
sensors

Article

On the Accuracy of Fault Diagnosis for Rolling
Element Bearings Using Improved DFA and
Multi-Sensor Data Fusion Method

Qiang Song * , Sifang Zhao and Mingsheng Wang

National Engineering Laboratory for Electric Vehicles, Beijing Institute of Technology (BIT),
Beijing 100081, China; 3120185233@bit.edu.cn (S.Z.); 3120170198@bit.edu.cn (M.W.)
* Correspondence: songqiang@bit.edu.cn

Received: 29 September 2020; Accepted: 10 November 2020; Published: 12 November 2020 ����������
�������

Abstract: Rolling element bearings are widely employed in almost every rotating machine. The health
status of bearings plays an important role in the reliability of rotating machines. This paper
deals with the principle and application of an effective multi-sensor data fusion fault diagnosis
approach for rolling element bearings. In particular, two single-axis accelerometers are employed
to improve classification accuracy. By applying the improved detrended fluctuation analysis
(IDFA), the corresponding fluctuations detrended by the local fit of vibration signals are evaluated.
Then the polynomial fitting coefficients of the fluctuation function are selected as the fault features.
A multi-sensor data fusion classification method based on linear discriminant analysis (LDA) is
presented in the feature classification process. The faults that occurred in the inner race, cage,
and outer race are considered in the paper. The experimental results show that the classification
accuracy of the proposed diagnosis method can reach 100%.

Keywords: bearing fault; detrended fluctuation analysis; fault diagnostics; linear discriminant
analysis; multi-sensor data fusion

1. Introduction

Nowadays, rotating machines play a major role in agricultural and industrial applications.
These applications include wind generation, washing machines, electric vehicles, etc. Rolling element
bearings are the key component of rotating machinery. The sudden failures of bearings would cause
system outage. Monitoring the health status of bearings by collecting sensor signals can help diagnose
already-developed faults, and the probability of further damage can be reduced [1]. The classification
accuracy has increasingly become a concern in the fault diagnosis system of ball bearings. Therefore,
many scholars have studied the feature extraction and the classifier design of bearing failures [2,3].

Currently, two types of sensor techniques are widely used in fault feature extraction. One is the
current-based technique. Extensive studies on current signature analysis have been conducted for the
bearing fault diagnosis of electric motors [4–6]. The extra torque ripple would be generated under
bearing failure conditions, so the feature components of the current harmonics could be produced
by the torque change [7]. The current-based technique is not applicable for all kinds of rotating
machinery (such as aero-engine, gearbox, etc.), and the feature current harmonics is sensitive to the
load fluctuation. The vibration-based technique is another commonly used approach for bearing
fault feature extraction [7–10]. The rotating machinery is usually operated in the non-linear condition.
Therefore, one difficulty in applying the vibration signature analysis is the nonstationary properties of
the acquired signals. In recent years, several vibration signal analysis techniques have been developed
for fault feature extraction, using frequency techniques [11,12], and time-frequency methods [13,14]
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to extract fault features. Fourier transform (FT), as the traditional frequency analysis tool, is widely
used for feature extraction [15]. However, this approach is ineffective to analyze vibration signals.
To overcome the hurdle, time-frequency methods have been developed. In general, the common
time-frequency analysis tools include [16–20]: short-time Fourier transform (STFT), wavelet analysis
(WA), empirical mode decomposition (EMD), Wigner-Ville distribution (WVD), and Hilbert-Huang
transform (HHT). Compared with FT, STFT can be used to localize the transients, while the drawback of
STFT is that the accuracy of extracting frequency information is limited [8]. WA is the most researched
approach for bearing fault feature extraction, and is effective for bearing fault diagnostics. With the
use of this method, the high resolution in time and frequency domains can be provided. However,
the limitation of WA is that a basic wavelet function should be determined before analyzing the
vibration signals. EMD is an effective approach for processing nonlinear and nonstationary signals.
When EMD is applied for feature extraction, a vibration signal can be decomposed into many intrinsic
mode functions (IMFs), the information of the analyzed signal would be contained in each IMF.
The main drawback of EMD is the poor translation-invariant property. WVD is suitable for analyzing
the single-component signal, however, because the window function is not involved, the result of WVD
would be interfered by cross terms when analyzing multi-component signals. HHT is appropriate
for transient signal detection, and successful applications of this signal processing method for fault
feature extraction have been reported in [21–23]. Both frequency and time-frequency techniques rely
on the identification of the frequencies present, which are then compared with models to predict which
frequencies should be important in the presence of various faults [24].

