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Supplementary Material 

This supplementary material reports a detailed summary of the related work discussed in Section 2 
of the article. 

Table S1. Summary of existing works related to autonomous baggage threat detection. 

Literature Methodology Performance Limitations 

Turcsany et al. 
[1] 

Proposed SURF coupled 
SVM model driven through 

Bag of Words to classify 
baggage threats. 

Achieved a true positive 
rate of 0.9907 and a false 
positive rate of 0.0431 on 

a local dataset. 

The framework can 
classify scans containing 

suspicious items but 
does not possess the 
capacity to localize 

them. In addition, it is 
tested in limited 

experimental settings. 

Heitz et al. [2] 

Developed a framework 
dubbed SATIS𝜑 for 

segmenting objects within X-
ray imagery using additivity 

in log space. 

Achieved the root-mean-
squared error of 0.66. 

SATIS𝜑 is applied only 
to a limited set of X-ray 

scans. 

Bastan [3] 

Developed dense sampling 
and multiview branch and 

bound search scheme to 
detect objects within texture-

less X-ray scans. 

Achieved an average 
precision score of 0.704, 
0.851, 0.259 for detecting 

laptops, bottles, and 
handguns, respectively, 

using the custom 
prepared dataset. 

The framework 
presented in this paper 
is vulnerable to diverse 

ranging scanners. 

Bastan et al. [4] 

Used Bag of Visual Words 
with different feature 

descriptors to recognize 
baggage threats within X-ray 

imagery. 

Achieved the average 
precision score of 0.38, 

0.43, and 0.39 for 
recognizing threatening 

items within low-
energy, high-energy, 

and color X-ray scans, 
respectively. 

This framework is 
validated on a limited 
set of locally acquired 

scans. 

Kundegorski et 
al. [5] 

Coupled feature descriptors 
with Bag of Words, SVM, 

and Random Forest model 
for classifying baggage X-ray 
scans containing prohibited 

items. 

Achieved the optimal 
accuracy of 0.94 for 

recognizing firearms 
scans via FAST-SURF. 

This framework is tested 
only on a local dataset 

under a constraint 
environment. 

Table S1. Cont. 



Mery et al. [6] 

Proposed an object detector 
dubbed Adaptive Sparse 

Representation (XASR+) that 
is trained patch-wise 

forming a representative set 
of dictionaries for each 

object. During test time, the 
random patches (from the 
test scans) are generated 

forming the "best" dictionary 
(of each object) through 
which the candidate test 
patch is classified via the 

Sparse Representation 
Classification (SRC) scheme. 

XASR+ achieved an 
accuracy of more than 
0.95 (and 0.85 for 15% 

occluded objects). 

XASR+ is tested under a 
very constrained 

environment. 

Riffo et al. [7] 

Developed an AISM 
framework that uses a visual 

vocabulary driven via 
occurrence structure to 

detect threatening objects 
within X-ray imagery. 

AISM is tested on 
GDXray [8] dataset and 
achieved the recall and 

false positive rate of 0.97 
and 0.06 for shuriken, 

0.99 and 0.02 for 
detecting razors, and 0.89 

and 0.18 for detecting 
handguns. 

AISM cannot well 
generalize to multiple 
scanner specifications. 

Liu et al. [9] 
Used YOLO9000 [10] to 
detect contraband items 

from security X-ray scans. 

YOLO9000 [10] achieved 
the average precision 

and recall rate of 0.945 
and 0.926, respectively. 

YOLO9000 [10], in this 
paper, is tested only on 
locally acquired 2850 

scans for detecting 
scissors and aerosols. 

Dhiraj et al. [11] 

Evaluated Faster RCNN 
[12], YOLOv2 [10], and Tiny 

YOLO [10] for detecting 
threatening items from 
baggage X-ray scans. 

Achieved the accuracy, 
recall, and precision 

score of 0.9840, 0.9800, 
and 0.9300 on the 

GDXray [8] dataset. 

All the one-staged and 
two-staged detectors 

(used in this study) are 
tested only on the 

GDXray [8] dataset. 

Xu et al. [13] 

Enhanced the capacity of the 
CNN model to localize 
threatening items via 
attention mechanism. 

Achieved the 
recognition and 

localization accuracy of 
0.956, 0.53 for detecting 
revolvers, 0.983 and 0.735 
for detecting guns, and 

0.972 and 0.541 for 
detecting knives. 

This study only 
involved one public 

dataset, i.e., the GDXray 
[8] dataset. 

Jaccard et al. 
[14] 

Used sliding-window CNN 
models to detect cars within 

cargo transmission X-ray 
imagery. 

Achieved classification 
rate of 100% for 

recognizing cars for a 
false positive rate of 1-

in-454. 

Sliding-window CNN is 
tested for only binary 

classification (cars versus 
no-cars) tasks on a 

limited dataset. 



Griffin et al. [15] 

Detected threatening 
baggage items as anomalies 

based upon their shape, 
density, and textural 

representations. 

Recognizing 90% of 
firearms as anomalies 

while achieving the false 
positive rate of 0.18. 

The presented 
framework cannot 

localize the recognized 
anomalous items. 

An et al. [16] 

Developed a semantic 
segmentation model-driven 

via a dual-attention 
mechanism to detect 

contraband items within 
security X-ray scans. 

Achieved a mean IoU 
score of 0.683 for 

extracting prohibited 
items. 

