions by means of a total station from a floating platform. This article
presents the method of transformation by similarity with elements of affine transformation, called
Q-ST (Quasi-Similarity Transformation). The Q-ST has been designed for measurements on such
unstable substrates when it is not possible to level the total station (when the number of adjustment
points is small (4–6 points)). Such situation occurs, among others, when measuring before the offshore
duties or during the jack up or semi-submersible rig move. The presented calculation model is
characterized by zero deviations at the adjustment points (at four common points). The transformation
concerns the conversion of points between two orthogonal and inclined reference frames. The method
enables the independent calculation of the scale factor, rotation matrix and system translation. Scaling
is performed first in real space, and then both systems are shifted to the centroid, which is the center of
gravity. The center of gravity is determined for the fit points that meet the criterion of stability of the
orthogonal transformation. Then, the rotation matrix is computed, and a translation is performed from
the computational (centroid) to real space. In the applied approach, the transformation parameters,
scaling, rotation and translation, are determined independently, and the least squares method is
applied independently at each stage of the calculations. The method has been verified in laboratory
conditions as well as in real conditions. The results were compared to other known methods of
coordinate transformation. The proposed approach is a development of the idea of transformation by
similarity based on centroids.

Keywords: similarity transformation; affine transformation; rotation matrix; offshore surveying;
dimensional control; orthogonal coordinate system; close range photogrammetry; total station
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1. Introduction

Similarity transformation is commonly used to convert coordinates between two three-dimensional
orthogonal frames of reference [1]. This applies in particular to fields such as hydrography, geodesy,
photogrammetry, offshore measurements and navigation [2–4]. Spatial transformations are commonly
used in the processing of data from unmanned aerial vehicles [5], point clouds from laser scanning [6,7]
and also with the use of computer vision algorithms [8]. Calculations of this type are also performed in
engineering geodesy, where measurements are often converted to the coordinate system associated
with the measured object, as well as when using, e.g., tunnel boring machines [9,10], and in many
others. For big datasets of measurement, algorithms based on machine learning or applying the PCA
(principal component analysis) method are also used for data processing [11–13].

Conformal transformation, also called transformation by similarity (or Helmert transformation),
includes the change of scale (single accuracy) and isometry, which is related in the orthogonal
transformation with translation and rotation [1,14,15]. This transformation concerns three groups of
transformations: rotation, translation and scaling, and has seven parameters. The unknowns are: the
translation vector, the scale factor and three rotation angles [16,17]. This transformation is usually
presented in the form [18]: 

X′

Y′

Z′

 = λ × R ×


X
Y
Z

+


X0

Y0

Z0

 (1)

where:

•

[
X0, Y0, Z0

]T
—translation vector,

• [X, Y, Z]T—vector (point) in the original system (subject to transformation),

• [X′, Y′, Z′]T—vector (point) in the secondary system (treated as stationary),
• λ—scale factor,
• R—rotation matrix.

The rotation matrix R in Equation (1) is also commonly used in robotics, mechanics and automation
and can be represented using various angle systems: Euler angles Equation (2), directional cosines
Equation (3), angles used in photogrammetry Equation (4), angles related to motion, also referred to as
Euler (or Tait-Bryan) angles Equation (5), as well as using Hamilton quaternions Equation (6) [18–22].
A rotation matrix using three angles of rotation can be represented by twelve sequences when all
rotations are in the same direction (e.g., clockwise). Each sequence can be presented, depending on
the adopted direction of the rotation, clockwise or anticlockwise, in six ways. This gives a total of
seventy-two possibilities to build the rotation matrix. The in-depth analysis and the relationship
between the various systems of angles and sequences of rotations and their relationships with Hamilton
quaternions have been discussed in References [2,20,23,24]. In Figure 1 and in Equation (2), one of the
possibilities of rotating with the use of the classic Euler angles system is presented, where rotation
around one axis occurs twice (the order of rotations around the axis: Z—rotation by the angle ψ,
X (W)—rotation by angle θ, Z (3)—rotation by angle ϕ).

R =


cosψ sinψ 0
− sinψ cosψ 0
0 0 1

 ×


1 0 0
0 cosθ sinθ
0 − sinθ cosθ

 ×


cosϕ sinϕ 0
− sinϕ cosϕ 0
0 0 1


=


− cosθ× sinϕ× sinψ+ cosϕ× cosψ cosθ× cosϕ× sinψ+ cosψ× sinϕ sinθ× sinψ
− cosϕ× sinψ− cosθ× cosψ× sinϕ − sinϕ× sinψ+ cosθ× cosϕ× cosψ cosψ× sinθ
sinθ× sinϕ − cosϕ× sinθ cosθ


(2)

where:

• rotation order: ψ→ θ→ ϕ, all rotations were assumed clockwise and with markings as in Figure 1,
• ψ—precession angle, between the OX axis and the OW node line (rotation around the Z axis),
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• θ—nutation angle, between the OZ and O3 axes (rotation around the OW node line),
• ϕ—angle of pure rotation (intrinsic rotation), between the line of nodes OW and the axis O1

(rotation around axis 3).

Figure 1. Euler’s rotation angles (shown sequence: ψ→ θ→ ϕ). The rotation matrix is described by
the Equation (2).

The rotation matrix is also represented by directional cosines, where individual columns of the R
matrix are represented by the scalar products of the dissipers of individual systems. The target system
is also referred to in the literature as a stationary or reference frame [2,20]:

R =


cos(x, x′) cos(x, y′) cos(x, z′)
cos(y, x′) cos(y, y′) cos(y, z′)
cos(z, x′) cos(z, y′) cos(z, z′)

 (3)

The rotation matrix in photogrammetry is determined on the basis of the angles related to the
motion in the following order: ω (roll), ϕ (pitch), κ (yaw), which is written in the form of Equation (4):

R =


1 0 0
0 cosω sinω
0 − sinω cosω

×


cosϕ 0 − sinϕ
0 1 0
sinϕ 0 cosϕ

×


cosκ sinκ 0
− sinκ cosκ 0
0 0 1


=


cosϕ× cosκ cosϕ× sinκ −sinϕ
−cosω× sinκ+ sinω× sinϕ× cosκ cosω× cosκ+ sinω× sinϕ× sinκ sinω× cosϕ
sinω× sinκ+ cosω× sinϕ× cosκ −sinω× cosκ+ cosω× sinϕ× sinκ cosω× cosϕ


(4)

where:

• rotation order: ω→ ϕ→ κ,
• ω—the rotation around the X axis (clockwise), the roll angle,
• ϕ—the rotation around the Y axis (anticlockwise), the pitch angle,
• κ—the rotation around the Z axis (clockwise), the yaw angle.

In navigation, extended notation of the basic Euler system of angles is used and they are often
defined in relation to the body frame to an external (often defined by GNSS – Global Navigation Satellite
System) reference frame (fixed frame). The rotation sequence is then the opposite to that described
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with the Equation (4), which for an orthogonal transformation can be written as a transposition of this
matrix in the form of the Equation (5):

R =


cosψ − sinψ 0
sinψ cosψ 0
0 0 1

×


cosθ 0 sinθ
0 1 0
− sinθ 0 cosθ

×


1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ


=


cosθ× cosψ −cosϕ× sinψ+ sinϕ× sinθ× cosψ sinϕ× sinψ+ cosϕ× sinθ× cosψ
cosθ× sinψ cosϕ× cosψ+ sinϕ× sinθ× sinψ −sinϕ× cosψ+ cosϕ× sinθ× sinψ
−sinθ sinϕ× cosθ cosϕ× cosθ


(5)

where:

• rotation order: ψ→ θ→ ϕ,
• ψ—yaw angle (anticlockwise), rotation around the Z axis,
• θ—pitch angle (clockwise), rotation around the Y axis (after rotation around the Z axis),
• ϕ—roll angle (anticlockwise), rotation around the X axis (after rotation around the Z and Y axes).

