## Meta-Transfer Learning Driven Tensor-Shot Detector for the Autonomous Localization and Recognition of Concealed Baggage Threats

## **Supplementary Material**

This supplementary material reports a detailed summary of the related work discussed in Section 2 of the article.

| Literature                | Methodology                                                                                                                                                 | Performance                                                                                                                                                                               | Limitations                                                                                                                                                                                       |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Turcsany et al.<br>[1]    | Proposed SURF coupled<br>SVM model driven through<br>Bag of Words to classify<br>baggage threats.                                                           | Achieved a true positive<br>rate of 0.9907 and a false<br>positive rate of 0.0431 on<br>a local dataset.                                                                                  | The framework can<br>classify scans containing<br>suspicious items but<br>does not possess the<br>capacity to localize<br>them. In addition, it is<br>tested in limited<br>experimental settings. |
| Heitz et al. [2]          | Developed a framework<br>dubbed SATIS $\varphi$ for<br>segmenting objects within X-<br>ray imagery using additivity<br>in log space.                        | Achieved the root-mean-<br>squared error of 0.66.                                                                                                                                         | SATISφ is applied only<br>to a limited set of X-ray<br>scans.                                                                                                                                     |
| Bastan [3]                | Developed dense sampling<br>and multiview branch and<br>bound search scheme to<br>detect objects within texture-<br>less X-ray scans.                       | Achieved an average<br>precision score of 0.704,<br>0.851, 0.259 for detecting<br><i>laptops, bottles,</i> and<br><i>handguns,</i> respectively,<br>using the custom<br>prepared dataset. | The framework<br>presented in this paper<br>is vulnerable to diverse<br>ranging scanners.                                                                                                         |
| Bastan et al. [4]         | Used Bag of Visual Words<br>with different feature<br>descriptors to recognize<br>baggage threats within X-ray<br>imagery.                                  | Achieved the average<br>precision score of 0.38,<br>0.43, and 0.39 for<br>recognizing threatening<br>items within low-<br>energy, high-energy,<br>and color X-ray scans,<br>respectively. | This framework is<br>validated on a limited<br>set of locally acquired<br>scans.                                                                                                                  |
| Kundegorski et<br>al. [5] | Coupled feature descriptors<br>with Bag of Words, SVM,<br>and Random Forest model<br>for classifying baggage X-ray<br>scans containing prohibited<br>items. | Achieved the optimal<br>accuracy of 0.94 for<br>recognizing firearms<br>scans via FAST-SURF.                                                                                              | This framework is tested<br>only on a local dataset<br>under a constraint<br>environment.                                                                                                         |
| Table S1. Cont.           |                                                                                                                                                             |                                                                                                                                                                                           |                                                                                                                                                                                                   |

 Table S1. Summary of existing works related to autonomous baggage threat detection.

