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Abstract: The detection and identification of road anomalies and obstacles in the road infrastructure
has been investigated by the research community using different types of sensors. This paper
evaluates the detection and identification of road anomalies/obstacles using the data collected
from the Inertial Measurement Unit (IMU) installed in a vehicle and in particular from the data
generated by the accelerometers’ and gyroscopes’ components. Inspired by the successes of the
application of deep learning to various identification problems, this paper investigates the application
of Convolutional Neural Network (CNN) to this specific problem. In particular, we propose a novel
approach in this context where the time-frequency representation (i.e., spectrogram) is used as an
input to the CNN rather than the original time domain data. This approach is evaluated on an
experimental dataset collected using 12 different vehicles driving for more than 40 km of road.
The results show that the proposed approach outperforms significantly and across different sampling
rates both the application of CNN to the original time domain representation and the application of
shallow machine learning algorithms. The approach achieves an identification accuracy of 97.2%.
The results presented in this paper are based on an extensive optimization both of the CNN algorithm
and the spectrogram implementation in terms of window size, type of window, and overlapping ratio.
The accurate detection of road anomalies/obstacles could be useful to road infrastructure managers
to monitor the quality of the road surface and to improve the accurate positioning of autonomous
vehicles because road anomalies/obstacles could be used as landmarks.

Keywords: convolutional neural networks; deep learning; time-frequency; Inertial Measurement
Unit (IMU); road anomalies

1. Introduction

Detection of road anomalies like potholes, road cracks, and road safety features/obstacles like
speed bumps (also called speed humps) has been investigated by the research community in recent
years using a variety of sensors including cameras, Light Detection And Ranging (LiDAR)s, and Inertial
Measurement Units (IMU)s. One of the main applications for the detection of road anomalies is the
monitoring of the road conditions, which can be used to repair the road surface once a road anomaly
(e.g., pothole) is detected or to improve the comfort and safety of the vehicle in Advanced Driver
Assistance Systems (ADAS). An additional aspect is to use the identification of road anomalies as
landmarks to enhance maps and improve localization to a high degree of accuracy. The upcoming
evolution of modern vehicles to autonomous vehicles could benefit from this information and use
it for a variety of purposes. It could be used to improve the position of the autonomous vehicle.
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It could be used improve its travel plan for the comfort of the passengers (e.g., the autonomous vehicle
could slow down before a known pothole). It could even be used to mitigate cybersecurity attacks
on the positioning information (e.g., the position information would be correlated with the detected
road anomaly to mitigate Global Navigation Satellite Systems (GNSS) spoofing attacks). The use of
the position of the road anomaly to support localization algorithms was already mentioned in [1,2].
In addition, studies like [3] suggest that artificial position measurements obtained by detecting road
anomalies associated with map locations will be increasingly used in the automotive sector and
automated vehicles also in synergy with Simultaneous Localization And Mapping (SLAM) techniques
by the robotics community.

Detection of road anomalies can be performed using different techniques including machine
learning algorithms [4,5], and in recent times, Deep Learning (DL) algorithms have been adopted
with significant success. In many cases, DL is used to detect and identify road anomalies on the basis
of the images collected by the camera installed on the vehicle [6,7]. Processing of data images can
be a time consuming and error prone task [5], and it is limited by the lighting (e.g., darkness) or
environmental conditions (e.g., fog, rain) [8]. An alternative approach, which is not affected by these
issues, is to use the data provided by the IMU, and DL was applied to such data in recent studies [9].
Then, the application of DL for road anomaly detection using data from accelerometers and gyroscopes
is a recent research area, which is gaining significant momentum in the research community, and it is
further explored in this paper.

This paper proposes the combination of time-frequency transform and CNN (called CNN-SP)
for the detection and identification of road anomalies in the road infrastructure, which has not been
proposed in the literature yet (to the knowledge of the authors) for this specific problem. As shown
in the results provided in this paper, CNN-SP provides a superior classification performance to the
direct application of CNN to the original time domain signal. This paper uses a relatively large set
of vehicles (12) in the data collection phase to improve generalization of the results. The application
of CNN-SP is evaluated using an experimental dataset collected by the authors with many hours of
driving on a realistic road path with various types of road anomalies and obstacles. The approach is
evaluated using data both from the accelerometer and the gyroscope. Finally, this study provides an
extensive evaluation of the different sampling rates on the identification accuracy.

The structure of this paper is as follows: Section 2 provides a literature review on the detection
of road anomalies using sensors installed on the vehicles with a particular focus on accelerometers
and gyroscopes. Section 3 describes the materials and methods used for the analysis including the
description of the adopted machine learning algorithms and the related evaluation metrics. Section 4
provides the results of the analysis including the optimization of the CNN-SP approach and a
comparison among the results provided by the different machine learning algorithms. Finally, Section 5
provides the conclusions.

2. Literature Review

Detection of road anomalies and road surface conditions using the sensors installed on the vehicle
has been investigated by the research community in recent years. Detection of road anomalies through
cameras can provide high accuracy especially with the recent application of deep learning. Examples of
the application of deep learning (and convolutional neural networks in particular) in combination
with camera images to assess road surface condition were provided in [6,7]. The use of data images
can be a time consuming and error prone task [5], and it is limited by the lighting (e.g., darkness) or
environmental conditions (e.g., fog, rain) [8]. For this reason, this paper does not use an approach
based on camera images, and other sensors are used.

The application of accelerometers, gyroscopes, and magnetometers to detect road anomalies like
potholes and obstacles (e.g., speed humps) has been investigated by the research community in recent
years [10]. This is also due to the decreasing costs of IMUs and their increasing use in the automotive
sector either because they are inserted and used in the vehicle systems or because smartphones
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(which are equipped with IMUs) can be deployed and installed in vehicles. A very recent and detailed
survey on the use of accelerometers and gyroscopes (as inertial sensing sources of information) was
presented in [4] where an analysis focused on identifying methods that capture signals provided by
inertial sensors such as accelerometers and gyroscopes to recognize transient or persistent events
associated with the vehicle’s movement was presented. The results of the survey show that a limited
amount of the reviewed papers used time-frequency analysis, and no paper in the review used the
combination of the time-frequency and convolutional neural networks, as proposed in this paper.