As a calculation method of time series long-range correlation scale index, detrended fluctuation
analysis (DFA) was first proposed to differentiate between local patchiness and long-range correlations
in DNA sequences [25]. This tool can eliminate the external trend of signals effectively, and has been
gradually applied in medicine, finance, meteorology, hydrology, and other fields. Several scholars have
employed DFA to the processing of mechanical vibration signals. Moura et al. [24] use DFA for gear
fault identification, and the fault vibration signals under different working conditions are distinguished
effectively. Jiang et al. [26] employ DFA in feature extraction for gearbox fault diagnosis, and several
combinations of the features are used for the classification of fault types. Wang et al. [27] present the
analysis of the vibration time series of a gear system acquired by a piezoelectric acceleration transducer
using DFA. In the literature, there are few studies on DFA applied for feature extraction in bearing
fault diagnostics. Commonly, the least-squares method is employed for DFA to fit the fluctuation
function and extract the fault features. However, the fitting effect of the least-squares method would
become poor when the function is complex. Moreover, for one vibration sequence, DFA can only
extract two fault features. The insufficient number of fault features would result in a reduction in
the classification accuracy in the diagnosis application of multiple fault types. Therefore, improved
detrended fluctuation analysis (IDFA) is proposed in this paper to make up for the deficiency of the
DFA method for fault feature extraction.

The variation of the detrended fluctuations is a signature of the bearing fault type, and this
signature can be classified by the classifier. In general, the classifiers for bearing fault diagnostics
mainly include [28,29]: artificial neural networks (ANNs), support vector machines (SVMs), K-means
clusters, fuzzy classifiers, and Bayesian algorithms. These classifiers have been used successfully in
signal fault detection. Linear discriminant analysis (LDA) is a classical machine learning method,
which was first proposed by Fisher in 1936, and is also known as Fisher linear discriminant analysis.
The principle of LDA is simple: given a set of training samples, it tries to project the samples to a
straight line, so that the projection points of the same class are as close as possible. When classifying
new samples, it projects the data to the trained straight line, and then the category of the tested samples
can be determined according to the location of the projection points. LDA has been widely used in
face recognition [30], biomedical research [31], and induction motor fault diagnosis [32]. In this paper,
LDA is chosen as a classification method to process the feature vectors.
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In reviewing multi-sensor data fusion approaches reported in the literature, these methods can
be classified into two types based on the sensor [33–35]. One is based on the information collected
from various types of sensors, such as current, voltage, vibration, sound, and temperature, to data
fusion and detect faults. In [34], a hybrid approach for fault signal classification is presented based on
sensor data fusion by using the SVM and STFT techniques. This method can use the fault information
collected by different kinds of sensors and have high classification accuracy. However, the complexity
of data processing would be increased by collecting data from different types of sensors. A different
number of the same kind of sensor is employed by another multi-sensor data fusion method. In [35],
two fault features are developed to characterize the gear health conditions, and an adaptive neuro-fuzzy
inference system is utilized to fuse all features collected from vibration sensors mounted on different
locations. However, the accuracy of the diagnosis method is limited. In this work, the information
obtained from vibration sensors installed in different positions is used for the data fusion. The proposed
diagnosis method is developed by integrating the IDFA-based feature extraction and the multi-sensor
data fusion-based LDA classifier design. Three faults of bearings are tested in this work: inner race
fault, cage fault, and outer race fault. Experiments with different fault degrees are conducted to validate
the effectiveness of the proposed method.

The main contributions of this paper include: (1) applying DFA for feature extraction of bearing
faults, and the deficiencies of the DFA-based extraction approach are analyzed for the application
of multiple fault type diagnosis. (2) The IDFA feature extraction method based on the polynomial
fitting and particle swarm optimization (PSO) algorithm is presented to improve the defects of DFA
in the application of bearing fault diagnosis. (3) Using the vibration data of two sensors to improve
the accuracy of fault diagnosis, and a multi-sensor data fusion fault diagnosis method based on LDA
is proposed.

The remainder of the paper is organized as follows. In Section 2, the proposed bearing fault
diagnosis approach using IDFA and a multi-sensor data fusion method is described. Section 3 illustrates
the IDFA-based feature extraction method. In Section 4, the multi-sensor data fusion approach and the
methodology of the LDA algorithm are explained. The experimental setup and the diagnostic results
are presented in Section 5. Finally, Section 6 concludes the paper.

2. Fault Diagnosis Based on IDFA and Multi-Sensor Fusion

The scheme of the proposed multi-sensor data fusion-based fault diagnosis approach is presented
in Figure 1. As shown in Figure 1, two steps are included: IDFA-based feature extraction and
multi-sensor data fusion-based LDA classifier design. In the first step, acceleration sensors mounted
on different locations are employed for the acquisition of vibration signals. The detrended fluctuation
function of each signal is then calculated by IDFA, and the time-domain features obtained from
vibration sensors are extracted. In the second step, these time-domain features are reconstructed into
one feature vector to obtain the full training matrix of the LDA classifier. Finally, the type of bearing
fault can be identified by using the trained LDA classifier.
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Figure 1. Scheme of the proposed fault diagnosis method for rolling element bearings.

3. IDFA-Based Feature Extraction

3.1. Methodology of DFA

On assumption that any noise present in the signal is non-correlated, time-series analysis methods
can be applied to identify properties of variation signals. In order to analyze the correlated components
in a time-series signal, fractional Brownian motion is introduced to study memory effects in the
fluctuations [24]. These memory effects can be embodied by the Hurst exponent H, which can be used
to measure the long-range correlation and the self-similarity of a time series. The long-range correlation
is an important feature of a time-series signal. It reflects the statistical correlation of two data points in
a certain time interval and the inherent fluctuation nature of a signal. The self-similarity shows that a
time series can be measured on different scales. It can reflect the similarity degree of its fluctuation.
Long-range correlation and self-similarity are important properties of nonlinear systems, which are of
significance for system modeling and simulation, and system behavior prediction. The Hurst index
analysis methods mainly include: power spectrum analysis, rescaled range analysis, and detrended
fluctuation analysis.