| Mery et al. [6]        | Proposed an object detector<br>dubbed Adaptive Sparse<br>Representation (XASR+) that<br>is trained patch-wise<br>forming a representative set<br>of dictionaries for each<br>object. During test time, the<br>random patches (from the<br>test scans) are generated<br>forming the "best" dictionary<br>(of each object) through<br>which the candidate test<br>patch is classified via the<br>Sparse Representation<br>Classification (SRC) scheme. | XASR+ achieved an<br>accuracy of more than<br>0.95 (and 0.85 for 15%<br>occluded objects).                                                                                                                                                        | XASR+ is tested under a<br>very constrained<br>environment.                                                                                 |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Riffo et al. [7]       | Developed an AISM<br>framework that uses a visual<br>vocabulary driven via<br>occurrence structure to<br>detect threatening objects<br>within X-ray imagery.                                                                                                                                                                                                                                                                                         | AISM is tested on<br>GDXray [8] dataset and<br>achieved the recall and<br>false positive rate of 0.97<br>and 0.06 for <i>shuriken</i> ,<br>0.99 and 0.02 for<br>detecting <i>razors</i> , and 0.89<br>and 0.18 for detecting<br><i>handguns</i> . | AISM cannot well<br>generalize to multiple<br>scanner specifications.                                                                       |
| Liu et al. [9]         | Used YOLO9000 [10] to<br>detect contraband items<br>from security X-ray scans.                                                                                                                                                                                                                                                                                                                                                                       | YOLO9000 [10] achieved<br>the average precision<br>and recall rate of 0.945<br>and 0.926, respectively.                                                                                                                                           | YOLO9000 [10], in this<br>paper, is tested only on<br>locally acquired 2850<br>scans for detecting<br><i>scissors</i> and <i>aerosols</i> . |
| Dhiraj et al. [11]     | Evaluated Faster RCNN<br>[12], YOLOv2 [10], and Tiny<br>YOLO [10] for detecting<br>threatening items from<br>baggage X-ray scans.                                                                                                                                                                                                                                                                                                                    | Achieved the accuracy,<br>recall, and precision<br>score of 0.9840, 0.9800,<br>and 0.9300 on the<br>GDXray [8] dataset.                                                                                                                           | All the one-staged and<br>two-staged detectors<br>(used in this study) are<br>tested only on the<br>GDXray [8] dataset.                     |
| Xu et al. [13]         | Enhanced the capacity of the<br>CNN model to localize<br>threatening items via<br>attention mechanism.                                                                                                                                                                                                                                                                                                                                               | Achieved the<br>recognition and<br>localization accuracy of<br>0.956, 0.53 for detecting<br><i>revolvers</i> , 0.983 and 0.735<br>for detecting <i>guns</i> , and<br>0.972 and 0.541 for<br>detecting <i>knives</i> .                             | This study only<br>involved one public<br>dataset, i.e., the GDXray<br>[8] dataset.                                                         |
| Jaccard et al.<br>[14] | Used sliding-window CNN<br>models to detect <i>cars</i> within<br>cargo transmission X-ray<br>imagery.                                                                                                                                                                                                                                                                                                                                               | Achieved classification<br>rate of 100% for<br>recognizing <i>cars</i> for a<br>false positive rate of 1-<br>in-454.                                                                                                                              | Sliding-window CNN is<br>tested for only binary<br>classification ( <i>cars</i> versus<br><i>no-cars</i> ) tasks on a<br>limited dataset.   |

| Griffin et al. [15]   | Detected threatening<br>baggage items as anomalies<br>based upon their shape,<br>density, and textural<br>representations.                                                                                                                                                                                                                                     | Recognizing 90% of<br>firearms as anomalies<br>while achieving the false<br>positive rate of 0.18.                                                                                                                                               | The presented<br>framework cannot<br>localize the recognized<br>anomalous items.                                                                                                         |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| An et al. [16]        | Developed a semantic<br>segmentation model-driven<br>via a dual-attention<br>mechanism to detect<br>contraband items within<br>security X-ray scans.                                                                                                                                                                                                           | Achieved a mean IoU<br>score of 0.683 for<br>extracting prohibited<br>items.                                                                                                                                                                     | The semantic<br>segmentation model<br>proposed in this paper is<br>tested only on a locally<br>acquired dataset for<br>extracting baggage<br>threats with no or low<br>occlusion.        |
| Hassan et al.<br>[17] | Developed a contour<br>instance segmentation<br>framework for recognizing<br>baggage threats regardless<br>of the scanner specifications.                                                                                                                                                                                                                      | Achieved a mean<br>average precision score<br>of 0.4657 on a total of<br>223,686 multivendor<br>baggage X-ray scans.                                                                                                                             | The contour instance<br>segmentation<br>framework proposed in<br>this paper is built upon<br>a conventional fine-<br>tuning approach that<br>requires a large-scale<br>training dataset. |
| Zou et al. [18]       | Used sampling contours<br>extracted via variable<br>thresholds to detect<br>suspicious items within<br>security X-ray scans.                                                                                                                                                                                                                                   | Achieved a mean<br>average precision of<br>0.864 and a recall rate of<br>0.877.                                                                                                                                                                  | The framework is tested<br>only on a custom<br>prepared grayscale<br>dataset.                                                                                                            |
| Akcay et al. [19]     | Used AlexNet [20] as a<br>feature extractor coupled<br>with SVM for classifying<br>baggage threats.<br>Furthermore, the authors<br>compared Faster R-CNN<br>[12], sliding-window based<br>CNN (SW-CNN), region-<br>based fully convolutional<br>networks (R-FCN) [21], and<br>YOLOv2 [10] for detected<br>occluded contraband items<br>from the X-ray imagery. | Achieved a mean<br>average precision score<br>of 0.885 using YOLOv2<br>with input size 544×544.<br>Using the input of size<br>416×416, the authors<br>achieved a mean<br>average precision score<br>of 0.974 for two-class<br>firearm detection. | This study is conducted<br>using only locally<br>prepared datasets.                                                                                                                      |
| Xiao et al. [22]      | Developed a<br>computationally efficient<br>variant of Faster R-CNN [12]<br>dubbed R-PCNN for<br>detecting prohibited items<br>from THz imagery.                                                                                                                                                                                                               | Achieved the detection<br>accuracy of 0.845 with<br>an average detection<br>time of 20 milliseconds.                                                                                                                                             | R-PCNN is tested in a<br>constraint environment<br>on locally acquired THz<br>scans.                                                                                                     |