Detection of road anomalies like potholes using accelerometers was implemented by the authors
in [11,12] where a high detection rate was achieved using the data collected by the accelerometers
in the Z direction, but no deep learning approach was used. In a similar way, the authors in [13]
used a generic smartphone application reading data from built-in accelerometers sensors to map and
measure the locations of potholes and speed bumps, which can be used to evaluate the road conditions.
The data were collected in a cloud system, where the analysis was performed. The authors in [5]
proposed the Android application RoadSense, which automatically predicts the quality of the road
based on a triaxial accelerometer and a gyroscope. The study used frequency domain features for the
classification combined with different machine learning algorithms. As in previous papers, the focus
was on pothole detection to monitor the smoothness of the road surface, but the identification of the
road anomalies was not attempted.

Four recent works are very similar to the study presented in this paper. In [14], different road
anomalies like bump, pothole, and normal conditions (flat road) were detected and identified using an
improved Gaussian background model and the K Nearest Neighbor (KNN) algorithm applied to the
accelerometers’ recording. The described approach provides a high accuracy (96.03%) of recognition
of the road surface pothole and a high accuracy of the road surface bump of 94.12%. In comparison
to [14], this paper applies a more sophisticated deep learning approach in combination with a
time-frequency transform, which is shown to provide a higher identification accuracy than the time
domain representation (i.e., original accelerometer signal). In addition, gyroscope data were also used
in addition to the accelerometer data. Finally, a larger set of 12 vehicles is used than the two vehicles
used in [14], which improves the generalizations of the results.

The authors of [8] proposed a novel approach to identify the profile of a pothole, which is a more
challenging task than the detection alone. The depth of the pothole was used as a profile metric, and
the accelerometer data collected by a smartphone were used to conduct the analysis together with
the GPS data. The authors of [8] used four different vehicles to collect the data with two samplings
rate of 100 and 200 Hz. Twenty-three different types of potholes were considered on an overall set
of 2760 segments. In comparison to [8], this paper uses a larger set of vehicles (12), a similar set of
road anomalies/obstacles (19), and different sampling rates (50, 100, 150, 200 and 250 Hz). In addition,
this paper proposes a deep learning approach, while the analysis in [8] was done with Cumulative
Distribution Functions (CDFs). On the other hand, the authors of [8] also investigated different
placements of the smartphone in the vehicle with the result that the placement on the dashboard
provided the best identification accuracy. Based on the results of [8], this paper adopts the position of
the smartphone on the dashboard as well.

The authors of [15] used a DL approach based on CNN (as in this paper) to perform the detection
of road anomalies. The results provided in [15] confirmed the superior performance of the adoption
of CNN in comparison to shallow machine learning algorithms, which prompted the authors of this
paper to apply a CNN based approach as well. In comparison to the CNN approach used by the
authors of [15], where the CNN was applied directly to the data collected from the accelerometers,
this paper first transforms the accelerometer data in the spectral domain using the spectrogram defined
in Section 3.4, then the spectral representation is fed to a CNN (called CNN-SP in the rest of this paper).
The results presented in this paper show that CNN-SP outperforms the application of CNN directly on
the source data (called CNN-1D in the rest of this paper) both for accelerometer and gyroscope data
and across different sampling rates. The application of CNN-SP is evaluated using an experimental
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dataset collected by the authors through many hours of driving on a realistic road path with various
types of road anomalies. The study results presented in this paper use the dataset from [16], where it
was used for the different goal of automotive vehicle authentication. Additional details on the dataset
are presented in Section 3.

In [17], the authors used both accelerometers and gyroscopes like the study done in this paper
to detect speed bumps. The authors applied a number of features to the data recorded by the
accelerometer and gyroscope mounted on the vehicle. Then, a genetic algorithm was used to find a
logistic model that accurately detects road abnormalities. The results were quite encouraging as the
approach was able to achieve an accuracy of 0.9714 in a blind evaluation.

In [9], the authors proposed a road anomaly detection approach based on the application of
three different DL algorithms: Deep Feedforward Network (DFN), Convolutional Neural Network
(CNN), and Recurrent Neural Network (RNN), and the results were compared. The results showed
that the application of DL algorithms was very effective in detecting road anomalies, thus proving the
approach also used in this paper. In comparison to this paper, the authors in [9] used a larger set of
signals beyond the accelerometers and gyroscopes used in this paper since they also included the shock
responses of the four absorbers and the rotation speed. From this point of view, reference [9] represents
a significant progress in comparison to the literature. The authors of [9] also compared three different
DL algorithms. On the other hand, this paper uses a set of 12 vehicles in comparison to the single
vehicle used in [9]. This paper also evaluates the impact of different samples rates on the identification
accuracy, while [9] used only the sampling rate of 100 Hz. Finally, this paper uses a time-frequency
CNN approach rather than the direct application of DL to the signals in the time domain.

Next, we summarize the progress introduced by this paper in comparison to the references identified
in the previous paragraphs. As shown in the results provided in this paper, the time-frequency CNNs
provide a superior classification performance to the direct application of CNN to the original time
domain signal, as proposed in the literature [9,15]. In comparison to the literature [8,9,13–15,17],
which used only one or two vehicles (with the exception of [8], where four vehicles were used),
this paper uses a relatively large set of vehicles (12) to improve the generalization of the results.
Then, the focus of the paper is to investigate how accelerometer and gyroscope readings collected from
different vehicles are used to detect road anomalies and obstacles. The impact of various speeds by
different vehicles is also mitigated to support the application of time-frequency CNN. In comparison to
the literature, this study uses the data both from the accelerometers and the gyroscopes, which
was adopted only by a few studies [9,17], as the accelerometer data were generally used [15].
Finally, this study provides a more extensive, to the knowledge of the authors, evaluation of the
different sampling rates on the identification accuracy.