DFA is a statistical tool that uses H to evaluate the long-range correlation of a time series.
By calculating the short-long-range correlation characteristics of time-series signals, the trend of a
time series can be characterized by fractal properties. DFA is suitable for analyzing non-linear and
non-stationary signals, and the fractal structure of a time series can be reduced. By removing the
trend components of different orders from a time series, the intrinsic statistical characteristics of the
time-series signal are presented accurately.

For a time-series signal xm (m = 1, 2, 3, L), the steps of DFA are provided as follows:
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(Step 1) Calculate the value x by averaging the original series xm

x =
1
L

L∑
m=1

xm (1)

A new integrated series y(n) can be obtained as

y(n) =
n∑

m=1

(xm − x), n = 1, 2, 3, . . . , L (2)

(Step 2) Divide y(n) into equal-length intervals containing s points, and the number of the
sub-interval can be expressed as

Ls = [L/s] (3)

where [L/s] represents the integer-valued operation.
(Step 3) Use the least-squares method to fit the data of each sub-interval, and the fluctuation trend

yf(n) of sub-interval can be obtained as

y f (n) =
R∑

r=0

arnr (4)

where ar denotes the fitting R-order polynomial coefficient.
(Step 4) Eliminate the fluctuation trend in sub-interval

∆y f (n) = y(n) − y f (n) (5)

(Step 5) Calculate the mean square fluctuation Fτ2(s) inside sub-interval τ

Fτ2(s) =
1
s

s∑
n=1

[
∆y f (n)

]2
(6)

(Step 6) The 2nd-order wave function of the full sequence data can be calculated as

Fq(s) =

√√√
1
Ls

Ls∑
τ=1

Fτ2(s) (7)

(Step 7) Change the sub-interval length s in step 2, and repeat steps 2 to 5 to obtain the full-sequence
fluctuation Fq(s) as a function of s. Fit the fluctuation function by using the least-squares method to
obtain a linear function

log10 Fq(s) = Hα log10 s + log10 A (8)

where Hα is the Hurst exponent, A is a constant calculated by DFA.
The detrended fluctuations function, as shown in Equation (8), has a linear relationship, in which

the slope is Hα and the intercept is log10A. Commonly, Hα and A are selected as the first and the second
principal components, respectively, and these two components are then used as the feature vector
to perform feature extraction on the vibration signal. As can be seen, the least-squares method is
employed for DFA to fit the detrended fluctuations function. Therefore, a well-fitted result can be
obtained when the function is a linear relationship. The DFA method can only extract two features for
one vibration signal sequence, and the insufficient number of features would reduce the accuracy of
the classification results.
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3.2. Improved DFA

As shown in step 7, the first-order function can be obtained by using the least-squares method
to fit the series of the detrended fluctuations function. Therefore, a well-fitted performance can be
achieved when the fluctuation function satisfies the first-order function approximately. However,
with the complexity of the fluctuations function increased, the fitting effect of DFA may be decreased.
Moreover, in the application of the multiple fault type diagnosis, the two features obtained by DFA are
usually insufficient to distinguish all the categories. Therefore, the polynomial curve fitting method is
used to deal with the fluctuations function for the improvement of the fitting effect and obtain more
fault characteristics. The fitting polynomial can be expressed as

Y(X, W) = w0 + w1X + w2X2 + . . .+ wNXN =
N∑

j=0

w jX j (9)

where X= log10s, Y(X,W)= log10Fq(s), N is the order of the polynomial, wj represents the coefficient of
the polynomial. As can be seen, the polynomial function is a nonlinear function of X, while it is a linear
function of the polynomial coefficient. The mean square error is usually used as the error function to
evaluate the polynomial fitting effect of Equation (9)

E(W) =
1
2

V∑
v=1

(Y(Xv, W) −Yv)
2 (10)

where E(W) represents the mean square error, V represents the total quantity of the fitted data, Yv is
the actual data value corresponding to Xv.

The purpose of fitting data is to minimize the error function. The polynomial fitting effect for the
data would be poor when order N is low, that is, underfitting, which cannot represent the objective
function well. When the value of N is large, the fitting curve would be oscillatory and sensitive to noise
data, that is, overfitting. Both underfitting and overfitting cannot represent the objective function well.
For the model with a defined complexity, the overfitting problem would be reduced with an increase
in data. The regularization method can be used to reduce the influence of overfitting when the model
complexity is given and the data scale is fixed. In order to reduce the influence of overfitting, the mean
square error function of regularization method can be expressed as

