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Abstract: Artificial intelligence (AI) is widely used in pattern recognition and positioning. In most
of the geological exploration applications, it needs to locate and identify underground objects
according to electromagnetic wave characteristics from the ground-penetrating radar (GPR) images.
Currently, a few robust AI approach can detect targets by real-time with high precision or automation
for GPR images recognition. This paper proposes an approach that can be used to identify parabolic
targets with different sizes and underground soil or concrete structure voids based on you only look
once (YOLO) v3. With the TensorFlow 1.13.0 developed by Google, we construct YOLO v3 neural
network to realize real-time pattern recognition of GPR images. We propose the specific coding
method for the GPR image samples in Yolo V3 to improve the prediction accuracy of bounding
boxes. At the same time, K-means algorithm is also applied to select anchor boxes to improve
the accuracy of positioning hyperbolic vertex. For some instances electromagnetic-vacillated signals
may occur, which refers to multiple parabolic electromagnetic waves formed by strong conductive
objects among soils or overlapping waveforms. This paper deals with the vacillating signal similarity
intersection over union (IoU) (V-IoU) methods. Experimental result shows that the V-IoU combined
with non-maximum suppression (NMS) can accurately frame targets in GPR image and reduce
the misidentified boxes as well. Compared with the single shot multi-box detector (SSD), YOLO v2,
and Faster-RCNN, the V-IoU YOLO v3 shows its superior performance even when implemented by
CPU. It can meet the real-time output requirements by an average 12 fps detected speed. In summary,
this paper proposes a simple and high-precision real-time pattern recognition method for GPR
imagery, and promoted the application of artificial intelligence or deep learning in the field of
the geophysical science.
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1. Introduction

In the application of ground-penetrating radar (GPR) engineering detection, the following
three cases are the most common: (1) Inspection of the atypical situation of reinforced concrete
structures such as bridges, tunnels, or public roads, or the number of steel bars inside those structures;
(2) locating certain objects underground, such as archaeological research; (3) evaluating and measuring
the distribution of hollows, voids, or soil firmness in highways, bridges, and tunnels. Nonetheless,
the outcomes, after GPR detection, are often judged by the worker’s experience to recognize the location
and size information of the target [1,2]. Actually, these kinds of evaluations using GPR image are not
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infeasible, but consume a lot of manpower and material resources. For example, the 3D radar launched
currently by MALA can collect data on multiple channels. Suppose that a 3D GPR with 22 acquisition
antennas can generate 22 GPR images at the same time; if we evaluate its image outcome by traditional
method, the analysis work will be very inefficient [3,4]. Besides, with the continuous development of
3D radar imaging technology, especially for multi-channel GPR, efficient and intelligent AI algorithms
can not only output the analyzed results automatically, but also can fulfill the application demands of
the underground exploration engineering, such as long-distance detection of reinforced concrete of
roads; investigation of large-area cavities of bridges and tunnels; early warning of urban road collapse.

In terms of using artificial intelligence to identify GPR imagery, Sonoda and Kimoto (2018) adapted
the finite-difference time-domain (FDTD) to simulate multiple GPR images, and trained a 9-layer
deep neural network (DNN) model to extract feature maps that contain many hyperbolic signals of
underground objects [5]. Finally, they obtained the characteristics of electromagnetic wave intensity
from the curve signal and identified six materials with 80% accuracy. Because of the limited quantity
of DNN layers, this method lacked accuracy of the identified materials and is limited to its sample
selection. Aydin and Yüksel (2017) adapted the GprMax simulation API program to generate GPR
B-scan images, then proposed to combine two convolutional layers and pooling layers to classify
the electromagnetic wave, but they did not involve in-depth or improved research in classified
speed [6]. Dinh et al., (2018) validated performance with traditional GPR images processing algorithms
and convolutional neural network (CNN). At last, the reinforcement in GPR images were positioned
and inspected automatically. After analyzing 26 bridge decks GPR data, they achieved a recognition
accuracy of 99.60% ± 0.85%; but its detecting speed did not fulfill the engineering demands of
real-time outcome [7]. Pham and Lefèvre (2018) used the faster-RCNN framework to detect hyperbola
reflections from many B-Scans generated from gprMax toolbox and the results show that faster-RCNN
framework can provide significant improvements to deal with GPR data [8–11]. Kechagias-Stamati
et al. proposed a CMNet network for synthetic aperture radar (SAR) image target recognition based
on convolutional neural network. The network adds center loss and softmax training process to
the feature layer of SAR images [12]. In order to improve the target recognition rate of SAR image,
both intra class aggregation and inter class separation were considered. However, this significantly
reduces the utilization of hyperbolic features in GPR images. Dou et al. (2017) proposed a novel
technique called column-connection clustering (C3) algorithm to separate hyperbolae in GPR images,
and obtain hyperbolic signatures. This method can also be used for real-time detection [13]. The fitting
speed is 0.73 s per hyperbola. However, the number of hyperbolic objects in GPR images is often
large. Compared with the Yolo V3 recognition method proposed in this paper, the recognition speed of
12 frames per second per image is more dominant. In addition, they only test the scattered hyperbola.
On this basis, this paper also tests the hyperbola-intensive samples, and achieves ideal detection effect.
Pham et al. (2020) proposed an improved YOLO structure called YOLO-fine to detect very small
objects from aerial and satellite remote sensing images. However, for GPR images, we not only need to
detect small objects, but also need to identify intensive hyperbolic features [14]. Obviously, in many
engineering cases, very small hyperbolic features are not the common situations.