3. Materials and Methods

3.1. Materials

As mentioned before, the dataset used for this experiment consisted of 12 different cars.
The specifications of the vehicles are listed in Table 1. The same driver and co-driver were present in
every car during the experimental data collection to minimize the potential bias of the driving behavior.
Even if it is acknowledged that in practical operations, the co-driver may be different or may be
absent, we wanted to limit the number of variables in the study. Future developments will investigate
the presence of different passengers and their number (see Section 5). For the IMU, we used the
microelectromechanical system based motion tracker supplied by Xsens (Enschede, The Netherlands)
with Model Number MTi− 100− 2A8G4 . The technical specification of the Xsens sensor are reported
in Table 2.
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Table 1. Order and specifications(brand and model) of the cars used in the data collection.

Car Manufacturer Model Generation Version

1 Fiat Automobiles (Turin, Italy) Panda 2nd Active
2 Fiat Automobiles (Turin, Italy) Panda 2nd Active
3 Fiat Automobiles (Turin, Italy) Panda 2nd Active
4 Fiat Automobiles (Turin, Italy) Panda 2nd Active
5 Fiat Automobiles (Turin, Italy) Panda 2nd Active
6 Fiat Automobiles (Turin, Italy) Panda 2nd Active

7 Fiat Automobiles (Turin, Italy) Punto 2nd 3-door
8 Fiat Automobiles (Turin, Italy) Doblo 1st Facelift
9 Fiat Automobiles (Turin, Italy) Tipo 3rd Hatchback

10 Mitsubishi (Tokyo, Japan) Colt 6th CZ3
11 Škoda Auto (Mladá Boleslav, Czech Republic) Octavia 3rd Estate
12 Mazda Motor Corp. (Hiroshima, Japan) Mazda3 4th Hatchback

Table 2. Technical specificationsof the sensor used in the data collection: Xsens with Model Number
MTi− 100− 2A8G4.

Accelerometer

Parameter Measurement unit Value

Standard full range m/s2 200

Initial bias error m/s2 0.05

In-run bias stability µg 15

Bandwidth (−3 dB) Hz 375

Non-linearity % 0.01

Gyroscope

Parameter Measurement unit Value

Standard full range ◦/s 450

Initial bias error ◦/s 0.2

In-run bias stability µg 10

Bandwidth (−3 dB) Hz 415

Non-linearity % 0.1

The Xsens MTi − 100 sensor used for data collection is designed to measure the three axis
acceleration and rate of turn at a 2000 Hz sampling rate and the three axis magnetic field at a 100 Hz
sampling rate. The actual sampling rate used in the analysis was actually smaller to emulate the
sampling rate from a smartphone. In particular, increasing sampling rates of 50, 100, 150, 200 and
250 Hz were used, as this is the range from low cost phones to more sophisticated phones. The IMU
was mounted using a strong double sided foam tape at the same spot and orientation for every car.
We decided to place the sensor on the top of car’s dashboard in the middle of the car, because it is a
common placement position for the IMU in the literature [12]. In the recent review by Menegazzo
et al. [4], the placement of the IMU on the top of car’s dashboard was the one mostly adopted in the
literature. The results from [8] also showed that the placement on the dashboard provided the smallest
classification error in comparison to the placement of the IMU in other locations on the vehicles
(e.g., left or right side of the car). The image of the placement of the IMU in three vehicles is shown in
Figure 1.
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(a) Fiat Panda 3 (b) Mazda3 (c) Fiat Panda 4

Figure 1. Placement of the sensor used for the data collection in the vehicles for three vehicle models.

The data collection was performed using the controlled positioning strategy. As described in [4],
this strategy consists of a simple technique where the sensor is placed on the vehicle so that the axes
in both reference frames coincide, i.e., the sensor axes are aligned with the vehicle axes, and it is not
necessary to apply preprocessing for reorientation. This technique was used for both accelerometer
and gyroscope data. Then, the x-axis of the IMU was always pointing towards the driving direction
and the z-axis in the vertical direction. A description of the reference frames used in this paper is
shown in Figure 2 with a depiction of the body frame and the world frame. The data collection and
analysis were performed on all three axes’ data both for the accelerometers and gyroscopes, but the
accelerometer Z and the gyroscope Y provided the optimal classification accuracy.

X

Y

Z

Yaw ѱ

Roll φ

Pitch ϴ

Body Frame
Roll, Pitch, Yaw (RPY) angles

World Frame
East, North, Up (ENU) coordinates

East X

North Y

Up Z

ѱ

Figure 2. Reference frames.
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The description of the brand and model of each of the 12 cars is shown in Table 1. The models
were chosen to have a significant number of cars of the same model (the Fiat Panda), but to include as
well car models (Mazda3, Octavia) that are different from the Fiat Panda regarding the weight and
engine power. The use of 12 different vehicles mitigated the problem of defining a model for pothole
detection based on a single vehicle because the data collected by each vehicle were shuffled in the
classification process.

The path where the vehicles were driving was a loop in the European Commission Joint Research
Centre (JRC) premises. The path is slightly longer than 2 km. Since the data collection was performed
for each of the 12 vehicles driving 20 times on the loop, the entire driving data collection was performed
on more than 480 km of road. The JRC campus was built in 1960–1965, and the creation of the road
infrastructure was more than 50 years old at the time of writing this paper. The road infrastructure
is well maintained, and it is all asphalted, even if the asphalt is relatively old and presents various
road anomalies like potholes, cracks, transverse cracks, and patches. Different parts of the loop also
have different maintenance records because the loop crosses different sectors of the JRC campus.
Then, the road surface condition is uneven across the different parts of the loop. The loop includes
15 main road anomalies and 4 obstacles of two different types, which were selected for the data analysis.
With reference to the classification of exteroceptions identified in [4], the road anomalies included
potholes, cracks, transverse cracks, and patches, while the obstacles were of types rumble strips and
speed humps/speed bumps. A picture of some examples of the speed bumps and the road anomalies
(potholes in the road) are shown in Figure 3 with the related recordings with the accelerometer in the
Z direction in Figure 4.

Figure 3. Examples of obstacles and road anomalies (picture).