Ẽ(ε, W) =
1
2

V∑
v=1

(Y(Xv, W) −Yv)
2 +

λ
2
||W ||2 (11)

where ||W||2 = WTW = w2
0 + w2

1 + . . .+ w2
N , λ represents the penalty term which is used to constrain

the polynomial coefficient.
Choosing the appropriate value of λ according to the complexity of the model has an important

impact on the fitting results. λ is usually set artificially according to the complexity of the model
when the polynomial order N is given. Therefore, it is difficult to obtain the optimal coefficient of
polynomial fitting by the empirical method. In this paper, the PSO algorithm is employed to optimize
the penalty term. PSO was first proposed by Dr. Eberhart and Dr. Kennedy in 1995. This optimization
algorithm originated from the research on the predatory behavior of birds. The principle of PSO is to
make use of the information shared by the individuals in the group so that the movement of the whole
group will evolve from disorder to order in the solving space, so as to obtain the optimal solution
of the problem. For the PSO algorithm, each element in the particle swarm represents the possible
solution. Through the simple behavior of individual particles and the information interaction within
the group, the intelligence of problem-solving is realized. Because of the advantage of simple operation
and fast convergence speed, PSO has been widely used in many fields such as function optimization,
image processing, and other fields.
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Figure 2 shows the flow diagram of the proposed IDFA method. The fluctuation function is first
calculated by Equations (1)–(7). Next, the PSO parameters and the value of the particle λ are initialized.
The coefficients of the polynomial can be calculated, and the regularized mean square error function is
then taken as the particle objective function. The global optimal value of the particle λ can be obtained
by using the PSO optimization algorithm. Finally, the coefficients calculated by using the optimal
value of λ can be taken as the optimal polynomial fitting coefficients. The optimal coefficients can be
set as the features for the diagnosis of the bearing fault type.

Figure 2. The general flow diagram of the proposed IDFA.

4. Multi-Sensor Data Fusion-Based LDA Classifier Design

Vibration sensors mounted on different locations of a rotating machine system can provide
complementary information on the health status of the rolling element bearings [35]. On this basis,
the LDA classifier based on the multi-sensor data fusion is presented in this paper. The basic idea of
the proposed multi-sensor data fusion-based LDA classifier is that one can use the IDFA-extracted
feature vectors to fuse and obtain the full training matrix of the LDA classifier. The multi-sensor data
fusion approach and the methodology of the LDA algorithm are introduced next.

4.1. Multi-Sensor Data Fusion

By using IDFA for feature extraction, the vibration signal obtained by one sensor has N+1
features, and the two extracted features can be chosen as one feature vector [w0_11, w1_11, . . . , wN_11].
Similarly, the feature vector obtained by the M-th sensor can be expressed as [w0_1M, w1_1M, . . . , wN_1M].
In order to obtain comprehensive information on the health status of bearings, these feature vectors
obtained from sensors mounted on different locations should be reconstructed into one feature vector.
The reconstruction process of the feature vector is shown in Figure 3.

Figure 3. The reconstruction process of the feature vector.
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As shown in Figure 3, the M feature vectors can be reconstructed as one feature vector.
The complementary information provided by the M sensors can be expressed comprehensively
by the reconstructed feature vector.

Four classes are studied in this work (healthy bearing and the three fault types), and 20 sets of
samples in each class are collected as the training data, so a total of 80 sets of samples are used for
training. The full training matrix of a single sensor is shown in Figure 4.

Figure 4. Full training matrix of single-sensor data.

For the single-sensor classification method, the complementary information provided by other
sensors is not contained, so the classification accuracy of the LDA classifier would be limited. Based on
Figures 3 and 4, the full training matrix of the proposed multi-sensor fusion method is shown
in Figure 5.

Figure 5. Full training matrix of multi-sensor fusion data.

As shown in Figure 5, comprehensive information on the health status of the rolling element
bearings is expressed by the full training matrix. Therefore, the accuracy of the classification result
would be improved by using the full training matrix of multi-sensor fusion data. Two single-axis
accelerometers are employed for data fusion in this work.
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4.2. LDA Classifier

LDA is used to maximize the ratio of the variance between the same and the different classes, so as
to achieve the maximum separation between feature sets in each class. For k-classes cases, the average
vector can be calculated by Equation (12)

µ =
1
n

∑
∀x

x =
1
n

k∑
i=1

Dµi (12)

where i = 1, 2, 3, . . . , k, x represents the original data for classification, n represents the total number of
samples, D represents the data amount of ith class samples, and µi is the center of ith class samples.

The intra-class scattering matrix Sw and inter-class scattering matrix Sb of the original data are
expressed as

Sw =
k∑

i=1

S2
i =

k∑
i=1

∑
xi∈ Class i

(xi − µi)(xi − µi)
T (13)

Sb =
k∑

i=1

ni(µi − µ)(µi − µ)
T (14)

where the maximum rank of Sb is k − 1.
The scattering matrices of the projection data can be written as

S̃w = VTSwV (15)

S̃b = VTSbV (16)

where V is the transformation matrix that projects the original data into the low dimensional space.
LDA optimization projection direction is mainly based on the Fisher criterion function. The purpose

of LDA is to find the optimal transformation matrix V by maximizing the ratio of distance between
classes and distance within classes after projection. Therefore, the objective function J(V) can be
expressed as [36]

J(V) =
det

(
S̃b

)
det

(
S̃w

) =
det

(
VTSbV

)
det(VTSwV)