The rotation matrix (5) written with Hamilton quaternions will take the form of the relationship
(6). The relation between the Euler angles assumed in Equation (5) and the quaternions described with
Equation (6) will then take the form of Equation (7), with the norm in the form of Equation (8):

Q =


q1

2 + q2
2
− q3

2
− q4

2 2(q2 × q3 − q1 × q4) 2(q2 × q4 + q1 × q3)

2(q2 × q3 + q1 × q4) q1
2
− q2

2 + q3
2
− q4

2 2(q3 × q4 − q1 × q2)

2(q2 × q4 − q1 × q3) 2(q3 × q4 + q1 × q2) q1
2
− q2

2
− q3

2
− q4

2

 (6)

where:
q1 = cos ϕ2 × cos θ2 × cos ψ2 + sin ϕ

2 × sin θ
2 × sin ψ

2
q2 = sin ϕ

2 × cos θ2 × cos ψ2 − cos ϕ2 × sin θ
2 × sin ψ

2
q3 = cos ϕ2 × sin θ

2 × cos ψ2 + sin ϕ
2 × cos θ2 × sin ψ

2
q4 = cos ϕ2 × cos θ2 × sin ψ

2 − sin ϕ
2 × sin θ

2 × cos ψ2

(7)

q1
2 + q2

2 + q3
2 + q4

2 = 1 (8)

Equations (6)–(8), although not applied in the practical part of the study, are presented in addition
to the completeness of the theoretical considerations.

The rotation matrix is also presented in a parametric Equation (9), which is very convenient to use
because it can then be used to calculate the rotation matrix in any system of angles:

M =


m11 m12 m13

m21 m22 m23

m31 m32 m33

 (9)

In general, the transformation matrix M has nine unknowns, including six independent ones,
but after applying the orthogonal transformation Equation (10), only three of them will be linearly
independent, which leads to Equation (11):

m2
11 + m2

12 + m2
13 = 1

m2
21 + m2

22 + m2
23 = 1

m2
31 + m2

32 + m2
33 = 1

m11 ×m12 + m21 ×m22 + m31 ×m32 = 0
m11 ×m13 + m21 ×m23 + m31 ×m33 = 0
m12 ×m13 + m22 ×m23 + m32 ×m33 = 0

(10)

M×MT = I (11)
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where:

• I—identity matrix.

In the case of the affine transformation, in the nine-unknown approach, the scale factor is replaced
by the scale factor vector λ = diag[λX, λY, λZ]

T, which allows a different scale for each axis. If all the
scale factors are the same and after the orthogonality condition in the Equation (10) or Equation (11)
is satisfied by the rotation matrix, the affine transformation goes into a transformation by similarity.
Various variants of the affine transformation are presented, e.g., in References [25–27], and in this study,
they will not be described in more detail.

In practice, in many applications, the rotation matrix is reduced to the infinitesimal (aiming at
zero) values of the angles and presented in the form of the Equation (12):

m =


1 −ψ θ
ψ 1 −ϕ
−θ ϕ 1

 (12)

where:

• ψ, θ, ϕ—infinitesimal values of angles expressed in radians, the angles are the same as in
Equation (5).

The matrix (12) is also called the small rotation angles due to the infinitesimal values of the angles
(expressed in radians).

Transformation by similarity based on infinitesimal values of angles (expressed in radians), with a
lattice scale close to one, will take the form described as the Buršy–Wolf transformation [28,29]:

X
Y
Z

 = (1 + ds) ×

−
1 εZ −εY
εZ 1 εX

εY −εX 1

 ×


X′

Y′

Z′

+


tX

tY
tZ

 (13)

where:

• εZ—rotation angle around the Z axis,
• εY—rotation angle around the Y axis,
• εX—rotation angle around the X axis,
• 1 + ds—scale factor, where ds corresponds to linear system distortion,

• [tX, tY, tZ]
T—translation vector.

The rotation matrix expressed in Equation (13) is the inverse of the matrix shown in Equation (12).
On the other hand, Badekas [30] provides a record of the transformation between the average

terrestrial system and the geodetic system in the form of the relationship (14):
X
Y
Z

 =


dx0

dy0

dz0

+


X0

Y0

Z0

+


1 da3 −da2

−da3 1 da1

da2 −da1 1

×


x− x0

y− y0

z− z0

+ ε


x− x0

y− y0

z− z0

 (14)

where:

• [X Y Z]T—coordinates in the average Earth coordinate system,

• [x y z]T—coordinates in a geodetic (local) coordinate system,
• da1, da2, da3—(infinitesimal) rotation angles expressed in radians,
• ε—scale correction,

•

[
X0 Y0 Z0

]T
—vector of translation in the terrestrial system,
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•

[
x0 y0 z0

]T
—translation vector in the geodetic (local) system,

•

[
dx0 dy0 dz0

]T
—the coordinates of the origin of the geodetic (local) coordinate system after

rotation and shift to the mean terrestrial system.

In the transformation described by Equation (14), both the reference frame and the geodetic
(local) system are shifted to a common centroid, which is the center of gravity of the Earth
system. The transformation described by Equation (14) written in accordance with the Buršy–Wolf
transformation (13) functions in the literature under the name of the Molodensky−Badekas
transformation (15), although many authors present it in different variants [29]:

X
Y
Z


2

= (1 + ds)

−
1 εZ −εY
εZ 1 εX

εY −εX 1

×


X
Y
Z


1

+


tX

tY
tZ


2

(15)

where:

•

[
X Y Z

]T
1—coordinates in the geodetic (local) system after moving to the centroid, the center

of gravity of this system,
• indexes 1 and 2 next to the translation and coordinate vectors mean, respectively: 1—geodetic

(local) system, 2—Earth system.

Thus, in Equation (15), there is a double translation, first, the geodetic system (local, marked as 1)
is shifted to its own center of gravity, and after rotation and scale correction, a re-translation takes
place—back to the Earth system, and inversely to the one to which the Earth system was subjected
at the Buršy–Wolf and Molodensky−Badekas transformations can also be written using one of the
rotation matrices presented in Equations (2)–(6) and (9) for large values of rotation angles. Centroid
as the center of gravity and the influence on its location on the accuracy of coordinates calculation is
presented in Reference [31].

Infinitesimal values of transformation parameters are used in the adjustment process, where
the least squares method is most often used. The discussion on the use of the least squares
method in conformal and affine transformations has been undertaken in many studies, including
References [6,16,18,32–34]. The adjustment procedure leads to the search for the most probable
solutions, which is associated with the minimization of errors [35,36] and directly derived from the
maximization of the probability, P:

P =
1

σ
√

2π

∫ t

−t
e−

(x−µ)2

2σ dx (16)

The solution (calculation of the vector of unknowns) is presented in a matrix form and written in
the form:

X =
(
AT
× P×A

)−1
×AT

× P× L (17)

where:

• X—vector of unknown parameters,
• A—matrix of coefficients with unknowns (partial derivatives)—Jacobian transformation,
• L—vector of constants,
• P—vector of weighting factors (statistical weights).

In practice, the adjustment problem comes down to the formulation of the correction Equation (18)
or the formulation of the computational problem in the Equation (19), where one of them is calculated,
while another is provided by the data [6,32]:

V = A×X − L (18)
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L = A×X (19)

The correction Equation (18) for the transformation by similarity (1) with the use of a small-rotation
matrix (12) from the body frame to the stationary frame (reference frame–fixed frame) can be written
as Equation (20), and after transformation into the Equation (21) [37]:

X′

Y′

Z′

−


x
y
z


trans f ormed

=


dλ −ψ θ
ψ dλ −ϕ
−θ ϕ dλ

×


x
y
z

+


dx0

dy0

dz0

 (20)


VX

VY
VZ

 =


x 0 −y z 1 0 0
y −z x 0 0 1 0
z y 0 −x 0 0 1

×


dλ
ϕ
ψ
θ

dx0

dy0

dz0


+


X′

Y′

Z′

−


x
y
z


trans f ormed

(21)

The reference of compound (21) to the designations of compound (18) is as follows:

V =


VX

VY
VZ

, A =


x 0 −y z 1 0 0
y −z x 0 0 1 0
z y 0 −x 0 0 1

, X =



dλ
ϕ
ψ
θ

dx0

dy0

dz0


, L =


X′

Y′

Z′

−


x
y
z


trans f ormed

(22)

In this study, the least squares method is used in stages, and not in one equalization process, e.g.,
expressed by Equation (20). It is used separately at each stage of the transformation, and therefore it is
abbreviated as S2-LSM (Stages Sequence–Least Square Method). Such an approach is implemented in
the Quasi-Similarity Transformations (Q-ST) algorithm and results in resetting the deviations on the
combined points for four adjustment points. This method was designed for measurements in dynamic
inclined systems, in particular in the offshore industry and in close-range geodesy and photogrammetry.