The road anomalies are identified in the rest of the paper with the identifier RFX with X = 01, ..., 15
while the obstacles are identified with SBY with Y = 01, ..., 04. The segments of the loop, which are
outside RFX and SBY, are identified as NORMZ with Z = 01, ..., 22. See Section 3.2 for further details.
Note that even the NORM road segments are not exempt from the presence of small road anomalies or
uneven surfaces. The map with the pictorial description of the driving path and the position of the
road anomalies/obstacles is shown in Figure 5.
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Figure 4. Examples of obstacles and road anomalies (recordings with the accelerometer in the
Z vertical direction).

Figure 5. Map of the driving path/loop with the position of the road anomalies/obstacles.

3.2. Methodology

The overall methodology is described in Figure 6, and each step is described in the following
paragraphs:

• Normalization and synchronization: As a first step, the data collected from the IMU in each of
the 12 vehicles were synchronized among the 20 laps and normalized. A GNSS receiver was
also installed in the vehicle and synchronized with the IMU. This process was repeated for
different sampling rates: 50, 100, 150, 200 and 250 Hz. All these sampling rates were obtained
by downsampling by the related factor (e.g., a factor of 10 for 200 Hz) the initial data collected
at 2000 Hz from the IMU. In this paper, we consider only the analysis of the accelerometer
data in the Z direction (the vertical direction) and the gyroscope in the Y direction (in the
direction of the vehicle). The reason for this choice was to minimize the degrees of freedoms
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in the analysis and because a heuristic analysis of the data related to the other axes of the
accelerometers and gyroscopes showed that the obtained accuracy was inferior to the one obtained
using the accelerometer in the Z direction and the gyroscope in the Y direction. This is to expected
because the IMUs were mostly stimulated for those axes by the roughness of the road surface,
and this is also consistent with literature [11]. In the rest of this paper, the Accelerometer data
in the Z direction is called AccZ, and the Gyroscope data in the Y direction is called GyroY.
The relationship between the RPY angles and the ENU coordinates was the same as described
in [16]. The synchronization was performed by applying the moving variance to the data from
the accelerometer and by correlating the results across the laps and the vehicle. As is well known
in the literature, full synchronization is not always possible because the vehicles move at different
speeds over the road anomalies, and each vehicle has its response to the stimulus created by the
road anomaly. On the other side, these are problems derived from data collection in a realistic
environment, and such processing issues are likely to be present in any real scenario.

• The entire loop was divided into three different types of segments, and each segment was
labeled with type normal, road anomaly identifier (e.g., an asphalt break is RF15), and obstacle
identifier (e.g., SB01). There were 4 obstacles (identified with SB01, SB02, SB03 and SB04), 15 road
anomalies or road features (identified with RFX and X= 01, ..., 15), and 22 normal segments
(identified with NORM), which were obviously the majority in the entire loop. Each segment
had a time duration of 4 s. This time duration was chosen because it was long enough to include
the driving time of a vehicle over each of the road anomalies/obstacles considered in the study.
The approach was tested on different driving speeds since each vehicle (of the dataset of 12
vehicles) was driving at a different speed and the speed was different in each loop (20 loops),
even for the same vehicle. Then, the data collection was representative of the real-world conditions
when vehicle speeds may be different. Indeed, this was the focus of the study to evaluate if
the proposed approach was able to compensate the data taken with different speeds. As the
segment duration was fixed, the sample length of each segment was obviously longer for higher
sampling rates (e.g., a segment was 200 samples long for a sampling rate of 50 Hz). The labels
were generated by using the GNSS position and by manually checking for each segment that the
road anomaly and the obstacle were correctly assigned to each segment. This manual step was
needed because the GNSS accuracy may not be precise enough to identify the precise location of
the road anomaly/feature.

As we had 12 vehicles for 20 loops, the analysis took into consideration a total of
12 × 20 × 41 segments = 9840 segments based on (4 + 15 + 1) = 20 different classes.

• The spectrogram was applied to the time domain digital output from the IMU (AccZ and
GyroY) for the considered sampling rates and by using different values of the hyperparameter.
The definition of the spectrogram and its hyperparameters is provided in Section 3.4.

• The segments of the different representations were used as an input to a CNN, which is described
in Section 3.3. The initial time segment was also used as the input to three machine learning
algorithms, also described in Section 3.3. We note that all the data measurements from the
12 vehicles were used for classification. Then, the classification using CNN was performed on a
model based on the data from all 12 vehicles, which enhanced the generalization of the proposed
approach in comparison to models based on the data collected by a single vehicle.
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Figure 6. Overall methodology.

3.3. Machine Learning

As mentioned before, three different machine learning algorithms were used, and the results were
compared: a CNN using different representations, Support Vector Machine (SVM), and K Nearest
Neighbor (KNN). Each machine learning algorithm was based on a set of hyperparameters and their
optimal values, which are summarized in Table 3. The following paragraphs describe each specific
algorithm and how the hyperparameter values were identified. All the machine learning algorithms
were implemented in MATLAB. The three machine learning algorithms were chosen on the basis of
the following considerations.

Table 3. Hyperparameters values and ranges of the adopted machine learning algorithms.

Machine Learning
Algorithm

Hyperparameter
Name

Optimal Hyperparameter
Value

Optimal Hyperparameter
Range

CNN Number of filters (Nf ) N f = 30 20, ..., 40

CNN Solver RMSProp

Choice between RMSProp,
stochastic gradient descent
and stochastic gradient
descent with momentum

CNN L2 0.001 0.0001, ..., 0.01

CNN Batch size 128 64, ..., 256

CNN
Number of
Convolutional layers
(NC)

NC = 3 2, ..., 5

SVM Kernel RBF
Choice between linear, RBF,
and polynomial
(orders 2 and 3) kernels

SVM RBF scaling factor γ = 25 22, ..., 210

SVM C factor C = 27 22, ..., 210

KNN K factor 5 1, ..., 20

KNN Distance Euclidean distance
Choice between Euclidean,
Manhattan, Chebyschev, and
Mahalanobis distances
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The main objective of this study was to investigate the performance of Deep Learning (DL) for this
particular problem of the identification of road anomalies and obstacles. Among other DL algorithms,
CNN has been widely applied to image processing since the excellent results from the ImageNet
Large Scale Visual Recognition Competition (ILSVRC) in 2012 [18]. The approach proposed in this
paper is based on the transformation to images of the accelerometer/gyroscope readings in the time
domain collected on the vehicles while driving (see Figures 7 and 8). The intimate relationship between
the layers and spatial information in CNNs renders them well suited for image processing and for
extracting the discriminating characteristics of the road anomalies and obstacles [19].
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Figure 7. Application of the spectrogram to the Accelerometer Z (AccZ) output from the IMU.
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The relatively small size of the dataset (9600 segments of road) for deep learning may generate
the risk of overfitting. This risk was mitigated by tuning the hyperparameters (e.g., L2) to improve
generalization, by using a dropout layer (see Figure 9) and by using cross-validation using 12 folds,
as described in the subsequent paragraphs. We also highlight that the number of segments was
comparable to the ones used in the literature where deep learning was also applied [9,15].
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Figure 9. CNN architectureused for the classification.