(17)

The objective function J(V) can be solved by the Lagrange multiplier method. The Lagrange
function is defined as

L(V,ϑ) = VTSbV − ϑ
(
VTSwV −M

)
(18)

where ϑ is the Lagrange multiplier, and V can be obtained from the partial derivation

∂L(V,γ)
∂V

= SbV − γ(SWV) (19)

Let the partial derivative be 0

Sbv = γSwv,
(
γ =

vTSbv
vTSwv

)
(20)

where γ is the eigenvalue corresponding to the eigenvector v. In the solution of Equation (20), there are
at most k − 1 linearly independent vectors, which can be expressed as v1, v2, . . . , vk−1.
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Therefore, the optimal projection direction of LDA can be obtained by generalized eigenvalue
decomposition of Equation (20). Then, the optimal transformation matrix V of D dimension subspace
can be obtained. The k-classes linear discriminant function is given by (21)

C j
(
X j

)
= VT

j X j + v j0 = v j1x j1 + v j2x j2 + . . .+ v jD x jD + v j0 (21)

where j = 1, 2, 3, . . . , k − 1, X j = [x j1 , x j2 , . . . x jD ] is the D dimension vector of the j class sample Xj,
VT

j = [v j1 , v j2 , . . . v jD ] is the coefficient matrix of the j class, which can be calculated by Equation (17),
vj0 represents the threshold value of the j class sample classification.

In the training phase, for each training sample Xj belonging to the j class, the coefficient matrix
is obtained by training to make Cj(Xj) larger than all other classes. In order to classify the unknown
samples, the coefficient matrix calculated in the training phase will be used to calculate the discriminant
function of the tested sample Xt. If one kind of linear discriminant function of the tested sample is
larger than any other linear discriminant function, the test sample can be divided into this kind. That is,
if Equation (22) is satisfied, the tested sample belongs to p class.

Cp(Xt) ≥ Cq(Xt) ∀p , q (22)

5. Experimental Results and Discussion

5.1. Experimental Setup

In most of the existing literature, fault vibration signals are commonly collected by seeding bearing
faults. However, the real vibration signals of fault bearings are not the same as the data collected by
setting the fault. This paper uses the full life-cycle vibration data of Xi’an Jiaotong University to verify
the proposed fault diagnosis method [37]. Figure 6 depicts the accelerated life test rig for recording
vibration signals [38].

Figure 6. Bearing test rig and the location of sensors adapted from [37,38].

As shown in Figure 6, the test rig consists of an AC motor, speed controller, supporting bearing,
hydraulic loading system, and loading and bearing housing. Accelerated life tests of various types
of rolling bearings under different working conditions can be carried out by using the test bench,
so the life-cycle monitoring data of tested bearings can be collected. The adjustable working conditions
of the platform mainly include loading force and rotational speed. The loading force is generated
by the hydraulic loading system and can be loaded on the bearing housing of the tested bearing.
The rotational speed can be adjusted by the speed controller of the AC motor. The LDK UER204 rolling
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bearing is tested, and the parameters are shown in Table 1. Figure 7 shows the three bearing faults
generated in the accelerated life experiment.

Table 1. Dimensional parameters of LDK UER204.

Parameter Name Value

Inside diameter 29.30 (mm)
Outside diameter 39.80 (mm)

Pith diameter 34.55 (mm)
Ball diameter 7.92 (mm)

Number of balls 8

Figure 7. Three bearing faults generated in the accelerated life experiment.

As shown in Figure 7, three damaged bearings with inner race, cage, and outer race faults
were examined in this work. The experimental data with different levels of fault severity related to
its evolution would be generated during the data collection process. The experimental procedure
adopted in this work may make the proposed method appear more efficient in detecting a particular
type of defect, because the same bearing fault types (different bearing, different fault shape, etc.) of
experimental data were not collected and compared.

For vibration signal acquisition, two PCB 352C33 single-axis acceleration sensors were fixed to the
horizontal and vertical directions on the bearing housing, respectively. A data dynamic acquisition
device DT9837 was used to collect vibration data. In the accelerated life experiment, the healthy
bearing was placed in the bearing housing. During the testing, the hydraulic loading system provided
a constant load of 11 kN, and a rotation frequency of 2250 rpm was generated by the AC motor.
The sampling frequency was set to 25.6 kHz.

Vibration signals were collected until the maximum amplitude of the fault signal was more than
10 times the healthy value. Three different fault types were generated: inner race fault, cage fault,
and outer race fault. The tested bearing information of the accelerated life experiment is provided in
Table 2. As shown in Table 2, the total samples contain all the vibration information of the bearing from
early to late failures. Therefore, for each type of fault, 40 samples of vibration signals with different
fault degrees were employed in this work to validate the effectiveness of the proposed method.

Table 2. Tested bearing information of the accelerated life experiment.