The aim of this publication is to develop a coordinate transformation method dedicated to
measurements in a dynamic body frame, ensuring simplicity and speed of calculations with a
simultaneous reduction to the minimum of errors on the adjustment points, when their number is
small (4–6 points). According to the authors, the developed Q-ST method can be used to convert
coordinates in the offshore industry and in traditional geodetic and photogrammetric measurements.
The method can also be used in navigation, automation, mechanics and robotics. The advantage of the
proposed method is especially visible in the case of a small number of adjustment points (4 or 5), and
by zeroing the errors at the adjustment points, according to Equation (16)—the calculated coordinates
can be treated as maximally probable.

2. Materials and Methods

2.1. Vessel Offsets Measurements

To achieve the highest accuracy standards, vessels’ offsets determination is usually performed
with total station. Total station, as in other industries, is an essential instrument used in the offshore
industry for surveying and building construction due to the level of accuracy it provides. They are used
for dimensional control of offshore vessels, survey boats, jack up and semi-submersible platforms, wind
turbines, remotely operated vehicles, including primarily the measurement of offsets of navigational
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or hydrographic sensors and measurements, and other elements of ship’s structure, essential for
offshore operations.

Precisely measured offsets in the local (vessel) coordinate frame are entered into the hydrographic
software integrating signals from sensors, e.g., GNSS, Multi-beam echosounder, gyrocompass, motion
reference unit, acoustic underwater positioning systems, lidars and others, and based on the adopted
navigation solution, e.g., Kalman filter, acquired data X, Y, Z are logged in the global coordinate frame.

The robotic total station is also used as a navigation sensor for positioning of the jack up and
semi-submersible platforms during approach to installation of offshore structures, e.g., during jacket or
wind turbine pile installation projects. They are an alternative to GNSS satellite positioning wherever
there is a risk of signal obstruction and loss of platform position. Based on both vertical and horizontal
angles and the slope distance, the navigation solution is performed. Total Station mounted on the
vessel takes measurements to a particular point (usually prism reflector installed on the offshore
installation with known coordinates) and the dynamic vessel’s position is determined by hydrographic
software and can be monitored to mitigate the risk of collision.

During the survey, the tilt compensator is locked. Each survey station is established in a random
(local) coordinate system on board the floating vessel. Usually more than one survey station is needed
for covering all the observations. Therefore, at least four common control points between survey
stations are established and observed. Additionally, for measuring the sensors of interest, the vessel
body must be surveyed for center line alignment and the positioning of the new established local
coordinate frame of the vessel (see Figure 2).

Figure 2. Determination of the ship’s center line (Y) and the base plane: (a) the ship’s center line, define
the base plane based on: (b) turntable element, (c) main deck floor, (d) wall edges.

As already mentioned, all the survey stations are independent and established in a random
coordinate system. The instrument does not need to be levelled, but for avoiding any bending of the
instrument under its own weight, it is good practice to level it approximately. The tilt compensator
must be locked, because the instrument must be fixed relatively to the vessel when the vessel is floating.
As a precaution for discovering small accidental moves of the instrument during the survey (hitting the
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tripod with leg, for example), it is wise to start the survey station with measuring the farthest point and
to finish the survey station with re-measuring that point. By comparing the initial coordinates against
the last ones, a possible instrument move becomes visible. Each survey station must be connected to
others through at least four control points. Even though three are minimum, it does not give enough
quality control. Good practice is having five or more common points between stations.

Planning and preparing the survey is the most time-consuming part of the whole process.
It includes establishing the control points at suitable places all over the vessel (see Figure 3) and
planning the survey station locations. Because usually there are multiple operations simultaneously
progressing on board the vessel, the surveyor must prepare for sudden unexpected visibility issues
raised during the observations. Also, the geometry of the common control points between survey
stations must be wide enough for providing wanted precision (due to our practice). A proven approach
is: starting the survey from the location with the widest visibility and measuring many control points
on all parts of the vessel from there. Other survey stations established later are referenced to the
points from the first station. This way, the “chain of stations” is as short as practically possible. In the
best-case scenario, all the stations are connected directly to the first survey station control points.

Figure 3. Common control points marked on the vessel.

The meaning of wide geometry of common control points between stations is different from the
meaning land surveyors are used to. On terrestrial observations, the Z axis is locked with the help of
gravity (by levelling the instrument) and the survey can be considered as two-dimensional regarding
the rotations. It is enough to measure 2 points with decent distance between them for establishing the
position of the total station. However, on a floating object, at least 3 points are needed for establishing
the position of the instrument, and these 3 points cannot be adjusted with LSM. In a perfect case, they
form an equilateral triangle. While planning the survey, the surveyor must analyze the situation in
three-dimension (3D)—control points should stretch out to various directions.

Usually, some navigation systems on board ships already have a local coordinate system defined,
and for simplicity, the surveyor should use the same location for his coordinate frame origin as specified
in vessel systems (Ultra Short Baseline (USBL) transducer in Dynamic Positioning system (DP)).
That means, during the total station observations, a common element must be surveyed, for knowing
where the pre-defined coordinate frame’s origin is located. That element is an observable sensor, which
coordinates (X, Y, Z values) can be read out from the navigation system, for example, USBL pole or
GPS antenna. The origin of the coordinate system of navigation systems can therefore be determined
during surveys in the local random coordinate system of the total station.

Below can be found the complete list of items to observe during the total station survey (in addition
to the control points for the current survey and for future use—marked in Figure 3):
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1. Sensors of interest (the purpose of the survey),
2. Sensors for connecting the survey to a pre-established coordinate frame of vessel system

(USBL, DP),
3. Ship elements for connecting the survey to General Arrangement (GA) drawing of a vessel,
4. Prepared pitch, roll and heading calibration points,
5. Ship body for alignment and positioning of the new local coordinate frame:

• Z-axis direction (base plane),
• Y-axis direction,
• Origin X-position (center line of vessel),
• Origin Y-position,
• Origin Z-position.

Data processing is done in dimensional control software, like, for example, SC4W. For simplicity,
the survey data is imported into the software as (X,Y,Z) coordinates in 1.0 or 0.1 mm precision, instead
of raw angles and distances. The next step is merging the survey stations. The first survey station is
considered as fixed and other survey stations are rotated and shifted in the best possible way to match
common control points with the first station. This is usually done with the help of data processing
software’s least squares best fit function. After the merging process, all the surveyed points are in the
form of one point cloud instead of independent unaligned point clouds of each station. During the
data processing, all survey stations are merged, and one point cloud is formed. After that, the point
cloud is aligned with the vessel body and as the effect, the origin of the coordinate frame is positioned
on the desired location. After the aligning process and coordinate frame positioning related to the
vessel is completed, the sensor coordinates are obtained.

For quality control and for positioning the surveyed points relative to the vessel, it is useful to
have GA drawings of the ship in CAD format. For being able to relate the GA drawing with total
station survey, few well-defined common elements must be found which are easily observable and
also presented on the GA drawing. In most cases, vessel attitude sensor calibration follows the offsets
survey. Therefore, it is wise to pre-install poles for RTK (Real Time Kinematic) Rovers or prisms,
depending on the calibration method. These poles are observed during the total station survey and
local coordinates are obtained.