Then, two shallow machine learning algorithms were used to compare their classification
performance to the deep learning CNN algorithm described above. In particular, SVM and KNN
were used. The SVM is a computational learning method based on statistical learning theory,
whose algorithm constructs and then searches the separating hyperplanes with the maximum margin
by transforming the problem description into the dual space by means of the Lagrangian. SVM is
reported to be successfully applied in many classification problems (object detection and recognition,
information and image retrieval) with a good generalization ability [20]. SVM can deliver a unique
solution, since the optimality problem is convex, while other algorithms (like neural networks)
may have multiple solutions associated with local minima. In addition, SVM is well known for
its effectiveness in high-dimensional spaces, as in the dataset used in this study.

The SVM was also used since it is widely adopted in the literature for road anomaly detection
when a machine learning approach is used. The survey presented in [4] for the machine learning
algorithms showed that SVM is the most used machine learning algorithm and the second in the
overall ranking (the first approach in the ranking is the threshold based approach, which is not a
machine learning algorithm and, therefore, is not adopted in this paper).

The KNN was chosen as a baseline for comparison with the other two algorithms as it is relatively
simple and naturally lends itself to multi-class problems, as in this case.

The architecture of the CNN is shown in Figure 9, and a brief description is provided here.
The input layer of the CNN depended on the type of adopted transformation (e.g., in the 1D time
domain, the representation is 1 × 200). The convolutional layers’ parameters (e.g., stride) were
optimized according to the specific input, as this input changes for the different representations
(e.g., time or spectrogram). Padding was used. The number of filters was set to 30 (an analysis
range between 20 and 40 was considered), and the max pooling was set to 4. The solver RMSProp
was used as it provided a superior performance to other solvers (stochastic gradient descent and
stochastic gradient descent with momentum) for this specific dataset with a learning rate of 0.001
(optimization range between 0.0001 and 0.01). The batch size was set to 128. The number of epochs
was set to 160. To mitigate overfitting, the L2 parameter was set to 0.0005 (optimization range
between 0.0001 and 0.01), and a dropout layer was used. Cross-entropy was used as the loss
function. The Number of Convolutional layers (NC) was also optimized in the range NC = 2 to
NC = 5. The optimal value for the identification accuracy of NC was determined to be NC = 3,
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which defines the architecture described in Figure 9. Because the number of hyperparameters to
optimize was significant (number of filters, solver, L2, batch size, and number of convolutional
layers), each parameter was optimized in a sequential way by keeping fixed the value of some
parameters and performing the optimization on other parameters. The first parameter, to be
optimized, was the number of convolutional layers NC (i.e., the CNN architecture) with Nf = 20,
solver = SGD, L2 = 0.001, and batch size = 64. Then, the solver parameter was optimized with the
identified number of convolutional layers (i.e., NC = 3). Finally, a three-dimensional grid approach
was used to select the optimal values of the parameters Nf, L2, and batch size. The resulting values
from the optimization process are presented in Table 3.

SVM is a supervised learning model that classifies data by creating a hyperplane or set of
hyperplanes in a high- or infinite-dimensional space, to distinguish the samples belonging to different
classes. As this paper addresses a multi-class machine learning problem, a multi-class SVM was used,
which was based on an Error-Correcting Output Coding (ECOC) classifier for multiclass learning,
where the classifier consists of multiple binary learners. In particular, we used the OneVsOne approach
where for each binary learner, one class is positive, another is negative, and the algorithm ignores
the rest. This design exhausts all combinations of class pair assignments. Various kernels (e.g., linear,
polynomial) were tried, and the one providing the best performance was the Radial Basis Function
(RBF) kernel, where the values of the scaling factor γ must be optimized together with the parameter
C [21]. In this paper, the SVM was applied with the RBF with a scaling factor γ = 25 and a C f actor = 27.
The optimization was performed on a range of values for γ and C between 22 and 210 using a grid
search approach. The optimal values of the parameters are presented in Table 3.

K Nearest Neighbor (KNN) is an approach to data classification that estimates how likely a data
point is to be a member of one class or another depending in which group the data points nearest to
it are. KNN is an example of a lazy learner algorithm, meaning that it does not build a model using
the training set until a query of the dataset is performed. The main hyperparameter in KNN is the
K factor, which must be optimized for the specific classification problem. The type of distance metric
used to calculate the “nearest” must also be chosen carefully [22]. The optimization was performed
on a range of values of K from 1 and 10 for each of the different distance: Euclidean, Manhattan,
Chebyschev, and Mahalanobis. The optimal values of the hyperparameters, which provided the
highest accuracy, are listed in Table 3.

All the optimized values presented in this section were calculated using a linear or grid approach
for each sampling rate and then averaged for the analysis of the time domain data.

For all three machine learning algorithms, a 12-fold cross-validationwas used with the partition of
the entire set into 12 exclusive folds. For each fold, eleven of twelve parts of the initial dataset were used
for the training plus validation, while the remaining 1/12 part was used for testing. The validation
part was 1/4 of the training plus validation portion (thus, the validation part was 11/48 of the entire
dataset in each fold). Then, the results were averaged.