2. Materials and Methods

2.1. YOLO v3 Feature Extractor

YOLO v3 is a classical pattern-recognition algorithm based on darknet-53 CNN architecture
proposed by Joseph Redmon in 2018 [15]. It is currently a marketable object detection algorithm.
Most importantly, it has ultra-fast detected speed than SSD, but almost as accurate as faster-rcnn [16,17].
The YOLO v3 basic framework contains the convolutional layer, batch normalization (BN) layer,
and leaky rectified linear unit (ReLU) layer [18,19]. First, it is assumed that all input images are resized
into 416 × 416 and three types of feature maps; then they go through a 32 × 3 × 3 (filter numbers are
32 with 3 × 3 sizes) and 64 × 3 × 3 convolutional layer, and output a 208 × 208 feature map with 64
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channels. Where the second block network of YOLO v3 carried one residual block which includes
zero padding, convolution and residual unit, and 128 × 3 × 3 convolutional layer; it outputs some
104 × 104 feature maps with 128 channels. The third YOLO v3 network contains two residual
block, then go through 256 × 3 × 3 convolutional layer, where the 4th block contains many residual
shortcut to all 256 × 256 feature maps. In addition, this block makes vector concatenated operation
of residual shortcut to reduce the gradient explosion and outputs 52 × 52 feature maps with 384
channels. With up-sample, some 52 × 52 feature maps are outputted for YOLO v3 to detect small-scale
objects [20]. Similarly, the fifth block outputs many 26 × 26 feature maps for detecting medium-scale
targets. At last, network still passes by many residual shortcut connection blocks which include zero
padding, convolution, and residual unit. Finally, YOLO v3 designed a 255 × 1 × 1 convolution layer to
output 13 × 13 feature maps with 255 channels for detecting big objects [21]. In general, YOLO v3 can
detect images on three different scales with 32 × 32, 16 × 16, and 8 × 8 feature maps, where the first
detected operation layer is at 82th layer; its stride takes 32 to generate 13 × 13 feature maps. The second
up-sampling operation is at 94th and the third detection layer is at 106th layer, which produces a
feature map with dimensions 52 × 52 × 255. Overall architecture of YOLO v3 is shown in Figure 1.
In addition, we used the K-means clustering to select bounding box priors in YOLO v3.

Figure 1. You only look once (YOLO) v3 architecture.

The following Figure 2 shows a part graph of YOLO v3 exported from TensorBoard of TensorFlow
visualization API, which was actually a neural network connection diagram for YOLO’s second up
sampling. The TensorBoard can show the output and input tensor variables at each node, in addition,
it can show the dependency between the tensor operations through some edges. The conv2d here is
abbreviated for the convolution layer or block in Figure 1. Similarly, Leaky relu is denoted as ReLu
layers in Figure 1 and batch normalization is denoted as BN layer. We can visualize all concatenation
operation of each stage of YOLO v3 through TensorBoard, such as the attributes behind the convolution
layer indicate that the input and output tensors correspond to this convolutional layer. The loss
represents the value of the current convolutional layer after passing through the optimizer.
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Figure 2. YOLO v3 visual format in TensorBoard.