Type of Fault Total Samples Actual Life

Inner race 491 8.18 (h)
Cage 533 8.83 (h)

Outer race 339 5.65 (h)
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5.2. Feature Extraction

Figure 8 shows vibration signals obtained from the two accelerometers working under healthy
conditions. Each original series contains 5000 points. From Figure 8, one can see that, in the healthy
state, the vibration signal is stable. The amplitude of the vibration acceleration in the vertical direction
is 1 g, and the amplitude in the horizontal direction is 1.5 g. The difference of the amplitudes in the
two directions is caused by the uneven load application. Overall, the vibration trends in vertical and
horizontal directions are basically the same.

Figure 8. The vibration signals of a healthy bearing. (a) The signal of a horizontal accelerometer.
(b) The signal of a vertical accelerometer.

The corresponding DFA curves of the healthy bearing are shown in Figure 9. According to
the calculation approach in [24], the corresponding DFA curves were calculated for a maximum of
81 values of log10s, as the red and the blue circles show in Figure 9a,b, respectively. The corresponding
least-squares fitted results of DFA curves are also shown in Figure 9. The fitted curves log10Fq(s)
representing the various conditions can be used for feature extraction, and then can be employed in
conjunction with the LDA classifier aiming at fault classification.

Figure 9. Detrended fluctuation analysis (DFA) results of the healthy vibration signals. (a) The DFA
result of a horizontal accelerometer. (b) The DFA result of a vertical accelerometer.

As shown in Figure 9, The fluctuant trend of the two DFA curves is basically the same. The first
principal components Hα of the vertical and the horizontal vibration signals are 0.55 and 0.40,
respectively. Meanwhile, the second principal components A have similar values of 0.23 and 0.21.
This shows that the difference between the two features in the horizontal direction is not obvious.
Therefore, the signals obtained by the two sensors are not distinguishable on the second principal
component, and the difference is mainly reflected by the first. The DFA curve of the healthy bearing is
approximately in line with the positive proportional function. Therefore, a well-fitted result can be
achieved by using the least-squares method.

Figure 10 shows the results of vibration accelerated life experiments and corresponding DFA
curves of the two acceleration sensors under three faults conditions. Compared with the healthy
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vibration acceleration waveform in Figure 8, the vibration signals of the bearings with faults have
obvious changes in both amplitude and shape. The vibration signals of bearings with faults contain
a large number of periodic pulse signals. These changes can be reflected through DFA analysis.
From Figure 10d–f, one can see that the first components are 0.31, 0.30, and 0.28, and the second
components are 2.0, 3.7, and 9.4, respectively. The values of the first components are smaller than 0.55
of the healthy bearing, and the values of the second components are larger than 0.23 of the healthy
signal. Therefore, both the first and the second components can be used as features to distinguish the
healthy bearing and the bearings with faults. For the horizontal sensor, because the three values of
the first components are similar, the three faults are not distinguished clearly on the first components,
while the second components can be used to distinguish the fault type well. From Figure 10j–l, one can
see that the first components are 0.45, 0.37, and 0.58, and the second components are 2.1, 4.0, and 2.6,
respectively. Note that there is an overlap interval between the values of the first components and the
value 0.40 of the healthy signal, which may cause misdiagnosis. The values of the second components
are significantly larger than 0.21 of the healthy signal. The second components can be used as features
for determining whether a fault of bearings has occurred. For the vertical sensor, the three types
of faults are clearly distinguished on the first components, and the first components can be used to
distinguish the fault type well. Compared with the healthy bearing, the fluctuation function of the
fault vibration signal is not a positive proportional function. Therefore, the least-squares method is
ineffective in fitting the fluctuation function of the faulty bearing.

Figure 10. The vibration signals and DFA results of three fault types. (a–f) Obtained from the horizontal
accelerometer. (g–l) Obtained from the vertical accelerometer.
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As can be seen, only two features can be obtained by using DFA. Although the features obtained
from the healthy bearing and the fault vibration signal are obviously different, the features extracted
from the various fault signals are overlapped, which would cause the weakening of the difference of
the fault features. In addition, the least-squares method cannot fit the fluctuation function of the fault
vibration signal effectively, which would lead to the extracted fault features that cannot reflect the
fluctuation trend of the vibration signals. Therefore, the fault features extracted by DFA have limitations
in the diagnosis applications of multiple bearing fault types, such as when the feature difference of
various faults is not obvious, and the fitting result of the fluctuation function is poor. These would
affect the accuracy of fault feature extraction and lead to the reduction of fault diagnosis accuracy.

In order to verify the effectiveness of the proposed IDFA feature extraction method, the fitting
results of the fluctuation function are presented. Figure 11 shows the fitting results of the third-,
fifth-, 10th-, and 20th-order fitting polynomials when λ is equal to 0, 0.1, 1 and the PSO optimal
value, respectively.

Figure 11. The fitting results of the third-, fifth-, 10th-, and 20th-order fitting polynomials when λ is
equal to 0,0.1,1 and the PSO optimal value, respectively.