The evaluation metrics were the accuracy, precision, and recall, and they are described in the
following equations:

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(1)

Precision =
(TP)

(TP + FP)
(2)

Recall =
(TP)

(TP + FN)
(3)

where TP is the number of True Positives, FP is the number of False Positives, FN is the number of
False Negatives, and TN is the number of True Negatives.
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3.4. Time Frequency Transforms

This section is focused on the description of the spectrogram and the related hyperparameters.
In addition, because Section 4 provides a comparison with another time-frequency representation
based on Continuous Wavelet Transform (CWT), the CWT definition and hyperparameters are also
described here.

Consider a signal s(τ) of length N (the original signal in the time domain, called 1D-T in the rest
of this paper) and a window w(τ) of length Wsize (where N >> Wsize), whose Fourier transforms are
respectively S(f) and W(f), as shown in the following equations:

S( f ) =
∫ ∞

−∞
s(τ)e−j2π f τdτ (4)

W( f ) =
∫ ∞

−∞
w(τ)e−j2π f τdτ (5)

The localized spectrum representation of s(τ) at time τ = t is obtained by multiplying the signal
by the window w(τ) centered in time τ = t, as shown in the following equation:

sw(t, τ) = s(τ)w(τ − t), (6)

through the application of the FT, the Short Time Fourier Transform (STFT) Fw
s (t, f ) is obtained:

Fw
s (t, f ) = Fτ→ f {s(τ)w(τ − t)} (7)

The squared magnitude of the STFT, denoted by Sw
s (t, f ), is called the spectrogram and is

expressed by the following equation:

Sw
s (t, f ) = |Fw

s (t, f )|2 (8)

As described in Section 4, the spectrogram was adopted for the analysis presented in this paper
because it provided a superior identification performance in comparison to the phase component of
the STFT, as shown in Table 4.

In the spectrogram definition, we evaluated the impact of three main hyperparameters: (1) the type
of window w(τ), (2) the length of the window or window size Wsize, and (3) how much overlapping
was between different windows on the overall length N of the signal x(τ). The overlapping is defined
as Olap, and it is defined as a percentage of the window size Wsize while the window is sliding across
x(τ). Because the parameter Wsize is dependent on the sample ratio at which the data are collected by
the IMU and it would not be the same across different sampling rates, the parameter WR is instead
used in the rest of this paper. WR is defined as the ratio of N/Wsize. For example, a value of WR = 10 at
a sampling rate of 50 Hz results in Wsize = 20.

Four different window types were used: Hamming, Bartlett, Chebyschev, and Kaiser [23], and they
were chosen because of their different filtering behaviors. Three different window sizes with different
values of WR were identified: WR = 4, 5, and 10. Finally, three different overlapping factors Olap were
evaluated: 33%, 50%, and 66%. The results of the evaluation are presented in the next Section 4.

The other time-frequency representation was based on the wavelets. The CWT provides an
overcomplete representation of a signal by letting the translation and scale parameter of the wavelets
vary continuously [24].

The CWT is expressed by:

C(a, b) =
1

|a|1/2

∫ ∞

−∞
s(τ)ψ

(
(τ − b)

a

)
dτ (9)
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where ψ is the mother wavelet, a is the scale, and b is the translational value. In this analysis, we chose
the Morse mother wavelet [25] and the CWT implementation in MATLAB from MathWorks (i.e., the cwt
function).

4. Results

In an initial step, the impact of the hyperparameters of the spectrogram definitions on the
identification accuracy was evaluated.

4.1. Optimization of the Spectrogram Hyperparameters

This section is focused on the optimization of the hyperparameters in the spectrogram.
Figure 10 presents the results for the calculated accuracy using the CNN-SP approach using

AccZ. The results are presented as a bar graph with different bars related to the hyperparameters
of the spectrogram definition including the size of the window (based on the WR factor) and the
different values of the overlapping factor Olap. Four different graphs are presented for the different
sampling rates: 50 Hz (Figure 10a), 100 Hz (Figure 10b), 200 Hz (Figure 10c), and 250 Hz (Figure 10d).
The sampling rate of 150 Hz is not presented because of the lack of space and because it is quite similar
to other graphs. The graphs in Figure 10 shows that for WR = 4 and WR = 5, the highest accuracy
was obtained with Olap = 66%, while for WR = 10, the highest accuracy was obtained with WR = 10.
On the other side, it is noted that for most of the shown sampling rates (e.g., 50, 100 and 200 Hz),
the accuracy obtained with WR = 10 was the lowest of all the values of Olap, while this was different
for the sampling rate of 250 Hz. The use of higher sampling rates also increased the classification
time; then, if there is no loss of classification accuracy (as shown in Figure 10), it is preferable to use
the optimal parameters for the lower sampling rate (i.e., 50 Hz). In this case, such an optimal value
was obtained with WR = 5 and Olap = 66%. These results were obtained with the Hamming window.
The choice of this window is supported by the results presented in Figure 11 for different windows
and overlap values Olap with WR = 5. In fact, the results depicted in the figures below show that the
optimal identification accuracy is obtained with the Hamming window across all the sampling rates
and the Olap values, and this is the type of window chosen in the subsequent results.

The results obtained for GyroY are shown in Figure 12. In general, the results for GyroY confirm
the previous results obtained with AccZ, but with greater variability. In fact, Olap = 66% provides
better results for the sampling rate of 100 Hz (Figure 12b) and the sampling rate of 200 Hz (Figure 12c)
for WR = 4 and WR = 5, but in other cases, Olap = 50% provides better results. We highlight that
the highest classification accuracy (i.e., reaching the threshold of 0.97) is quite similar to the one
obtained with AccZ. These results indicate that the use of AccZ or GyroY provides an equivalent
classification accuracy. All these results are obtained with the Hamming window. As shown in
Figure 13, the Hamming window provides better results than the other windows across all the different
sampling rates. From this point of view, these results obtained for the gyroscope are consistent with
the results obtained with the accelerometer.
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Figure 10. Accuracy for AccZ in relation to the size of window (based on the WR factor) used in
the spectrogram for different sampling rates and different values of the overlapping factor Olap.
The Hamming window is used to obtain these results.
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Figure 11. Accuracy for AccZ in relation to the type of window used in the spectrogram for different
sampling rates and different values of the overlapping factor Olap and WR = 5.
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Figure 12. Accuracy for GyroY in relation to the size of window (based on the WR factor) used
in the spectrogram for different sampling rates and different values of the overlapping factor Olap.
The Hamming window is used to obtain these results.