Due to the presented approach, similarity transformation algorithms using the least squares
method are used to connect point clouds. For on-board measurements, as mentioned, the number of
common points is generally four or five. This publication presents a similarity transformation method
that is suited to this small number of common points. This method is characterized by a minimum
value of errors of alignment at common points and is based on the Q-ST algorithm.

2.2. Quasi-Similarity Transformations (Q-ST) Algorithm

In the presented Quasi-Similarity Transformations (Q-ST) method, it was assumed that the
transformed system associated with the measurement instrument is named as local frame—LF, and
the target—stationary system to which the transformation takes place, was named vessel frame—VF
(fixed-frame). The composition of the transformation groups: rotations, translations and scaling, is
arbitrary in the transformation and results in a mathematical notation appropriate to the adopted
model. The functional model of the Q-ST transformation is presented by the formula (23):

XVF = R× (λ·XLF −XCLF) + XCVF (23)

where:

• XVF—coordinates in the target system—stationary (vessel reference frame—VF),
• R—rotation matrix,
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• λ—scale factor,
• XLF—coordinates in the transformed system (local reference frame—LF),
• XCLF—coordinates of the center of gravity in the transformed system (centroid of local reference

frame),
• XCVF—coordinates of the center of gravity in the target system—stationary (centroid of vessel

reference frame).

The Q-ST (23) is performed in the steps shown in Figure 4.

Figure 4. Calculation scheme of the Quasi-Similarity Transformation (Q-ST) method.

After collecting the data by means of measurements in the local system of the LF instrument (local
reference frame), they are converted to the vessel’s VR coordinate system (vessel reference frame).
The calculations are performed in the steps shown in Figure 4. Below are descriptions of each step of
the Q-ST.

Stage 1:
The first stage of transformation is related to the scale adjustment between the LF and VF systems.

The scale factor λ for a pair of homologous vectors—built from points known in both systems—LF and
VF—is determined from the dependence (24):

DVF = λ×DLF (24)

where:

• DVF—vector length in the ship’s coordinate system (VF),
• DLF—the length of the vector in the local coordinate system associated with the instrument (LF).

The scale factor, using Equation (24), can be determined independently for each pair of homologous
vectors known in the VF and LF systems. Calculation of the global scale factor between the LF and VF
systems for all homologous vectors is performed using the least squares method. The computational
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problem is reduced to the form of the relationship (19), and the solution written according to the
Formula (17) will then take the form of the relationship (25):

λ =
(
DLF

T
×DLF

)−1
×DLF

T
×DVF (25)

where:

• DLF = [D1, D2, . . . , DN]
T—a vector consisting of the length of the homologous vectors in the local

LF system,
• DVF = [D1, D2, . . . , DN]

T—a vector consisting of the lengths of the homologous vectors in the VF
ship system,

• D1, D2, . . . , DN—lengths of homologous vectors in the LF and VF coordinate systems,
• N—the number of homolog vector pairs known in LF and VR.

The reference of the signs in Equation (25) to the signs in Equations (17) and (19) is as follows:

A = DLF, X = λ, L = DVF (26)

At this stage of transformation, the homogeneity of scale changes is also tested, which is related
to the behavior of the orthogonal transformation criterion (robust orthogonal criterion in Figure 4).
For each pair of homologous vectors in LF and VF, scale corrections are made, which according to
relation (18) and notations (26) and taking into account the Equation (25), can be written as Equation (27):

V = DLF ×
(
DLF

T
×DLF

)−1
×DLF

T
×DVF −DVF (27)

For the corrections calculated with the use of the Equation (27), the standard deviation σD is
calculated using Equation (28):

σD =

√
VT ×V
N − 1

(28)

Then, for each deviation from the calculation scale, the condition written in the form (29) is
checked using the Equation (27):

Vi ≥ 2σD (29)

The deviations from the scale testify to the heterogeneity of its change between the LF and VF
systems. The criterion of exceeding the double value of the standard deviation is statistically justified
for twenty lengths of homologous vectors, in the case of normal distribution of their values. In the case
of five connecting points known in both systems, ten pairs of homologous vectors can be constructed
on their basis. Therefore, exceeding the standard deviation twice can be treated as a disturbance of
the scale, which in this case can also be justified using the Chauvenet criterion [36]. Condition (29)
is a notation of a robust orthogonality transformation criterion. According to this condition, pairs
of homologous vectors for which the condition (29) is satisfied introduce a scale disturbance and
are excluded from the determination of this coefficient. After their elimination, the scale factor is
determined again using the Formula (25).

Stage 2:
In the second step, the center of gravity of both the LF and VF coordinate systems is determined.

The coordinates of the center of gravity have the form of relations (32) and are the result of searching
for the extreme (minimum) of the function F (30), for which the sum of the squares of the distance from
the searched point is the minimum:

F(x, y, z) = D1
2 + D2

2 + . . .+ Dn
2

Di
2 = (xC − xi)

2 + (yC − yi)
2 + (zC − zi)

2 = minimum
(30)



Sensors 2020, 20, 6497 13 of 27

At the stationary point, the partial derivatives of the function (30) take the extreme (minimum)
value, which was written using the compounds (31). Directly from the compounds (31), after ordering,
the coordinates of the center of gravity are obtained in the form (32) [38]. The center of gravity is
therefore determined by minimizing the squared distances to each of the common points in the LF and
VF systems:

∂F
∂x = 2(xC − x1) + 2(xC − x2) + . . .+ 2(xC − xn) = 2(nxC − x1 − x2 − . . .− xn) = 0
∂F
∂y = 2(yC − y1) + 2(yC − y2) + . . .+ 2(yC − yn) = 2(nyC − y1 − y2 − . . .− yn) = 0
∂F
∂z = 2(zC − z1) + 2(zC − z2) + . . .+ 2(zC − zn) = 2(nzC − z1 − z2 − . . .− zn) = 0

(31)

where:

• Di—length of the homologous vector in each of the LF and VF systems built using two points: the
center of gravity and the considered fit point,

• XC, YC, ZC—coordinates of the center of gravity (center of mass) in LF and VF respectively,
• Xi, Yi, Zi—the coordinates of the fitting point, i ∈ (1,2, ..., n),
• n—number of homologous points, adjustments (common points) in LF and RF systems.

XCLF =
∑N

i=1(Xi)

n , YCLF =
∑N

i=1(Yi)

n , ZCLF =
∑N

i=1(Zi)

n ,

XCVF =
∑N

i=1(Xi)

n , YCVF =
∑N

i=1(Yi)

n , ZCVF =
∑N

i=1(Zi)

n ,
(32)

Stage 3:
In the third stage, auxiliary coordinates are determined in the LF and VF systems. These

coordinates are calculated for the common points after translating both systems into the centroid—the
center of gravity of both systems. The idea of translation is presented in Figure 5.

Figure 5. Shift of the two inclined frames of reference (VF and LF) to the centroid—center of gravity.

The systems (Figure 5) are translated along the axis of each of the LF and VF coordinate systems.
In this way, the mutual angular orientation of the two systems does not change. As a result, new
centroid coordinates are obtained, in the auxiliary computational space, and related to the center of
gravity. These coordinates for points in LF and VF systems, after taking into account relations (25) and
(32), can be written using Formula (33):

XiLF = (λ×XLF −XCLF) =
[(

DLF
T
×DLF

)−1
×DLF

T
×DVF

]
×XLF −

∑N
i=1(Xi)

n

XiVF = (XVF −XCVF) = XVF −

∑N
i=1(Xi)

n

(33)

where:
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• XiLF—centroid coordinates of points in the LF and VF systems related to the center of gravity,
• XiVF—centroid coordinates of points in the VF system.