2.2. Bounding Box Encoding Strategy

Soil objects underground are regularly sensitive to electromagnetic waves caused by its physical
properties [22,23]. Most of them appear as parabolic with openings downward or obvious energy
reflection in electromagnetic waves format. GPR moves along the survey line and continuously collects
a series of trajectories (A-scan) to form electromagnetic wave B-scan images [24]. Before YOLO v3
training, GPR images were collected in this way. As mentioned in Section 2.1, YOLO v3 outputs
feature maps or cells by three different stages, and each bounding box is responsible for multiple
categories [25]. Suppose that the input GPR images size still is 416 × 416, as shown in Figure 3a,
then the original picture can be divided into 13 × 13 cells. Those cells that are parabolic vertex M in
the GPR images are responsible for predicting corresponding targets. When annotating GPR image
samples, we make the center of ground truth box (rectangle A1B1C1D1) to correspond to the position
of parabola apex. Red box in Figure 3a contains the midpoint of target wave; rectangle A1B1C1D1
marked as red solid line is ground truth bounding box and ABCD marked as red dotted line represents
the predicted box. Figure 3b shows the encode ways of ground truth box in YOLO v3. Point A1 is
the top left corner of box; tx and ty are the pixel position of point A1 in GPR image. Zx and Zy are noted
as pixel width and height of each cell respectively. The width of B1D1 is marked as tw and the height of
C1D1 is marked as th. As shown in Figure 3c, each bounding box was attributed to one object score or
confidence Pi ∈ {0, 1}, 4 box coordinates (tx, ty, tw, th), and one class score Si. Here, Si follows similarly
as the one hot encoding method and Si ∈ [0, 1]. If Si equals to 0, there was no current detected target
in the GPR image; otherwise, if Si equals to 1, it indicates that there exists current detected target.
Finally, the feature map corresponds to 13 × 13 cells, and the output bounding box encoded tensor
shape is (13 × 13, 6). If there were n GPR image samples, then all bounding box sizes corresponded to
tensor (n, 13 × 13, 6). It is worth noting that if it is a non-hyperbolic target, such as the voids detected
below, we will use the original encoding method of YOLO v3.

Figure 3. Improved YOLO v3 bounding box encoding: (a) Feature map of GPR target in YOLO v3; (b)
Ground truth box of hyperbolic signal; (c) Encoding format of detecting GPR target.

2.3. Anchor Box Selection by K-Means Clustering

The K-means is an iterative algorithm that can divide data into K predefined clustering and cluster
each point into specific data groups [26]. When YOLO v3 trains GPR sample data, anchor box can control
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skillfully the over fit recognition results of soil targets, because in the high-frequency electromagnetic
wave reflection signal, when two target positions are relatively close, those close parabolic vertices
will be easily assigned to the same bounding box. K-means defines the size of bounding box through
cluster analysis. Absolutely, K-means tries to keep clusters as different as possible at this point in order
to minimize the sum of squared distances between all centers of data clusters [27,28]. First, we define
K value and initialize the centroids by shuffling, then keeping iterating until there is no change in
the centroids outcome. This is called expectation maximization [29]. Assuming that there are m
samples, here we introduce a multi-sample function about K value:

F =
m∑

i=1

k∑
k=1

σik ‖ t(x, y) − µk ‖
2 (1)

If the point t (x, y) belongs to the K cluster, then σik = 1 otherwise σik = 0; at this time, µk can
be considered as the centroid of t (x, y). If the derivative of F function can minimize the equation
solution, then the problem can be solved using the following formula:

∂F
∂σik

=
m∑

i=1

k∑
k=1

‖ t(x, y) − µk ‖
2 (2)

Here, it is needed to distinguish F solution and recalculate the centroid after the last clustering
iteration. Obviously, data points t (x, y) are assigned to close clusters. Finally, we can recalculate
each cluster centroid according to the following Equation (3) to reflect the situation of the new
point allocation.

∂F
∂µk

= 2
m∑

i=1

σik(t(x, y) − µk) = 0 (3)

µk =

∑m
i=1 σikt(x, y)∑m

i=1 σik
(4)

K-means uses data distance as the evaluated criterion to determine the selection of anchor
box. Algorithm iteration is initialized at the beginning. In order to avoid the F function staying at
the local optimal rather than global optimal, this paper adopts a variety of centroid initialization to
run the K-means algorithm [30,31]. After filtering by K-means, the encode label of YOLO v3 for GPR
image increases the data dimension. As shown in Figure 4, Ylabel represents the encoded bounding
box without increasing the dimension. This is the transpose of data matrix in Figure 3c. YK−Means

represents the encoded bounding box that have added n anchor boxes output by K-means clustering.