From Figure 11, one can see that, for the third-order fitting, the fitting curve with λ = 0 has better
fitting performance in the front part, while the fitting effect in the latter part becomes worse. The fitting
results of λ = 0.1 or λ = 1 are significantly worse. When λ equals the optimal value of PSO, the best
fitting effect can be achieved. For the fifth- and tenth-order fitting, the fitting effect is basically the same
when λ = 0 or when λ equals the optimal value, which can realize the fitting of the fluctuation function
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well, and the fitting effect is better than that of λ = 0.1 or λ = 1. For the 20th-order fitting, the best
fitting performance can be obtained when λ = 0.1 or when λ set as the optimal value. The fitting curve
with λ = 0 has better fitting effect in the front part, however, the fitting effect in the latter part becomes
worse. The fitting curve fluctuates obviously when λ = 1, which is mainly caused by the excessive
value of λ. Therefore, the fitting performance when λ equals the optimal value is better than that when
λ is set as a fixed value. Therefore, the fitting effect can be improved by using the IDFA proposed in
this paper for feature extraction.

5.3. LDA Training

For each type of fault, 40 sequences of vibration signals were collected. Therefore, a total of
160 samples with different fault types were studied in this paper. The 160 samples were split into two
groups: 50% for training and 50% for testing. The training sets were obtained from the DFA-extracted
and IDFA-extracted feature samples, respectively. The 80 DFA-extracted feature samples used for
training are shown in Figure 12.

Figure 12. Feature vectors obtained by DFA. (a) Obtained from the horizontal sensor. (b) Obtained
from the vertical sensor.

As shown in Figure 12, the DFA results of 20 samples of each fault type fluctuate within a certain
range. Among the four classes, the distinguishing characteristics between the healthy signal and the
outer ring fault signal are obvious, while the characteristics of the inner ring fault and the cage fault
signal have a cross section. In Figure 12a, the first and second principal components of the healthy
signal are clearly different from the other three types of faults. The faults occurred in the inner ring,
the cage, and the outer ring are distributed in the range of [0.2, 0.4] on the first component. This means
that the first component cannot distinguish the three faults well. The characteristics of the three faults
are not obvious on the second component. In Figure 12b, the characteristics of outer ring faults are
more widely distributed, and this characteristic of the distribution is clearly distinguished from the
healthy bearing, inner ring fault, and cage fault. One can see that the second principal component of the
healthy signal remains low. The inner race fault and the cage fault have a cross range around the value
0.4 of the first component and the value 3 of the second component, which may cause misclassification.

As for the reason that DFA employs the least-squares method to fit the fluctuation function,
the fitting effect of DFA becomes worse when the fluctuation function is complex, so the accuracy of
fault feature extraction would be affected. Moreover, the DFA method can only obtain two features
(Hα and A), and the insufficient number of features usually results in a poor classification accuracy in
the diagnosis application of multiple fault types. In this paper, IDFA is used to extract the fault features
of time-domain vibration signals, the third-order polynomial is used to fit the fluctuation function,
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and the coefficients of the third-order fitting polynomial are calculated by using the λ value optimized
by PSO. Therefore, four features (w0, w1, w2, and w3) can be obtained from the vibration sequence.
The 80 IDFA-extracted feature samples used for training are shown in Figure 13.

As shown in Figure 13a, the values of feature w1 of the four categories are small, and feature
w1 is concentrated around 0.15. Feature w1 of the healthy bearing and the inner race fault have a
high coincidence. Therefore, the four types cannot be discriminated against by feature w1 effectively.
In Figure 13b, the values of feature w1 of the four categories are close to 0. The regions of feature w1 of
inner race fault and cage fault are highly coincident. Thus, feature w1 has little differentiation from the
four types, while w0, w2, and w3 can distinguish the four categories effectively. Because of the values
of extracted feature w1 are small, and the discrimination of feature w1 for the four types is limited,
and the differences of IDFA-extracted features are mainly reflected in w0, w2, and w3.

Figure 13. Feature vectors of a bearing obtained by IDFA. (a) Obtained from the horizontal sensor.
(b) Obtained from the vertical sensor.

Figure 14 shows the distribution of the extracted features w0, w2, and w3 in three-dimensional
space. As can be seen from Figure 14, the coincident region of the inner race and the cage fault features
has been obviously reduced compared with Figure 12. Therefore, the distinguishing degree of the four
classes of fault features is improved by using IDFA for feature extraction.

The 80 samples shown in Figures 12 and 13 were used for the generation of the training matrix
(as shown in Figures 4 and 5) to train the LDA algorithm. Then, the rest of the 80 testing samples can
be classified by the trained LDA classifier.
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Figure 14. Feature vectors in 3D space obtained by IDFA. (a) Obtained from the horizontal sensor.
(b) Obtained from the vertical sensor.

5.4. Classification Accuracy

Next, the classification accuracy of the trained LDA classifier under different training matrix will be
discussed to validate the effectiveness of the proposed multi-sensor fusion-based fault diagnosis method.

Table 3 shows the classification results using the horizontal sensor (HS) and the vertical sensor
(VS), respectively. As can be seen from Table 3, by using DFA for feature extraction, the classification
accuracies of HS for the healthy bearing and the outer race fault are 100% and 95%, respectively.
The classification accuracies of VS for the healthy bearing and the outer race fault are 95% and 100%,
respectively. Meanwhile, the accuracy of the DFA method on both inner ring and cage faults is lower
than 90%. When employing the IDFA method, the classification accuracies of the healthy bearing and
the outer race fault are both higher than the other two classes. Therefore, the single-sensor method has
a high accuracy rate for the classification of the healthy bearing and the bearing with an outer ring
fault, while the accuracy on both inner ring and cage faults is unsatisfied. Moreover, when IDFA is
used for feature extraction, the classification accuracies of HS and VS for the three categories (healthy,
inner race fault, and cage fault) are higher compared with the DFA method. Overall, an accuracy of
90% (or 91.3%) can be achieved by the DFA method, and the classification accuracy of HS and VS can
reach 95.0% and 97.5%, respectively, by using the IDFA-based feature extraction method.