Stage 4:
In the fourth step, the rotation matrix of the system LF with respect to VF is determined. The matrix

of rotation is calculated using the coordinates defined by Equation (33). The designations of the angles
of the LF system with respect to VF were adopted in accordance with the relationship (5) and Figure 5.
For the simplicity and convenience of calculations, a parametric matrix (9) is used. For three common
points, the rotation matrix is determined from the dependence (34):

M = XiVF ×XiLF
−1 (34)

where:

• M—a rotation matrix defined by Equation (9),
• XiLF, XiVF—designations as in Equation (33).

In the case when the number of adjustment points is greater than three, the rotation matrix M is
determined by the least squares method according to the relationship (17), and the Equation (34) is
redefined to the form (19), which can be written in the form of the relationship (35):Sensors 2020, 20, x FOR PEER REVIEW 15 of 28 
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where 𝑋 = (𝐴 × 𝐴) × 𝐴 × 𝐿  

The vector of unknowns, X, calculated using the Equation (35), contains elements of the rotation 
matrix M. The matrix M describes the relation between the centroid coordinates in the instrument 
(LF) and ship (VF) systems, which are given by the Equation (33). This relationship can be written in 
a parametric form in Equation (36): 𝑋 = 𝑀 × 𝑋  (36)

Equation (36) has a simple form, but it does not guarantee that the elements of the matrix M are 
related only to rotations, which can be stated after checking the orthogonality condition in the form 
(11). In the case of an orthogonal transformation, the condition (11) should be strictly met, which for 
a coordinate transformation containing six significant digits in the discussed case means compliance 
with the unit matrix at the level of 1 × 10 . Such a match confirms the condition of orthogonality 
and transformation by similarity. Otherwise, we should look at the M matrix as a transformation 
matrix—a quasi-rotation matrix—which we denote here as QR. The QR matrix is a 3 × 3 matrix and 
it can also be obtained by the affine transformation of coordinates by Equation (36), which can be 
written in the form of Equations (37) and (38): 𝑋 = QR × 𝑋  (37)

where: 

𝑄𝑅 = λ 0 00 λ 00 0 λ × 𝑚 𝑚 𝑚𝑚 𝑚 𝑚𝑚 𝑚 𝑚 = 𝑞 𝑞 𝑞𝑞 𝑞 𝑞𝑞 𝑞 𝑞  (38)

If the scale coefficients λ , λ , and λ  are equal unity, then condition (11) is satisfied, the QR 
matrix is equal to the M matrix, the transformation is orthogonal and the transformation is a 
transformation by similarity. In another case, the relationship between the coordinates is described 
by the Equation (37), and the QR transforming matrix can be described as the quasi-rotation matrix, 
then, the transformation in question is also defined as quasi-similarity. 

Stage 5: 
In the fifth step, after calculating the matrix M (QR), the condition for zeroing the deviations 

between the coordinates of the adjustment points in the VF system (related to the centroid) and the 
coordinates converted to this system from the LF system using the Equations (36)/(37) is checked. The 
fulfillment of the condition of zero deviations 𝐿, within 1 × 10  m (ten-fold more precise than the 
total station measurement), can be written using the relation (39): 

where
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where 𝑋 = (𝐴 × 𝐴) × 𝐴 × 𝐿  

The vector of unknowns, X, calculated using the Equation (35), contains elements of the rotation 
matrix M. The matrix M describes the relation between the centroid coordinates in the instrument 
(LF) and ship (VF) systems, which are given by the Equation (33). This relationship can be written in 
a parametric form in Equation (36): 𝑋 = 𝑀 × 𝑋  (36)

Equation (36) has a simple form, but it does not guarantee that the elements of the matrix M are 
related only to rotations, which can be stated after checking the orthogonality condition in the form 
(11). In the case of an orthogonal transformation, the condition (11) should be strictly met, which for 
a coordinate transformation containing six significant digits in the discussed case means compliance 
with the unit matrix at the level of 1 × 10 . Such a match confirms the condition of orthogonality 
and transformation by similarity. Otherwise, we should look at the M matrix as a transformation 
matrix—a quasi-rotation matrix—which we denote here as QR. The QR matrix is a 3 × 3 matrix and 
it can also be obtained by the affine transformation of coordinates by Equation (36), which can be 
written in the form of Equations (37) and (38): 𝑋 = QR × 𝑋  (37)

where: 

𝑄𝑅 = λ 0 00 λ 00 0 λ × 𝑚 𝑚 𝑚𝑚 𝑚 𝑚𝑚 𝑚 𝑚 = 𝑞 𝑞 𝑞𝑞 𝑞 𝑞𝑞 𝑞 𝑞  (38)

If the scale coefficients λ , λ , and λ  are equal unity, then condition (11) is satisfied, the QR 
matrix is equal to the M matrix, the transformation is orthogonal and the transformation is a 
transformation by similarity. In another case, the relationship between the coordinates is described 
by the Equation (37), and the QR transforming matrix can be described as the quasi-rotation matrix, 
then, the transformation in question is also defined as quasi-similarity. 

Stage 5: 
In the fifth step, after calculating the matrix M (QR), the condition for zeroing the deviations 

between the coordinates of the adjustment points in the VF system (related to the centroid) and the 
coordinates converted to this system from the LF system using the Equations (36)/(37) is checked. The 
fulfillment of the condition of zero deviations 𝐿, within 1 × 10  m (ten-fold more precise than the 
total station measurement), can be written using the relation (39): 

The vector of unknowns, X, calculated using the Equation (35), contains elements of the rotation
matrix M. The matrix M describes the relation between the centroid coordinates in the instrument (LF)
and ship (VF) systems, which are given by the Equation (33). This relationship can be written in a
parametric form in Equation (36):

XiVF = M×XiLF (36)

Equation (36) has a simple form, but it does not guarantee that the elements of the matrix M are
related only to rotations, which can be stated after checking the orthogonality condition in the form
(11). In the case of an orthogonal transformation, the condition (11) should be strictly met, which for a
coordinate transformation containing six significant digits in the discussed case means compliance
with the unit matrix at the level of 1× 10−6. Such a match confirms the condition of orthogonality and
transformation by similarity. Otherwise, we should look at the M matrix as a transformation matrix—a
quasi-rotation matrix—which we denote here as QR. The QR matrix is a 3 × 3 matrix and it can also be
obtained by the affine transformation of coordinates by Equation (36), which can be written in the form
of Equations (37) and (38):

XiVF = QR×XiLF (37)
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where:

QR =


λX 0 0
0 λY 0
0 0 λZ

×


m11 m12 m13

m21 m22 m23

m31 m32 m33

 =


q11 q12 q13

q21 q22 q23

q31 q32 q33

 (38)

If the scale coefficients λX, λY, and λZ are equal unity, then condition (11) is satisfied, the QR matrix
is equal to the M matrix, the transformation is orthogonal and the transformation is a transformation by
similarity. In another case, the relationship between the coordinates is described by the Equation (37),
and the QR transforming matrix can be described as the quasi-rotation matrix, then, the transformation
in question is also defined as quasi-similarity.

Stage 5:
In the fifth step, after calculating the matrix M (QR), the condition for zeroing the deviations

between the coordinates of the adjustment points in the VF system (related to the centroid) and the
coordinates converted to this system from the LF system using the Equations (36)/(37) is checked.
The fulfillment of the condition of zero deviations L, within 1× 10−4 m (ten-fold more precise than the
total station measurement), can be written using the relation (39):

L =


LX

LY
LZ

 =


XiVF
YiVF
ZiVF

−


q11 q12 q13

q21 q22 q23

q31 q32 q33

×


XiLF
YiLF
ZiLF

 =


0.0000
0.0000
0.0000

 (39)

If the condition (39) is not met, corrections to the (quasi) QR rotation matrix are sought, which also
includes the scale correction for each axis. Additionally, corrections to the position of the centroid of the
LF system with respect to VF are sought, which can be generally written in the form of Equation (40),
and after transformation in the form of Equation (41):

V = dQR×XiLF + dXiLF − L (40)


VX

VY
VZ

=


1 0 0 XiLF YiLF ZiLF 0 0 0 0 0 0
0 1 0 0 0 0 XiLF YiLF ZiLF 0 0 0
0 0 1 0 0 0 0 0 0 XiLF YiLF ZiLF

×



dXiLF
dYiLF
dZiLF
dq11

dq12

dq13

dq21

dq22

dq23

dq31

dq32

dq33



−


LX

LY
LZ

 (41)

where
V = A×X − L.