Figure 4. Encoding bounding box with multiple anchor box after k-means selection.

2.4. Principle Analysis of V-IoU Processing with NMS

Non-maximum suppression (NMS) is commonly applied to extract the window with the highest
score in detection algorithm, such as feature extraction in sliding windows, pedestrians in automatic
driving, and vehicle recognition [32]. Similarly, in the GPR image, after feature maps are produced by
the convolutional layer of YOLO v3 in the 3rd stage recognized by the classifier, for some underground
targets, there are a large number of bounding boxes that cross each other or contain the same parabolic
midpoint in one cell. The goal of NMS is to remove the detected redundant boxes and keep the best
one. First, it is needed to mention here the intersection over union (IoU) score. IoU is a standard
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performance metric for image category segmentation problems [33]. For a given set from image,
IoU defined by Equation (5) gives the ratio of intersection and union of the predicted bounding box
and ground truth bounding box [34]. Suppose t represents the probability outputs of pixel set N
after filter by activation function in the GPR image; Y denotes the data set composed of ground truth
bounding box; Y ∈ {0, 1}M marks 0 for non-target pixels and 1 for target pixels.

IoU =
I(t)
U(t)

=

∑
n∈N tn ∗Yn∑

n∈N(tn + Yn − tn ∗Yn)
(5)

First, in YOLO v3, NMS can calculate the confidence C of the proposal region and sort the bounding
boxes list. Second, NMS selects the predicted box with the largest score; then the IoU coefficients
of other remain bounding boxes and the current box are calculated. If the IoU value is greater
than the predefined threshold, NMS will delete this bounding box [35]. This is a complete iterative
process in which NMS is applied to select the maximum score bounding box for one target. Then in
the second iteration, the highest score box is still selected in the remaining boxes and those that exceed
the predefined IoU threshold are deleted until all possible targets in the GPR image have been pick up.

After the YOLO v3 residual network and 1 × 1 convolutional layer, a large number of bounding
boxes are generated on the region proposal area outputted by feature map. As shown in Figure 5a,
S0 denotes the starting position of GPR: S1, S2, and S3 represent respectively the soil surface position of
parabolic electromagnetic wave signal generated by three iron cylinders with buried depths of 0.25 m,
0.3 m, and 0.35 m, respectively. The soil dielectric constant is about 6.5 and the electrical conductivity is
about 0.002 s/m. It can be seen that there are numerous prediction bounding boxes around each target.
Now we focus on one parabola. In the process of YOLO v3 algorithm recognizing the target from GPR
image, it is uncomplicated to misidentify the parabola originally belonging to one object as multiple
targets because of the oscillating signal from electromagnetic wave [36]. The points N, P, and Q in
Figure 5b represent three parabola generated by some strong conductive targets in depth direction
of the soil. The number on a side of SOIL label represents the probability of being identified as a
target, with the maximum value as 1 and the minimum as 0. YOLO v3 recognizes or locates those
as three adjacent targets, but it is only one target, although their IoU threshold has been included in
the predefined range. Therefore, this paper proposes the principle of V-IoU merging vacillate signals of
similarity waves based on GPR images. Assume the location of ground truth box (red box) was marked
as coordinate (txn, tyn, twn, thn) and the locations of another two boxes which were marked by GPR
echo signal vacillation were predicted as (tx1, ty1, tw1, th1) and (tx2, ty2, tw2, th2). Then the coordinate of

ground truth box of point N can be denoted as
(
txn +

twn
2 , tyn −

thn
2

)
. Similarly, the pixel coordinate of P is

denoted as
(
tx1 +

tw1
2 , ty1 −

th1
2

)
and Q is denoted as

(
tx2 +

tw2
2 , ty2 −

th2
2

)
. First, it is worth noting that we

define a horizontal threshold β here and make the (txn − tx1) +
(

twn
2 + tw1

2

)
∈ [−β, β]. At the same time

we define a longitudinal threshold α and made the
(
tyn − ty1

)
−

( thn
2 −

th1
2

)
∈ [−α,α]; if those parabolic

midpoint or N, P, and Q points at the soil depth satisfy the horizontal and vertical critical values,
we will liberate the limitation of IoU threshold and merge those prediction boxes. This is the core idea
of V-IoU, for example, Di ∈ [−α,α] and i ∈ R.