Table 3. Single-sensor classification results.

Type of
Fault

Feature
Extraction
Method

Tested Samples Correctly Classified
Samples

Classification
Accuracy (%)

HS VS HS VS HS VS

Healthy DFA 20 20 20 19 100.0 95.0
IDFA 20 20 20 20 100.0 100.0

Inner race
DFA 20 20 17 17 85.0 85.0
IDFA 20 20 18 19 90.0 95.0

Cage DFA 20 20 16 17 80.0 85.0
IDFA 20 20 19 19 95.0 95.0

Outer race
DFA 20 20 19 20 95.0 100.0
IDFA 20 20 19 20 95.0 100.0

Overall
DFA 80 80 72 73 90.0 91.3
IDFA 80 80 76 78 95.0 97.5



Sensors 2020, 20, 6465 18 of 21

Table 4 shows the fault classification results using the sensor fusion diagnosis method proposed
in this paper. From Table 4, by using DFA for feature extraction, one can see that the classification
accuracy of the healthy bearing and the bearings with inner ring faults and outer ring faults can reach
100%, and the classification accuracy for cage faults can achieve 95%. The classification accuracy of
the IDFA-based feature extraction method can reach 100% for the four classes. Overall, the sensor
fusion classification accuracy of DFA and IDFA is 98.8% and 100%, respectively. The classification
accuracy of the four categories when using the proposed diagnosis approach all reach 100%. However,
the proposed method may obtain a lower classification accuracy while detecting the same type of
defect on different bearings, because limited types of data have been considered in the experiment.

Table 4. Multi-sensor classification results.

Type of Fault Feature Extraction
Method

Tested
Samples

Correctly Classified
Samples

Classification
Accuracy (%)

Healthy DFA 20 20 100.0
IDFA 20 20 100.0

Inner race
DFA 20 20 100.0
IDFA 20 20 100.0

Cage DFA 20 19 95.0
IDFA 20 20 100.0

Outer race
DFA 20 20 100.0
IDFA 20 20 100.0

Overall
DFA 80 79 98.8
IDFA 80 80 100.0

Table 5 shows the comparison of the proposed multi-sensor fusion diagnosis method with the
classification results of the single-sensor method. It can be seen from Table 5 that, by using the
DFA-based feature extraction method, the classification accuracy of the sensor-fusion diagnosis method
is 8.8% and 7.5% higher than that of HS and VS, respectively. By using the IDFA-based feature
extraction method, the classification accuracy of the sensor fusion diagnosis method is 5% and 2.5%
higher than that of HS and VS, respectively. Moreover, the classification accuracy of the proposed IDFA
and multi-sensor-fusion diagnosis method can reach 100%.

Table 5. The compared results of single-sensor and multi-sensor classification.

Sensor Feature Extraction
Method

Tested
Samples

Correctly Classified
Samples

Classification
Accuracy (%)

HS
DFA 80 72 90.0
IDFA 80 76 95.0

VS
DFA 80 73 91.3
IDFA 80 78 97.5

Multi-sensor
DFA 80 79 98.8
IDFA 80 80 100.0

6. Conclusions

This paper has presented a fault diagnosis method for rolling element bearings based on IDFA
and multi-sensor data fusion. By using the proposed IDFA-based feature extraction method, the fault
features of bearings are extracted effectively. First, the corresponding fluctuation function calculated
from the time-domain vibration signals is obtained. Next, PSO is employed for the parameter
optimization to obtain the optimal fitting polynomial of the fluctuation function. The polynomial
coefficients are then selected as the fault features which can be classified by the classifier. A multi-sensor
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data fusion classifier based on LDA is also presented for the classification. In particular, the data obtained
from two single-axis accelerometers were analyzed to improve classification accuracy. The extracted
features are then reconstructed into one feature vector to obtain the full training matrix of the LDA
classifier. Three faults were discussed: inner race, cage, and outer race fault. The effectiveness of the
proposed diagnosis method was validated using the accelerated life experimental data. The validation
results have shown that an accuracy of 90% (or 91.3%) for rolling element bearings was achieved by the
DFA and single-sensor approach. The classification accuracy of the IDFA and single-sensor method
can reach 95% (or 97.5%). Furthermore, 100% diagnostic accuracy can be achieved by applying the
proposed IDFA and multi-sensor data fusion method. An initial study which considered a limited fault
category has been conducted in the experimental process. The limitation of this work is that limited
types of data have been considered, so that the classification accuracy of the proposed method may be
influenced when using the data of different bearings. Future work will be focused on the detection of
other bearings and fault diagnosis under non-stationary conditions.
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