Equation (41) therefore contains the affine scale corrections with corrections to the value of
revolutions (elements) and corrections to the LF system translation to the centroid—corrections of the
LF system center of gravity (elements dXiLF, dYiLF, dZiLF). The determined corrections are added to
the coordinates, and the control is the zeroing of the intercepts L in Equation (39), after taking into
account corrections to the coordinates calculated by Equation (41).

Stage 6:
In the next step of transformation, back translation is performed—a shift opposite to the one that

was subjected to the VF (vessel frame–fixed frame) system in the third transformation step. Reverse
translation is written as the last component of the sum in Equation (23). Thus, the coordinates of the
points in the LF system undergo a double change in translation. First, in the third step, it is a translation
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to the LF center of gravity, and in the sixth step, it is a back translation from the VF center of gravity.
Thus, the transformation is completed, and its result is a point cloud in the VF system. Transformation
results are assessed on common points and on check points that were common points (known in
both LF and VF systems) but did not participate in determining transformation coefficients using
Equations (36)/(37) and (40). In the proposed transformation model, it was assumed that the variables
are uncorrelated, errors are random, and their values are small. Due to these assumptions, the normal
distribution of measurements is used. As a result of the precision analysis, the mean observation error
m0, is calculated as an estimate of the variance coefficient (42), the covariance matrix Q (43) and finally,
the mean errors of the coordinates on the connecting points (44):

m0 = ±

√
VT ×V

n− k
(42)

Q =
(
AT
×A

)−1
(43)

mX = m0 ×
√

QXX, mY = m0 ×
√

QYY, mZ = m0 ×
√

QZZ (44)

where:

• n—number of matching points,
• k—number of observations (adjustment points) necessary to carry out the transformation (in the

considered transformation model, k = 3

2.3. Software

For the research, the SC4W, Geonet DC (Dimensional Control) and Mathcad Professional software
were used. The SC4W and Geonet DC software are designed for dimensional control, including
the processing of data in the object’s own system (local coordinate system), as well as for the
coordinate transformation in oblique local coordinate systems. In the SC4W and Geonet DC software,
transformation by similarity with an unknown engine of calculations is used. In Mathcad Professional
software, the Q-ST algorithm was implemented, and calculations were carried out. The calculations
were performed with the accuracy of 10−4 meters, which for measurements in the range up to 100 m
gives six significant digits.

3. Results

3.1. Description of the Experiment

Tests on the accuracy of the Q-ST transformation were carried out based on laboratory data and
on the basis of real data—collected during the measurements. Laboratory studies were based on ideal
(no disturbance) and disturbed data. The disturbance to the data was generated randomly according to
the normal distribution of the data. In the first step, the algorithm’s response and accuracy was verified
on the test data without disturbances, then on the disturbed data, and finally, on the real measurement
data. The real data were collected during the measurements on a floating ship. All data were processed
using the software described in Section 2.3. Laboratory tests were performed using 4 and 5 common
(adjusted) points, and field studies with 4, 5 and 6 common points. The number of control points
(check points) in laboratory tests was 10. Accuracy analysis was performed independently on common
and check points.

3.2. Experiment

A set of ideal test data has been generated and then shifted and twisted according to the
transformation (1). The rotation matrix R−1 was adopted for the rotation (the matrix R is described by
the compound (5)), and the transformation scale was 1. The transformation parameters are presented
in Table 1.
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Table 1. Parameters for the transformation of the VF test dataset to the LF system.

Value
ϕ (◦) θ (◦) ψ (◦) X0(m) Y0(m) Z0(m) λ

38.57893 33.30716 227.35478 10.000 10.000 4.000 1.000000

In this way, a set of laboratory data was created in two systems: VF—vessel frame (fixed frame)
and LF—local frame (see Table 2 and Figure 6).

Table 2. Laboratory data test set in VF and LF systems.

Point
Vessel Frame—VF Local Frame—LF

X (m) Y (m) Z (m) X (m) Y (m) Z (m)

1. 0.000 0.000 0.000 −14.006 −2.300 −3.815
2. 5.000 −8.000 1.000 −12.468 6.188 −7.763
3. 15.000 −14.000 2.000 −14.990 14.829 −15.244
4. 25.000 −15.000 2.000 −20.037 19.041 −22.846
5. 35.000 −14.000 3.500 −27.137 22.472 −29.255
6. 15.000 14.000 2.000 −32.203 −7.053 −12.257
7. 5.000 8.000 1.000 −22.304 −6.315 −6.055
8. 25.000 0.000 0.000 −28.160 6.276 −22.553
9. 40.000 0.000 15.000 −44.890 19.239 −23.995
10. 38.000 7.000 15.000 −48.060 13.083 −21.749
11. 16.000 10.000 2.000 −30.310 −3.584 −13.433
12. 23.000 −11.000 2.000 −21.364 15.229 −20.920
13. 39.000 −6.000 12.000 −38.988 22.022 −25.846
14. 42.000 6.000 12.000 −48.063 13.673 −26.814
15. 31.000 11.000 3.000 −39.967 1.302 −23.916

Figure 6. Ideal data distribution in the VF frame (a) and in the LF frame (b). Common points are
marked in red color, check points are blue.

Then, the Q-ST was performed, and its results were compared with the calculations made
in the software dedicated to Dimensional Control: SC4W and Geonet DC (Dimensional Control).
The calculation results are summarized for two types of common points: for adjustment points and for
check points (see Table 3).
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Table 3. Mean errors of transformations (standard deviation) for laboratory dataset without distortion
by random errors.

Transformation No. of Common
(Adjusted) Points

Mean Errors on Common
(Adjusted) Points (mm)

Mean Errors on Check Points
(mm)

mX mY mZ mP mX mY mZ mP

Q-ST

5

0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00

SC4W 0.33 0.10 0.18 0.38 0.42 0.49 0.70 0.96

Geonet DC 0.33 0.10 0.18 0.39 0.42 0.49 0.71 0.96

Q-ST

4

0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00

SC4W 0.33 0.14 0.20 0.41 0.44 0.52 0.72 1.00

Geonet DC 0.33 0.09 0.28 0.44 0.49 0.49 0.96 1.18

The analysis of the data collected in Table 3 shows the resetting of the deviations on the combined
points of adjustment and check in the Q-ST. The deviations are zero for the Q-ST, regardless of
whether five fitting points (11–15 in Table 2) or four fitting points (12–15 in Table 2) were used for the
transformation. In the programs for dimensional control (SC4W, Geonet DC), the deviations are not
zeroed, and the errors in the position of the checkpoints after the transformation are rounded to 1 mm,
despite the fact that the data used for the calculations were without disturbance.

The next step was to study the Q-ST on disturbed data. For this purpose, a new set of points was
generated, which were located on a sphere with a radius of 50 m. These data were then shifted and
twisted (see Table 4), and in the last step, random disturbances were added to them (see Table 5).

Table 4. Parameters for the transformation of the VF test dataset to the LF system before their disturbance.

Value
ϕ (◦) θ (◦) ψ (◦) X0(m) Y0(m) Z0(m) λ

27.35478 1.30716 1.57894 15.000 1.000 2.000 1.000000

Table 5. Pseudo-random disturbance for laboratory data (see Table 6).