Sensors 2020, 20, 6476 7 of 18

Figure 5. V-IoU principle with non-maximum suppression (NMS): (a) The predicted boxes from
proposal region; (b) The IoU processing of GPR vibration signal.

2.5. Loss Function and Learning Rate Adaptive Optimizer

Loss function of YOLO v3 in this paper is composed of mean variance and error [37]. Specifically,
it is mainly divided into three parts for the calculation of offset losses, midpoint coordinate of parabola
in GPR image prediction error gprErr, V-IoU prediction error viouErr, and classification error clsErr [38].
Here preset the weight of gprErr γgpr as 5 and the weight of viouErr γviou as 0.5 in order to rectify
the domination of large target is weaker than the small target during detection. It can be expressed by
the following formula:

Loss =
s2∑

i=0

gprErr + viouErr + clsErr (6)

After derivation, the loss function of this three parts can be expressed as:

gprErr = γgpr
s2∑

i=0

B∑
j=0

Itar
i j

[
(xi − x̂l)

2 + (yi − ŷl)
2
]

+γgpr
s2∑

i=0

B∑
j=0

Itar
i j

(√wi −
√

ŵl
)2
+

(√
hi −

√
ĥl

)2 (7)

where x̂l, ŷl, ŵl, and ĥl in the Equation (7) are denoted as predicted values by YOLO v3, xi, yi, wi, and hi
expressed as training tag value; Itar

i j indicates that if the object falls into the j-th position of lattice i-th
bounding box, its value is either 1 or 0.

viouErr =
s2∑

i=0

B∑
j=0

Itar
i j

(
Ci − Ĉi

)2
+ γviou

s2∑
i=0

B∑
j=0

Inotar
i j

(
Ci − Ĉi

)2
(8)

where Ĉi in the Equation (8) is denoted as predicted value by YOLO v3, Ci expressed as training tag
value, Inotar

i j indicates that the j-th bounding box of the object grid i does not contain the detection target.

clsErr =
s2∑

i=0

Itar
i

∑
c∈classes

(
Pi(c) − P̂i(c)

)2
(9)

where P̂i in the Equation (9) is denoted as predicted value, Pi is expressed as the training tag value.
Figure 6 below shows a graph of the YOLO loss function node in TensorBoard; the input element were
the loss output of conv2d_59, conv2d_67, and conv2d_75; where the input_1, input_2, and input_3
correspond to the gprErr, viouErr, and clsErr in Equation (6) respectively.



Sensors 2020, 20, 6476 8 of 18

Figure 6. YOLO v3 loss visual format in TensorBoard.

When using the gradient descent method to optimize YOLO v3 loss value, even though the loss
function have to be optimized near the minimum value, there still exists a large gradient. In this way,
using a global learning rate will cause some serious problems, such as slow gradient convergence
or unstable loss value. In order to solve this problem, this article uses the Adam algorithm which is
a learning rate adaptive algorithm improved by the RMSProp algorithm proposed by Kingma in
2014 [39]. First, we set a default learning rate (0.001 in TensorFlow) and two exponential decay rates for
moment estimation (default is 0.9 and 0.990 in TensorFlow); then initialize the moment variable and its
time step count; finally, we continuously correct the deviation through biased moment estimation
to update the weight and learning rate. Figure 7 below shows two structural diagrams of Adam
optimizers in TensorBoard.

Figure 7. Adam optimizer in TensorBoard.

3. Results and Discussion

3.1. Experimental Parameters

GPR model in this paper used the GX750-HDR (GEO AB Company, Sundbyberg, Sweden) of
Swedish Guideline GEO AB Company. Sampling number collected for each channel was 412, sampling
interval was 0.015 m, the coupling distance of GPR antenna preset was 0.14 m, and the diameter of
the ranging wheel preset was 17 cm. GPR data preprocessing software was the REFLXW 7.5 which its
copyright by K.J. Sandmeier. The training data set format adopted the COCO data format [40,41].
Here, we marked GPR image target for YOLO v3 training by the visual object tagging tool (VoTT)
2.1.0. Operating system was windows 10, and its processor model is Intel(R) Xeon (R) Gold 6130
CPU (Intel, Santa Clara, CA, USA) 2.10 GHz. Deep learning frameworks or related packages include
the python 3.7, Keras 2.31, Tensorflow 1.13.1, cuDNN 7.4, Ananconda 3, Sklearn and GUDA 10.0.
The main methods of preprocessing noise are: (1) Remove DC drift, (2) static correction cut, (3) gain,
(4) remove direct ground wave, (5) remove high and low frequency signals, (6) horizontal smoothing.
A total of 331 GPR image samples were collected in the experiment, of which the proportion of training
set in whole data set is 70%, the validation set is 20%, and the test set is 10% in whole data [42].
In the YOLO v3 training stage, the batch size and subdivision of training sets are preset as 20. Epoch of
each stage is preset as 51 and the learning rate is predefined as 0.001.