| Gaus et al. [23]      | Evaluated RetinaNet [24],<br>Faster R-CNN [12], and<br>Mask R-CNN [25] for<br>screening baggage X-ray<br>scans as benign or<br>malignant.                                                                                                                                                                                                                                                                           | Achieved the mean<br>average precision of up<br>to 0.979 for six-class<br>detection and also<br>achieved the accuracy of<br>0.66 for anomaly<br>identification.                                                                                                   | This study only used<br>locally prepared<br>(private) datasets.                                                                                                                                       |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Wei et al. [26]       | Proposed a plug-and-play<br>module dubbed DOAM [26]<br>that can be integrated with<br>the deep object detectors to<br>recognize and localized the<br>occluded threatening items.                                                                                                                                                                                                                                    | Achieved the mean<br>average precision score<br>of 0.740 when coupled<br>with SSD [27].                                                                                                                                                                           | DOAM has not been<br>tested on publicly<br>available GDXray [8]<br>and SIXray [28] datasets.                                                                                                          |
| Miao et al. [28]      | Developed CHR [28], an<br>imbalanced resistant<br>framework that leverages<br>reversed connections to<br>derive high-level visual cues<br>that aid in producing<br>distinct mid-level features.<br>Furthermore, the framework<br>is trained via a custom class-<br>balanced loss function to<br>effectively learn the<br>imbalanced suspicious item<br>categories in a highly<br>imbalanced SIXray [28]<br>dataset. | Achieved an overall<br>mean average precision<br>score of 0.793, 0.606, and<br>0.381 on SIXray10 [28],<br>SIXray100 [28], and<br>SIXray1000 [28],<br>respectively when<br>coupled with ResNet-<br>101 [29] for recognizing<br>five suspicious item<br>categories. | Although the<br>framework is resistant to<br>an imbalanced dataset, it<br>is only tested on a single<br>dataset.                                                                                      |
| Gaus et al. [30]      | Evaluated the transferability<br>of different one-staged and<br>two-staged object detection<br>and instance segmentation<br>models on SIXray10 [28]<br>subset of the SIXray [28]<br>dataset and also on their<br>locally prepared dataset.                                                                                                                                                                          | Achieved a mean<br>average precision of<br>0.8500 for extracting<br><i>guns</i> and <i>knives</i> on the<br>SIXray10 [28] dataset.                                                                                                                                | This study involved<br>only one public dataset,<br>i.e., the SIXray10 [28]<br>subset of the SIXray [28]<br>dataset for extracting<br>guns and knives only.                                            |
| Hassan et al.<br>[31] | Developed a CST framework<br>that leverages contours of<br>the baggage content to<br>generate object proposals<br>that are screened via a single<br>classification backbone.                                                                                                                                                                                                                                        | Achieved a mean<br>average precision score<br>of 0.9343 and 0.9595 on<br>GDXray [8] and SIXray<br>[28] datasets.                                                                                                                                                  | Although the CST<br>framework is resistant to<br>imbalanced data and is<br>tested on two public<br>datasets. However, it<br>requires extensive<br>parameter tuning to<br>work well on each<br>dataset |
| Table S1. Cont.       |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                       |