Point dX (m) dY (m) dZ (m)

1. −0.0009 −0.0014 −0.0008
2. −0.0014 −0.0010 −0.0013
3. −0.0009 0.0011 −0.0003
4. −0.0019 −0.0005 0.0020
5. −0.0034 0.0002 0.0004
6. 0.0020 −0.0058 0.0009
7. 0.0017 −0.0043 −0.0010
8. 0.0018 0.0004 −0.0014
9. 0.0013 −0.0012 0.0061
10. −0.0021 −0.0024 −0.0006
11. 0.0001 0.0002 −0.0026
12. −0.0015 0.0015 0.0015
13. 0.0014 0.0006 −0.0008
14. −0.0004 0.0000 −0.0024
15. −0.0013 −0.0015 −0.0021

Mean error—
Calculated

(mP=0.0034 m)
0.0017 0.0022 0.0021
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Table 6. Laboratory data test set with disturbances.

Point
Vessel Frame—VF Local Frame—LF

X (m) X (m) X (m) X (m) Y (m) Z (m)

1. 28.8670 28.8670 28.8680 51.967 7.250 31.873
2. 28.8670 −28.8670 28.8680 25.445 −44.025 32.681
3. −28.8670 28.8670 28.8680 0.702 33.739 29.974
4. −28.8670 −28.8670 28.8680 −25.821 −17.538 30.784
5. 28.8670 28.8670 −28.8680 53.281 5.661 −25.825
6. 0.0000 35.3550 35.3550 29.170 26.430 37.317
7. 0.0000 −35.3550 −35.3550 −1.700 −38.316 −32.360
8. 35.3550 35.3550 0.0000 61.370 9.242 3.146
9. −35.3550 −35.3550 0.0000 −33.900 −21.120 1.816

10. 0.0000 −50.0000 0.0000 −9.238 −50.347 3.178
11. 50.0000 0.0000 0.0000 58.130 −28.876 4.122
12. −50.0000 0.0000 0.0000 −30.666 17.002 0.834
13. 0.0000 0.0000 50.0000 12.594 −4.560 52.446
14. 0.0000 50.0000 0.0000 36.702 38.468 1.776
15. 0.0000 0.0000 −50.0000 14.872 −7.317 −47.492

The following errors were adopted to generate, according to the normal distribution,
pseudo-random disturbances: mX = mY = mz = 0.002 m, which gives an error in the position
of the point mP = 0.0035 m. After generating pseudo-random disturbances for a set of twenty points,
on a sphere with a radius of 50 m, the mean error of the point location was mP = 0.0034 m, which
slightly differs from the assumed value. The generated laboratory data were therefore shifted and
twisted, and then randomly generated disturbances were added to them. In this way, data was
obtained in the VF and LF systems (see Table 6).

The computations on disturbed data were performed in two variants: for four adjustment points
(points 12–15 in Table 2) and for five adjustment points (points 11–15 in Table 2). In the next step,
for the dataset in the VF and LF systems (Table 6), the scale factor was calculated according to the
formula (25), which amounted to: λ = 0.99999103 for four adjustment points and λ = 0.99997818 for
five adjustment points. In all cases, the robust orthogonality criterion for calculating the scale factor
was met. During the calculations with the use of the Q-ST algorithm, the condition of orthogonality
of the transformation (11) for the QR matrix (38) was checked. The results of this verification were
related to the unit matrix, which was presented for four adjustment points in Equation (45) and for five
adjustment points in Equation (46):

I −QRT
·QR =


0.0000154 −0.0000203 −0.0000114
−0.0000203 −0.000036 −0.0000203
−0.0000114 −0.0000203 −0.0000302

 (45)

I −QRT
·QR =


−0.0000247 −0.0000374 0.0000104
−0.0000374 −0.0000624 0.0001047
0.0000104 0.0001047 −0.0000071

 (46)

The results of the Equations (45) and (46) indicate that the transformation is not orthogonal for
common (adjusted) control points with a precision of six decimal places. The transformation shows
elements of an affine transformation and is considered a quasi-similarity, as shown in Equation (38).

Then, the Q-ST transformation was performed, and its results were compared with the calculations
made in software dedicated to Dimensional Control. The calculation results are summarized in Table 7.
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Table 7. Mean errors of transformations (standard deviation) for laboratory dataset with distortion by
random errors.

Transformation No. of Common
(Adjusted) Points

Mean Errors on Common
(Adjusted) Points (mm)

Mean Errors on Check Points
(mm)

mX mY mZ mP mX mY mZ mP

Q-ST

5

0.57 0.03 0.50 0.76 2.27 3.03 2.89 4.77

SC4W 1.06 0.94 1.35 1.95 2.70 2.34 2.80 4.54

Geonet DC 1.16 0.47 1.03 1.62 2.81 2.54 2.40 4.48

Q-ST

4

0.00 0.00 0.00 0.00
0.00 2.84 2.75 2.07 4.46

SC4W 1.25 0.38 0.97 1.62 2.84 2.49 2.07 4.31

Geonet DC 1.25 0.38 0.97 1.63 2.84 2.49 2.07 4.31

The next and last stage of verification of the Q-ST was field research on real data. Measurements
were made with a tilted reference frame using the total station (see Figure 7).

Figure 7. Total station measurements on a tilted reference frame (on the ship in the water).

Measurements were made on the ship in the water, from four measuring stations. The ST1 station
was the central one, which was the reference for the other measurement stations. The remaining
positions were selected so that they had common points with the first position. Common points
(adjustments) to the ST1 station are summarized in Table 8.
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Table 8. Points common between positions—in relation to the first position—ST1.

Point Number ST1
Common Points

ST2 ST3 ST4

1 + +

2 + +

3 +

5 +

6 +

7 +

M1 + +

M2 + + +

M3 +

M4 +

M11 +

Suma 6 5 5

Tables 9–12 summarize the coordinates of the points measured on individual measuring stations.

Table 9. Points measured at the ST1 station.

Station ST1 X (m)
(North)

Y (m)
(East)

Z (m)
(Up)Point Number

1 234.752 116.514 29.169
2 235.198 107.448 29.096
3 260.012 100.302 32.768
5 333.558 93.845 49.364
6 337.931 104.895 49.292
7 334.844 108.814 49.302

M1 259.083 117.185 29.061
M2 299.949 101.61 49.456
M3 319.777 96.212 49.505
M4 307.113 109.849 48.809
M11 257.723 102.046 32.763

Table 10. Points measured at the ST2 station.

Station ST2 X (m)
(North)

Y (m)
(East)

Z (m)
(Up)

Common Point
(Yes—Y/No—N)Point Number

ST2 300.000 100.000 50.000 N
M2 264.588 99.054 48.506 Y
5 298.653 93.677 48.469 Y
6 302.242 105.017 48.403 Y
7 298.884 108.703 48.410 Y

M4 271.151 107.780 47.873 Y
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Table 10. Cont.

Station ST2 X (m)
(North)

Y (m)
(East)

Z (m)
(Up)

Common Point
(Yes—Y/No—N)Point Number

FUGRO_STBD_C 273.766 102.844 56.104 N
FUGRO_PORT_C 273.770 100.120 56.141 N
FUGRO_PORT_1 273.822 100.169 56.188 N
FUGRO_PORT_2 273.844 100.131 56.189 N
FUGRO_PORT_3 273.837 100.072 56.196 N
FUGRO_PORT_4 273.813 100.049 56.187 N
FUGRO_STB_1 273.810 102.910 56.147 N
FUGRO_STB_2 273.832 102.874 56.143 N
FUGRO_STB_3 273.831 102.834 56.141 N
FUGRO_STB_4 273.810 102.797 56.144 N
GPS_PORT_1 296.980 91.978 48.604 N
GPS_PORT_2 297.054 91.978 48.602 N
GPS_PORT_3 297.119 91.914 48.599 N
GPS_PORT_4 296.945 91.956 48.604 N
GPS_PORT_5 297.022 91.984 48.603 N
GPS_PORT_6 297.125 91.882 48.599 N
GPS_STBD_1 297.020 110.743 48.519 N
GPS_STBD_2 296.966 110.711 48.519 N
GPS_STBD_3 296.888 110.722 48.518 N
GPS_STBD_4 296.925 110.709 48.518 N
GPS_STBD_5 296.995 110.722 48.519 N
GPS_STBD_6 297.032 110.762 48.518 N

M3 284.740 95.070 48.588 Y

Table 11. Points measured at the ST3 station.