3.2. Anchor Boxes Selection by K-Means Clustering

After using VOTT tool to label all hyperbola targets from GPR images, there are 386
rectangular boxes containing parabola generated from the training dataset of ground truth images.
Location parameters of ground truth box are composed of four corner coordinates of the rectangular
box as (xmin, ymax), (xmin, ymin), (xmax, ymax), and (xmax,ymin). Obviously, we only need to take
four parameters xmin, ymin, xmax, and ymax for clustering effect or silhouette coefficient analysis [43].
Silhouette coefficient is a significant evaluation index for clustering performance. Its value is commonly



Sensors 2020, 20, 6476 9 of 18

between [−1, 1]. When the silhouette coefficient is closer to 1, the cohesion and separation of K-means
model are better. In Figure 8a, we adjusted the clustering or centroid number of K-means to 2;
the maximum number of iterations is predefined as 200; after normalizing the xmin, ymin data, it can be
seen that the clustering group of centroid were still relatively demonstrable. The silhouette coefficient
output by the silhouette score function from sklearn module was 0.4839. Compared with Figure 8b,
when the number of centroid was set to 3, there exist high-separation and low-cohesive phenomenon
for the clustered groups after standardized data. Similarly, Figure 8c,d shows the clustering effect of
xmax and ymax data when the clustering is set to 2 and 3. At this time, the silhouette coefficient output
by the silhouette score function was 0.4868. After calculation, finally we got four anchor boxes values
for training configuration parameters that consist of xmin, ymin, xmax, and ymax.

Figure 8. K-means clustering analysis of anchor boxes: (a,b) are related to Xmin and Ymin coordinates;
(c,d) are related to Xmax and Ymax coordinates).

3.3. V-IoU and NMS Training Loss Performance

After derivation of Section 2.5, IoU-YOLO v3 loss function contains three parts. The first part is
the average error loss of the centroid position in GPR bounding boxes which is centroid position (tx,ty)
relative to ground truth boxes. Here, the coordinate related to x axis of the predicted bounding box can
be denoted as b̂x which is equal to sigmoid (tx) +Cx and its coordinates related to y axis can be denoted
as b̂y which is equal to sigmoid

(
ty
)
+ Cy. Obviously after weight processing, the smaller the loss

value, the closer the centroid between the predicted coordinate
(
b̂x, b̂y

)
and the true value

(
bx, by

)
,

the better the prediction performance of logical regression function. In the first training phase of YOLO
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V3 with the V-IoU and NMS, when the epoch was less than 10, the loss value began to decrease very fast.
When in the second stage, the convergence speed of loss function became steady and slow. Comparing
the blue curve without adding V-IoU in Figure 9, the training performance of YOLO loss function
seemed equivalent in two stages, but the completion time of entire 83 epochs was 3 h and 57 min.
This is because the local optimization produced by the training process will affect the algorithm
calculation efficiency to update function weights by back propagation. For this reason, as can be
seen from Figure 10, the loss value of IoU + NMS had been changing back and forward between 22.5
and 40, and three local optimal solutions that appear at the positions are indicated by five green arrows;
however, V-IoU + NMS was relatively stable, and it is undemanding to perform global gradient descent
to find the global optimal solution. In order to prevent data over fitting, the loss function is considered
to be sufficiently convergent; when the epoch was equal to 83 iteration was stopped.

Figure 9. V-IoU versus IoU training loss (epoch: 0 to 83).