The semantic 
segmentation model 

proposed in this paper is 
tested only on a locally 

acquired dataset for 
extracting baggage 

threats with no or low 
occlusion. 

Hassan et al. 
[17] 

Developed a contour 
instance segmentation 

framework for recognizing 
baggage threats regardless 

of the scanner specifications. 

Achieved a mean 
average precision score 
of 0.4657 on a total of 
223,686 multivendor 
baggage X-ray scans. 

The contour instance 
segmentation 

framework proposed in 
this paper is built upon 

a conventional fine-
tuning approach that 
requires a large-scale 

training dataset. 

Zou et al. [18] 

Used sampling contours 
extracted via variable 
thresholds to detect 

suspicious items within 
security X-ray scans. 

Achieved a mean 
average precision of 

0.864 and a recall rate of 
0.877. 

The framework is tested 
only on a custom 

prepared grayscale 
dataset. 

Akcay et al. [19] 

Used AlexNet [20] as a 
feature extractor coupled 
with SVM for classifying 

baggage threats. 
Furthermore, the authors 
compared Faster R-CNN 

[12], sliding-window based 
CNN (SW-CNN), region-
based fully convolutional 

networks (R-FCN) [21], and 
YOLOv2 [10] for detected 

occluded contraband items 
from the X-ray imagery. 

Achieved a mean 
average precision score 
of 0.885 using YOLOv2 
with input size 544×544. 
Using the input of size 
416×416, the authors 

achieved a mean 
average precision score 

of 0.974 for two-class 
firearm detection. 

This study is conducted 
using only locally 
prepared datasets. 

Xiao et al. [22] 

Developed a 
computationally efficient 

variant of Faster R-CNN [12] 
dubbed R-PCNN for 

detecting prohibited items 
from THz imagery. 

Achieved the detection 
accuracy of 0.845 with 
an average detection 

time of 20 milliseconds. 

R-PCNN is tested in a 
constraint environment 
on locally acquired THz 

scans. 



Gaus et al. [23] 

Evaluated RetinaNet [24], 
Faster R-CNN [12], and 
Mask R-CNN [25] for 

screening baggage X-ray 
scans as benign or 

malignant. 

Achieved the mean 
average precision of up 

to 0.979 for six-class 
detection and also 

achieved the accuracy of 
0.66 for anomaly 

identification. 

This study only used 
locally prepared 

(private) datasets. 

Wei et al. [26] 

Proposed a plug-and-play 
module dubbed DOAM [26] 
that can be integrated with 
the deep object detectors to 
recognize and localized the 
occluded threatening items. 

Achieved the mean 
average precision score 
of 0.740 when coupled 

with SSD [27]. 

DOAM has not been 
tested on publicly 

available GDXray [8] 
and SIXray [28] datasets. 

Miao et al. [28] 

Developed CHR [28], an 
imbalanced resistant 

framework that leverages 
reversed connections to 

derive high-level visual cues 
that aid in producing 

distinct mid-level features. 
Furthermore, the framework 
is trained via a custom class-

balanced loss function to 
effectively learn the 

imbalanced suspicious item 
categories in a highly 

imbalanced SIXray [28] 
dataset. 

Achieved an overall 
mean average precision 
score of 0.793, 0.606, and 
0.381 on SIXray10 [28], 

SIXray100 [28], and 
SIXray1000 [28], 

respectively when 
coupled with ResNet-

101 [29] for recognizing 
five suspicious item 

categories. 

Although the 
framework is resistant to 
an imbalanced dataset, it 
is only tested on a single 

dataset. 

Gaus et al. [30] 

Evaluated the transferability 
of different one-staged and 
two-staged object detection 
and instance segmentation 

models on SIXray10 [28] 
subset of the SIXray [28] 
dataset and also on their 
locally prepared dataset. 

Achieved a mean 
average precision of 
0.8500 for extracting 

guns and knives on the 
SIXray10 [28] dataset. 

This study involved 
only one public dataset, 

i.e., the SIXray10 [28] 
subset of the SIXray [28] 

dataset for extracting 
guns and knives only. 

Hassan et al. 
[31] 

Developed a CST framework 
that leverages contours of 

the baggage content to 
generate object proposals 

that are screened via a single 
classification backbone. 

Achieved a mean 
average precision score 
of 0.9343 and 0.9595 on 
GDXray [8] and SIXray 

[28] datasets. 

Although the CST 
framework is resistant to 
imbalanced data and is 

tested on two public 
datasets. However, it 

requires extensive 
parameter tuning to 
work well on each 

dataset. 
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Akcay et al. [32] 

Detected baggage threats as 
anomalies via unsupervised 
adversarial learning-driven 
encoder-decoder-encoder 

topology dubbed 
GANomaly [32]. 

Achieved area-under-
the-curve (AUC) score of 
0.643 and 0.882 on local 
baggage X-ray datasets. 

GANomaly [32] is 
computationally 

expensive because of an 
additional encoder 

block. 

Akcay et al. [33] 

Modified GANomaly [32] by 
adding skip-connections 

between encoder-decoder 
networks and eliminating 

the redundant encoder 
backbone.  

Achieved an AUC score 
of 0.940 and 0.903 on the 

two local datasets. In 
addition, Skip-
GANomaly [33] 

achieved an AUC score 
of 0.953 for detecting 

cars on CIFAR-10. 

Skip-GANomaly [33] is 
not tested for 

reconstructing high-
resolution baggage X-

ray scans to detect 
threatening anomalous 

items. 
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