50 Hz

Bartlett Hamming Chebyschev Kaiser

Type of window

0.9
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

1

A
c
c
u

ra
c
y

O
lap

 = 33%

O
lap

 = 50%

O
lap

 = 66%

(a) Accuracy for sampling rate equal to 50 Hz

100 Hz

Bartlett Hamming Chebyschev Kaiser

Type of window

0.9
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

1

A
c
c
u

ra
c
y

O
lap

 = 33%

O
lap

 = 50%

O
lap

 = 66%

(b) Accuracy for sampling rate equal to 100 Hz

200 Hz

Bartlett Hamming Chebyschev Kaiser

Type of window

0.9
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

1

A
c
c
u

ra
c
y

O
lap

 = 33%

O
lap

 = 50%

O
lap

 = 66%

(c) Accuracy for sampling rate equal to 200 Hz

250 Hz

Bartlett Hamming Chebyschev Kaiser

Type of window

0.9
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

1

A
c
c
u

ra
c
y

O
lap

 = 33%

O
lap

 = 50%

O
lap

 = 66%

(d) Accuracy for sampling rate equal to 250 Hz

Figure 13. Accuracy for GyroY in relation to the type of window used in the spectrogram for different
sample rates and different values of the overlapping factor Olap and WR = 5.

4.2. Analysis and Comparison of the Approaches

This section presents the results of the comparison of the proposed approach with the shallow
machine learning algorithms and CNN-1D. Figure 14 provides the comparison of all the different
approaches evaluated in the analysis for the accelerometer in the Z direction (AccZ), while Figure 14
provides the comparison for the gyroscope in the Y direction (GyroY). As mentioned before, CNN-SP is
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the application of CNN to the spectrogram of the original signal in the time domain; CNN-1D is the
application of the CNN to 1D-T (the original signal in the time domain). SVM and KNN represent
the direct application of the respective shallow machine learning algorithm to 1D-T. The presented
results are based on the mean (average) of the results calculated for each fold across the 12 folds.
The results clearly show that all the CNN based approaches significantly outperform the shallow
machine learning approach in a consistent way across all the different sampling rates, which confirms
the results obtained by the authors in [15] for a different dataset. In addition, the approach proposed
in this paper based on the combination of the CNN with the spectrogram (CNN-SP) outperforms in
a consistent way the direct application of CNN on the time domain (CNN-1D), which is the novel
finding of this paper. The other interesting results provided by Figures 14 and 15 are that the CNN-SP
approach provides a relatively uniform value of the accuracy across the different sampling rates, while
CNN-1D drops significantly with higher sampling rates. A potential reason for this behavior is that
the CNN algorithm is able to extract similar discriminating features across the different sampling rates
when applied in combination with the spectrogram, while lower sampling rates in 1D-T introduce a
smoothing effect in CNN-1D, which benefits the classification accuracy. A similar consideration can
be applied to the application of the SVM and KNN algorithms, whose classification accuracy also
degrades with increasing sampling rates.

AccZ
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Figure 14. Comparison of the accuracy among the spectrogram CNN approach (CNN-SP) proposed in
this paper (for different window sizes), the CNN directly applied to the time domain representation
(CNN-1D), and the shallow machine learning techniques (SVM, KNN) applied to the data of the
Accelerometer in the Z direction (AccZ).

For completeness, we also report the accuracy obtained for another time-frequency representation
as mentioned previously (i.e., the CWT) and for the application of the STFT in phase (the complex
amplitude of the STFT is the spectrogram already considered before). The results are shown in Table 4.
Note that the results presented for the STFT phase and the CWT are the result of an optimization
process similar to what was done for the spectrogram in Section 4.1. For the CWT, this was done on
the type of the wavelet and the number of octaves for frequency. For the STFT (phase), this was based
on the same parameters identified in Section 4.1. The results clearly confirm that CNN-SP provides a
superior classification performance in comparison to the other approaches. In particular, the use of the
magnitude-only components of CNN-SP provides a better identification accuracy than the phase-only
component (and the combination of amplitude plus phase, which is provided here). The other spectral
approach based on the use of CWT also provides an inferior performance, which indicates that the
wavelets may not be appropriate for this context (note that a similar result for vehicle authentication
was also obtained in [16]).
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GyroY
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Figure 15. Comparison of the accuracy among the spectrogram CNN approach (CNN-SP) proposed in
this paper (for different window sizes), the CNN directly applied to the time domain representation
(CNN-1D), and the shallow machine learning techniques (SVM, KNN) applied to the data of the
Gyroscope in the Y direction (GyroY).

Table 4. Accuracy obtained for the different representations at 50 Hz. Bold represents the highest value.

Machine Learning Algorithm and Representation Accuracy

CNN-SP (magnitude) (Hamming window Olap = 66%, WR = 5) 0.9720

CNN with STFT (phase) (Hamming window Olap = 66%, WR = 5) 0.8047

CWT-CNN (magnitude and Morlet wavelet) 0.9421

CWT-CNN (phase and Morlet wavelet) 0.7812

CNN-1D 0.9354

SVM 0.7422

KNN 0.6728

The accuracy metric only provides a limited view of the classification performance. For this
reason, we also provide in the following paragraphs and figures the estimate of the recall and precision
obtained for the specific set of parameters and for different machine learning algorithms. The following
figures show the recall and precision for each specific road anomaly when compared to the other
anomalies, and they give a better understanding of the areas where the machine learning failed to
identify the correct samples (false positives and false negatives).