Figure 10. V-IoU versus IoU training loss (epoch: 60 to 83).
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3.4. YOLO v3 Detection Effect

It can be known from the YOLO v3 network architecture in Section 2.1 that YOLO v3 can be
detected on three feature maps of different scales and output after the input image size have been
down sampled to 32, 16, and 8. Testing datasets contain three scenes for the real-time detected
performance test, which cover the single class and multi-class pattern-recognition which include
hyperbolic and voids features. The evaluation index refers the mean average precision (mAP) to
training batches [44,45]. Assuming that P is denoted as the actual number of samples among target
prediction, this is called precision. R is the recall rate, T is denoted as true positives, where P = TP

(TP+FP)

and R = TP
(TP+FP) , where TP is the true positives and FP the false negatives; the mAP can be calculated by

equation
∑

AP
Nclasses

, where AP is denoted as the average precision. Figure 11 shows the improved detection
effect of YOLO v3 with V-IoU on single class targets. The verified data set showed in Figures 11–13
were collected from the Soils research key Laboratory of South China Agricultural University. First, we
detect the object’s physical position through GPR, and then mark the hyperbola vertex by the marking
button on the MALA GPR controller. Finally, we use the difference between the identified rectangle
midpoint and the marker’s value to determine the ground truth. Here, the V-IoU threshold was
preset to 0.50. As can be seen from the figure, although some targets are small in the GPR image,
the YOLO v3 detector can recognize it. This is because compared to YOLO v2, the V3 version has three
detections, which are one down-sampled 13 × 13 and two up-sampled with 26 × 26, 52 × 52 feature
maps. In addition, YOLO v3 have added a series of convolutional layer with 3 × 3 or 1 × 1 size that
increase appropriately the number of channels. Overall, in this situation, total 132 hyperbolas in GPR
image were tested. The correct detection number is 121, missed targets number is 7, and false alarm
number is 10.

Figure 11. Single class targets detection performance
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Figure 12. Multi-class class targets detection performance.

Figure 13. Pattern recognition of densely distributed reinforced concrete structures.

When there were multi-class targets in the detected GPR image, the predicted boxes can distinguish
or identify the parabolas or voids. For some parabolas with multiple overlapping signals the vertex of
curve was well positioned, as shown in Figure 12. Obviously, the less electromagnetic interference or
noise in the GPR image, the better recognition and location performance. Those targets that are shallow
from the soil surface had relatively obvious higher recognition scores. It can be seen that there were no
misidentified boxes, all targets can be identified and located to the parabolic midpoint at overlapping
positions. Figure 12 showed that the parabola with signal oscillation due to some highly conductive
targets can be identified and located by the YOLO v3 detector with V-IoU. Overall, in this multi-class
targets situation, total 82 hyperbolas in GPR image were tested. The correct detection number is 62,
missed targets number is 4, and false alarm number is 5.
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In engineering applications, we often need to detect the number of metal bars among concrete
structures. It can be seen from Figure 13 that for the number of single-layer steel bars, the predicted
bounding boxes can be positioned accurately; but for the multi-layer-reinforced concrete structure,
there exists a case of missing identification. After many experiments and data statistics, if taking
the number of hyperbola as a performance index, the YOLO V3 artificial intelligence recognition
method proposed in this paper can predict the number of ground truth targets in GPR image by
90% accuracy, and its position error is less than 10% length unit. When detecting the number of
concrete structures, total 192 hyperbolas in GPR image were tested. The correct detection number is 175,
missed targets number is 11, and false alarm number is 8. Overall, YOLO v3 can achieve satisfactory
performance when recognizing and positioning electromagnetic wave from GPR image features.

3.5. Learning Rate and Mean Average Precision Comparison

The learning rate directly affects the convergence state of the YOLO v3 training performance,
and batch size affects the generalization performance. Earlier, we have discussed the Adam adaptive
algorithm to update the global learning rate. In TensorFlow, we set the initial parameters of the learning
rate to the same value. Here we evaluate the model optimization of SSD, faster-rcnn, and VIoU-YOLO
v3 through the change of learning rate in training epoch. As shown in Figure 14, the learning rates of
SSD, faster-rcnn, and VIoU-YOLO v3 were between 52 and 72 in epoch. The YOLO v3 has converged
to a stable value when epoch was 73, which made the updated weight of loss value in TensorFlow to
be reduced to the global threshold in a shorter time. The change of SSD is very close to VIoU-YOLO v3,
but we can see from Figure 15 that the same situation occurs again similarly to Figure 9. Loss value
of the SSD model will easily converge to its local optimal value with the increase of training times;
obviously, after comparing the learning rate and loss value, the convergent speed of YOLO v3 with
VIoU is more ideal.