| Akcay et al. [32] | Detected baggage threats as<br>anomalies via unsupervised<br>adversarial learning-driven<br>encoder-decoder-encoder<br>topology dubbed<br>GANomaly [32]. | Achieved area-under-<br>the-curve (AUC) score of<br>0.643 and 0.882 on local<br>baggage X-ray datasets.                                                                                         | GANomaly [32] is<br>computationally<br>expensive because of an<br>additional encoder<br>block.                                                     |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Akcay et al. [33] | Modified GANomaly [32] by<br>adding skip-connections<br>between encoder-decoder<br>networks and eliminating<br>the redundant encoder<br>backbone.        | Achieved an AUC score<br>of 0.940 and 0.903 on the<br>two local datasets. In<br>addition, Skip-<br>GANomaly [33]<br>achieved an AUC score<br>of 0.953 for detecting<br><i>cars</i> on CIFAR-10. | Skip-GANomaly [33] is<br>not tested for<br>reconstructing high-<br>resolution baggage X-<br>ray scans to detect<br>threatening anomalous<br>items. |

## References

- Turcsany, D.; Mouton, A.; Breckon, T.P. Improving Feature-based Object Recognition for X-ray Baggage Security Screening using Primed Visual Words. In Proceedings of the 2013 IEEE International Conference on Industrial Technology (ICIT), Cape Town, South Africa, 25–28 February 2013; pp. 1140–1145.
- 2. Heitz, G.; Chechik, G. Object Separation in X-ray Image Sets. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, USA, 13–18 June 2010; pp. 2093–2100.
- 3. Baştan, M. Multi-view Object Detection In Dual-energy X-ray Images. Mach. Vis. Appl. 2015, 26, 1045–1060.
- 4. Baştan, M.; Yousefi, M.R.; Breuel, T.M. Visual Words on Baggage X-ray Images. In Proceedings of the 14th International Conference on Computer Analysis of Images and Patterns, Seville, Spain, 29–31 August 2011; pp. 360–368.
- Kundegorski, M.E.; Akçay, S.; Devereux, M.; Mouton, A.; Breckons, T.P. On using Feature Descriptors as Visual Words for Object Detection within X-ray Baggage Security Screening. In Proceedings of the IEEE International Conference on Imaging for Crime Detection and Prevention (ICDP), Madrid, Spain, 23–25 November 2016; pp. 1– 6.
- Mery, D.; Svec, E.; Arias, M. Object Recognition in Baggage Inspection Using Adaptive Sparse Representations of X-ray Images. In *Pacific-Rim Symposium on Image and Video Technology*; Springer: Cham, Switzerland, 2016; pp. 709–720.
- Riffo, V.; Mery, D. Automated Detection of Threat Objects Using Adapted Implicit Shape Model. *IEEE Trans. Syst. Man Cybern. Syst.* 2016, 46, 472–482.
- 8. Mery, D.; Riffo, V.; Zscherpel, U.; Mondragón, G.; Lillo, I.; Zuccar, I.; Lobel, H.; Carrasco, M. GDXray: The database of X-ray images for nondestructive testing. *J. Nondestruct. Eval.* **2015**, 34, 42.
- Liu, Z.; Li, J.; Shu, Y.; Zhang, D. Detection and Recognition of Security Detection Object Based on YOLO9000. In Proceedings of the 2018 5th International Conference on Systems and Informatics (ICSAI), Nanjing, China, 10–12 November 2018; pp. 278–282.
- 10. Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271.
- 11. Jain, D.K. An evaluation of deep learning based object detection strategies for threat object detection in baggage security imagery. *Pattern Recognit. Lett.* **2019**, 120, 112–119.
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. In Proceedings of the 29th Conference on Neural Information Processing Systems (NIPS 2015), Montreal, Canada, 7–12 December 2015; pp. 91–99.