Station ST3 X (m)
(North)

Y (m)
(East)

Z (m)
(Up)

Common Point
(Yes—Y/No—N)Point Number

ST3 300.000 100.000 50.000 N
M2 325.598 92.445 69.835 Y
M1 283.660 104.852 49.435 Y
1 259.446 102.306 49.537 Y
2 260.589 93.302 49.451 Y
3 285.881 88.085 53.128 Y

USBL_1 307.939 86.696 48.413 N
USBL_2 308.280 86.765 48.408 N
USBL_3 307.707 86.259 48.421 N
USBL_4 307.968 85.836 48.419 N
USBL_5 308.458 85.837 48.411 N
USBL_6 308.697 86.172 48.404 N
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Table 12. Points measured at the ST4 station.

Station ST4 X (m)
(North)

Y (m)
(East)

Z (m)
(Up)

Common Point
(Yes—Y/No—N)Point Number

ST4 300.000 100.000 50.000 N
M2 356.008 90.648 69.726 Y
M1 314.558 104.564 49.317 Y

M11 313.816 89.377 53.002 Y
1 290.266 102.901 49.412 Y
2 291.082 93.860 49.329 Y

PRISM_SF 328.338 104.061 49.454 N
PRISM_SA 300.156 104.953 49.644 N
PRISM_PA 299.529 84.558 49.710 N

Then, the measurements from the stations ST2, ST3 and ST4 were transformed to the coordinate
system of the ST1 station. The transformation was performed with the use of common points.
The calculations were made in dimensional control software: SC4W, Geonet DC and with the use
of the Q-ST algorithm. As a result of the calculations, the scale factor was determined from the
dependence (25), which for the transformation of individual sites in relation to station 1 is presented
using Equation (47):

λ21 = 1.0000433
λ31 = 0.9998868
λ41 = 0.9999414

(47)

In all cases, the robust orthogonality criterion for scale factor calculation, checked by formula
(29), was met. The orthogonality condition (11) for the QR matrix was also checked. The results for
individual stations are presented by means of (48)–(50)—in the order ST2, ST3 and ST4 against ST1:

I −QRT
·QR =


−0.0001745 0.0004735 0.0065694
0.0004735 0.0006779 0.0021945
0.0065694 0.0021945 −0.0057780

 (48)

I −QRT
·QR =


0.0002384 0.0002747 −0.0004385
0.0002747 −0.0002029 −0.0003900
−0.0004385 −0.0003900 0.0005775

 (49)

I −QRT
·QR =


0.0007725 −0.0003493 −0.0015617
−0.0003493 0.0000938 0.0002925
−0.0015617 0.0002925 0.0011551

 (50)

The calculated scale factor (47) and the (quasi) rotation matrix indicate that the transformation is
not strictly orthogonal with a six-digit precision.

The transformation errors for common (adjusted) points from individual measurement stations,
in relation to the measurements from the ST1 station, are presented in Table 13. Due to the small
number of common control points between the individual measuring stations, all common points were
used only as the adjusted control points.

The data in Table 13 show that the smallest transformation errors are achieved using the Q-ST
transformation. With five fitting points, the transformation mean errors are approximately 1.5 mm.
In the other transformations—SC4W and Geonet DC—these errors are three times higher. With six
adjustment points, the results achieved with the Q-ST are already close to the transformation made in
the programs for dimensional control, but still smaller, this time by about 30%. In both calculation
variants, with five and six points in common, SC4W and Geonet DC software give similar results and
it is difficult to indicate which of them is more accurate.
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Table 13. Mean error (standard deviation) for field surveying data set.

Transformation
No. of Common

(Adjusted) Points

Mean Errors on Common
(Adjusted) Points (mm)

Average Errors on Common
(Adjusted) Points (mm)

mX mY mZ mP mX mY mZ mP

Q-ST
6

(ST2 to ST1)

1.86 2.34 0.75 3.09 1.44 1.82 0.55 2.39

SC4W 3.19 3.00 0.89 4.47 2.50 1.83 0.67 3.17

Geonet DC 3.24 2.88 0.92 4.43 2.54 1.92 0.77 3.28

Q-ST
5

(ST3 to ST1)

0.55 0.20 1.48 1.59 0.43 0.16 1.16 1.25

SC4W 3.81 1.32 2.29 4.64 3.20 1.00 1.80 4.54

Geonet DC 3.61 1.29 2.13 4.39 2.99 1.00 1.78 3.62

Q-ST
5

(ST4 to ST1)

1.31 0.12 0.32 1.350.00 1.03 0.10 0.26 1.07

SC4W 4.30 0.71 2.06 4.82 3.60 0.40 1.80 4.04

Geonet DC 4.56 0.80 1.93 5.02 3.80 0.52 1.68 4.19

The final step in verifying the Q-ST was to compare the transformation results of the measurement
points (see Tables 10–12), which were not fitted (“N” designation) to transformation by similarity.
The transformation of these points was performed in the following programs: PCMS (Leica), Spatial
Analyzer (SA), SC4W, Geonet Dimensional Control and using the Q-ST algorithm. The discrepancy in
the position of the points between individual software in relation to the Q-ST algorithm was 4.79 mm
on average. This difference is about 70% of the value of the sum of errors on the common points (see
Table 13) of the Q-ST compared to other methods. A sparse point cloud formed from all transformed
points is shown in Figure 8.

Figure 8. Sparse point cloud. The measuring stations are marked in red, common points are marked in
blue and the measuring points are marked in green.
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4. Discussion and Conclusions

The presented method of Quasi-Similarity Transformation allows to obtain zero deviations on
common points, in the case when the number of these points is four, that is, with one redundant
point. The transformation of the coordinates of the connecting points was also performed in the SC4W
and Geonet DC programs, which are dedicated to dimensional control, in particular in the offshore
industry. Geonet DC and SC4W do not produce zero deviations on combined points when the number
of match points is greater than three. Even with ideal, laboratory-generated data, errors within 1 mm
are generated using these programs. In the case of five connection points, the Q-ST transformation
gave three times greater precision than the software used for dimensional control purposes, which was
verified, among others, on real data by transforming points measured on the ship in the inclined frame
of reference. For the six connectivity points, the Q-ST gave 30% more accurate results than software
used in the offshore industry. The goal of zeroing deviations on total points, set in the paper, when
their number is four, has been achieved. When the number of common points is five, the deviations are
no longer zero, but are still close to zero (within the range of 0.5–1.5 mm in the conducted experiments).
When the number of total points is six, the precision of the Q-ST algorithm is still better, but already
close to that obtained in coordinate transformation programs.

The tested Geonet DC, SC4W (for connecting points) and PCMS (Leica), Spatial Analyzer (SA),
SC4W and Geonet DC software (for the remaining points) give very similar coordinate transformation
results. This allows the conclusion that a similar transformation by similarity algorithm works in them,
and that the subtle differences in coordinates result from the compensatory least squares approach.
The Q-ST, on the other hand, has a non-standard compensatory approach—the least squares method
is used separately at each stage of the calculations. The presented computational approach—the
Q-ST—was verified on the following data: laboratory, disturbed and real laboratory. In each calculation
variant, the Q-ST gave the smallest errors at the adjustment points, in relation to the compared methods.
The assumption of the normal (Gaussian) distribution of the data and the least squares method allows
us to conclude that the Q-ST method gives the most probable results of the transformation by similarity,
which results directly from smaller errors in relation to other methods. Therefore, the authors believe
that the Q-ST is the optimal computational method for coordinate transformations with a small number
of common points (4–6 points) and can find application, in particular in the offshore industry, where it
is very often necessary to perform geodetic measurements in inclined frames of reference.
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