Figure 14. Learning rate versus training epoch.
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Figure 15. Loss versus training epoch.

Furthermore, we compared mAP of SSD, faster-rcnn, YOLO v2 and YOLO v3 with different V-IoU
(or IoU) thresholds and scenes. We used 300 GPR image samples to generate Table 1. Here, the mAP50

means its IoU threshold preset as 0.5 and mAP75 preset as 0.75. Similarly, the mAPsc, mAPmc,
and mAPmetal_bars represents the single classification, multi-class targets detection and only contains
single layer metal bars scenes respectively. As shown in Table 1, after comparison, when the V-IoU
threshold was 0.50, YOLO v3 with darknet-53 as the backbone can achieve a maximum mAP of 83.16;
the SSD with ResNet-34 as the backbone can achieve an mAP of 75.66. The mAP scores of Faster-RCNN,
YOLO v2, and v3 are more or less. When the IoU threshold was 0.75, the mAP scores of YOLO v3
and VIoU YOLO v3 are 77.15 and 75.90, respectively; SSD achieved a maximum mAP score of 79.80.
In the detection which have multi-classes targets of GPR image, it is clear that YOLO v3 achieved
an ideal mAP score. Comparing the mAP score of single class scenes, V-IoU YOLO v3 scored 83.17;
in addition, when detecting the metal bars underground, although YOLO v3 achieved the highest
mAP score of 79.90, V-IoU YOLO v3 still scored 76.10. In general, V-IoU YOLO v3 can achieve the best
performance for three different real-time scenes.

Table 1. mAP comparison with five detection algorithms.

Algorithm Backbone mAP50 mAP75 mAPsc mAPmc mAPmetal_bars

SSD ResNet-34 75.66 79.80 79.37 71.44 66.31
Faster-RCNN ResNet-18 81.45 66.22 74.21 77.09 68.51

YOLO v2 Darknet-19 80.34 72.05 80.08 66.15 68.92
YOLO v3 Darknet-53 83.16 77.15 85.82 76.30 79.90

VIoU-YOLO v3 Darknet-53 82.71 75.90 84.56 83.17 76.10

3.6. Real-Time Performance and fps Testing

In expectation of testing the real-time detection speed of YOLO v3, we randomly selected five
batches from 331 GPR images with size 416 × 416; the number of image batches were 100, 150, 200,
250, and 300, respectively, and took the mAP value in Table 1 as reference. Computer processor
still is Intel(R) Gold 6130 with CPU with 2.10 GHz. As shown in Figure 16, when the batch size
was 200, the detection speed of SSD can reach to 11 fps. After comparison, the detection speed of
Faster-RCNN in each batch was not ideal, and its maximum detection speed is just 5fps. It can be
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seen from Figure 16 that the average detection speed of YOLO v2 is 5 fps. The fastest detection speed
of YOLO v3 and VIoU-OLO v3 can reach 15fps, and their average value is around 12fps. In other
words, when the vehicle is equipped with GPR device, its detection speed can reach between 10 km/h
and 20 km/h. Consequently, the VIoU-YOLO v3 detection method proposed in this paper can fulfill
the real-time detection requirements.

Figure 16. The fps versus batch size in five detection algorithms.

4. Conclusions

In this paper, a YOLO v3 was applied to build neural network detector to achieve real-time
pattern-recognition of GPR images. It can be applied to actual underground detection engineering with
meaningful accuracy and robustness based on Tensorflow, but this article is also limited to less samples
and detection types of targets. Overall, this paper developed an innovative research application based
on artificial intelligence algorithm in the field of electromagnetic wave detection. The main conclusions
are as follows:

(1) Redefined the encode approach of YOLO v3 and proposed a labeling technique with using
parabolic vertices as feature points; this provides a high-precision encoding technique for locating
targets in GPR image.

(2) Proposed the principle of V-IoU; when the position of parabola vertex is within a certain range,
free the limitation of IoU threshold. This method effectively reduces the false recognition rate
caused by electromagnetic interference.

(3) The V-IoU-YOLO v3 neural network can achieve 83.17 mAP score in the single class
pattern-recognition scenes and 76.10 mAP score when detecting metal bars in concrete structures.

(4) The VIoU-YOLO v3 detecting speed can reach 15fps under the CPU processor, and this speed can
meet the real-time operation requirements of vehicle equipped with GPR device.
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