- Xu, M.; Zhang, H.; Yang, J. Prohibited Item Detection in Airport X-Ray Security Images via Attention Mechanism Based CNN. In Proceedings of the Chinese Conference on Pattern Recognition and Computer Vision, Guangzhou, China, 23–26 November 2018; pp. 429–439.
- 14. Jaccard, N.; Rogers, T.W.; Morton, E.; Griffin, L.D. Detection of Concealed Cars In Complex Cargo X-ray Imagery Using Deep Learning. J. *X-Ray Sci. Technol.* **2017**, *25*, 323–339.
- 15. Griffin, L.D.; Caldwell, M.; Andrews, J.T.A.; Bohler, H. "Unexpected Item in the Bagging Area": Anomaly Detection in X-Ray Security Images. *IEEE Trans. Inf. Forensics Secur.* **2019**, 14, 1539–1553.
- An, J.; Zhang, H.; Zhu, Y.; Yang, J. Semantic Segmentation for Prohibited Items in Baggage Inspection. In Proceedings of the International Conference on Intelligence Science and Big Data Engineering Visual Data Engineering, Nanjing, China, 17–20 October 2019; pp. 495–505.
- 17. Hassan, T.; Akçay, S.; Bennamoun, M.; Khan, S.; Werghi, N. Trainable Structure Tensors for Autonomous Baggage Threat Detection Under Extreme Occlusion. *arXiv* **2020**, arXiv:2009.13158.
- 18. Zou, L.; Yusuke, T.; Hitoshi, I. Dangerous Objects Detection of X-Ray Images Using Convolution Neural Network. In *Security with Intelligent Computing and Big-data Services*; Springer: Cham, Switzerland, 2018.
- 19. Akçay, S.; Kundegorski, M.E.; Willcocks, C.G.; Breckon, T.P. Using Deep Convolutional Neural Network Architectures for Object Classification and Detection Within X-ray Baggage Security Imagery. *IEEE Trans. Inf. Forensics Secur.* 2018, 13, 2203–2215.
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of the 26th Annual Conference on Neural Information Processing Systems (NIPS 2012), Lake Tahoe, NV, USA, 3–8 December 2012; pp. 1106–1114.
- Dai, J.; Li, Y.; He, K.; Sun, J. R-FCN: Object Detection via Region-based Fully Convolutional Networks. In Proceedings of the 30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain, 5– 10 December 2016; pp. 379–387.
- 22. Xiao, H.; Zhu, F.; Zhang, R.; Cheng, Z.; Wang, H.; Alesund, N.; Dai, H.; Zhou, Y. R-PCNN Method to Rapidly Detect Objects on THz Images in Human Body Security Checks. In Proceedings of the IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation, Guangzhou, China, 8–12 October 2018; pp. 1777–1782.
- Gaus, Y.F.A.; Bhowmik, N.; Akçay, S.; Guillén-Garcia, P.M.; Barker, J.W.; Breckon, T.P. Evaluation of a Dual Convolutional Neural Network Architecture for Object-wise Anomaly Detection in Cluttered X-ray Security Imagery. In Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; pp. 1–8.
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal Loss for Dense Object Detection. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2980–2988.
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2961–2969.
- 26. Wei, Y.; Tao, R.;Wu, Z.; Ma, Y.; Zhang, L.; Liu, X. Occluded Prohibited Items Detection: An X-ray Security Inspection Benchmark and De-occlusion Attention Module. *arXiv* **2020**, arXiv:2004.08656.
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; pp. 21–37.
- Miao, C.; Xie, L.; Wan, F.; Su, C.; Liu, H.; Jiao, J.; Ye, Q. SIXray: A Large-scale Security Inspection X-ray Benchmark for Prohibited Item Discovery in Overlapping Images. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 18–20 June 2019; pp. 2119–2128.
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778.

- 30. Gaus, Y.F.A.; Bhowmik, N.; Akcay, S.; Breckon, T. Evaluating the Transferability and Adversarial Discrimination of Convolutional Neural Networks for Threat Object Detection and Classification within X-Ray Security Imagery. *arXiv* **2019**, arXiv:1911.08966.
- Hassan, T.; Bettayeb, M.; Akçay, S.; Khan, S.; Bennamoun, M.;Werghi, N. Detecting Prohibited Items in X-ray Images: A Contour Proposal Learning Approach. In Proceedings of the 27th IEEE International Conference on Image Processing (ICIP), Abu Dhabi, UAE, 25–28 October 2020; pp. 2016–2020.
- Akçay, S.; Atapour-Abarghouei, A.; Breckon, T.P. GANomaly: Semi-Supervised Anomaly Detection via Adversarial Training. In *Asian Conference on Computer Vision*; Springer: Berlin/Heidelberg, Germany, 2018; pp. 622–637.
- 33. Akçay, S.; Atapour-Abarghouei, A.; Breckon, T.P. Skip-GANomaly: Skip Connected and Adversarially Trained Encoder-Decoder Anomaly Detection. *arXiv* **2019**, arXiv:1901.08954.



© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).