Figure 16a,b provides respectively the precision and recall for each road anomaly as a percentage
using the CNN-SP approach with a sampling rate of 50 Hz, Olap = 66%, and WR = 5. Similar results
were obtained for the other values of the CNN-SP hyperparameters, but they are provided here for
space reasons. These figures confirm the previous findings on the accuracy, which shows that it is
possible to obtain a great identification accuracy using the CNN-SP approach. On the other hand,
the figures show that there can be great variability for the identification of each road anomaly/obstacle.
Of course, this depends on the type of road anomaly/obstacle and how much different from the other
road anomalies/obstacles it is. One relevant aspect is the relatively low value of recall and precision
for the class NORM. The reason is that the machine learning algorithm confuses in some cases the road
anomaly/obstacle with the normal segment (identified as NORM in the figures), because the digital
output from the accelerometers/gyroscopes is similar. In fact, even a NORM segment includes some
small irregularities (e.g., cracks, uneven condition of the road), which may be difficult to distinguish.
This result is to be expected, and it is consistent with the findings in the literature [15].
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Figure 16. Precision and Recall using the CNN − SP approach. (a) Precision for each road anomaly
for CNN-SP (sampling rate of 50 Hz, Olap = 66%, WR = 5) and (b) recall for each road anomaly for
CNN-SP (sampling rate of 50 Hz, Olap = 66%, WR = 5).

On the other side, such low values of precision and recall may be a significant problem when used
in real-world applications since most real-world road segments are normal. A potential reason for
these results is that no thresholds were applied for the detection of road anomalies/obstacles, but the
machine learning algorithms were directly applied to the data recordings. Different approaches can be
used to mitigate this issue. Some of these approaches are based on a similar analysis from previous
studies in the literature, and they can be classified into different phases of the overall methodology: data
collection, data pre-processing, or data processing/classification (e.g., based on the ML/DL algorithm).
One potential approach in the data collection phase would be to widen the sensor inputs using the shock
responses of the four absorbers or the wheel speed from the four wheels, as was done in [9] to enhance
the discriminating power of the classification algorithm. Another approach in the data pre-processing
is to introduce a smoothing filter in the data pre-processing phase. We note that the evaluation of the
identification performance with different sampling rates described in this study is also a crude form of
smoothing for the lower sampling rates. A review of the application of filters in the literature for road
anomalies’/obstacles’ detection was provided in Section 2.2 of [10]. Another possibility would be to set
a threshold to analyze only the most significant road anomalies/obstacles and remove the smaller ones,
which are present in the normal segment (see Section 2.3 of [10] for a review on threshold techniques).
Note that the thresholds’ definitions do not need to be static, but they can also be dynamic to adapt
themselves to the road conditions, as proposed in [26]. The application of both techniques would
require significant effort to identify the most effective smoothing filter or the appropriate values of the
threshold. For this reason, this analysis is postponed to future developments (see Section 5). In the
data processing/classification phase, the existing dataset could be widened using data augmentation
techniques (e.g., adding noise) to improve generalization and robustness. Another approach would be
to use other time-frequency transforms (e.g., Stockwell transform) in combination with CNN or with
other deep learning algorithms.

Figure 17a,b provides respectively the precision and recall for each road anomaly as a percentage
using the CNN-1D approach at a sampling rate of 50 Hz. The results are similar to what was achieved
for the CNN-SP approach, but the recall and precision are slightly lower, as already foreseen from the
results presented in Figure 14. In particular, the same phenomenon of a lower value of precision and
recall is also noted here.

Figure 18a,b provides respectively the precision and recall for each road anomaly as a percentage
using the SVM algorithm at a sampling rate of 50 Hz. The figures show the drastic drop in the
classification performance in comparison to the CNN based approach. In addition, we note a greater
variability in the identification of the specific road anomalies among them. In general, the precision
is negatively impacted as the number of False Positives (FP) is quite significant. In particular,
the algorithm confuses specific road features (e.g., RF14) or obstacles (e.g., SB01 and SB02) as normal
road segments (i.e., NORM). In comparison, recall is usually higher for the same road anomalies,
which shows that the False Negatives (FN) are more limited in number than the False Positives (FP).
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Figure 17. Precision and recall using the CNN-1D approach. (a) Precision for each road anomaly for
CNN-1D (sampling rate of 50 Hz) and (b) recall for each road anomaly for CNN-1D (sampling rate
of 50 Hz).

SVM

N
O

R
M

R
F

1

R
F

2

R
F

3

R
F

4

R
F

5

R
F

6

R
F

7

R
F

8

R
F

9

R
F

10

R
F

11

R
F

12

R
F

13

R
F

14

R
F

15

S
B

01

S
B

02

S
B

03

S
B

04

Type of Road Anomaly

0

0.2

0.4

0.6

0.8

P
re

ci
si

on

(a)

SVM

N
O

R
M

R
F

1

R
F

2

R
F

3

R
F

4

R
F

5

R
F

6

R
F

7

R
F

8

R
F

9

R
F

10

R
F

11

R
F

12

R
F

13

R
F

14

R
F

15

S
B

01

S
B

02

S
B

03

S
B

04

Type of Road Anomaly

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

(b)
Figure 18. Precision and recall using the SVM algorithm. (a) Precision for each road anomaly for SVM
(sampling rate of 50 Hz) and (b) recall for each road anomaly using SVM (sampling rate of 50 Hz).

Figure 19a,b provides respectively the precision and recall for each road anomaly as a percentage
using the KNN algorithm at a sampling rate of 50 Hz. These results confirm what was already obtained
for the accuracy. The variability is even increased in comparison to the SVM approach. In addition,
the recall for the NORM segment reaches quite low values, which highlights the difficulty of the
algorithm to distinguish the NORM segments from the other segments. It is also noted that the lower
values of precision and recall are usually for specific road anomalies (e.g., RF14 or SB01), in a similar
way to what was obtained for the previous figures and algorithms.
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Figure 19. Precision and recall using the KNN algorithm. (a) Precision for each road anomaly using
KNN (sampling rate of 50 Hz) and (b) recall for each road anomaly using KNN (sampling rate of 50 Hz).

4.3. Discussion

The results shown in the previous subsections prove the superiority of the time-frequency CNN
(TF-CNN) for road anomaly identification in comparison to shallow machine learning algorithms
(SVM, KNN) and to the application of CNN to the initial time domain representation (accelerometer and
gyroscope). The difference in classification performance appears for all the considered sampling rates
(i.e., 50, 100, 150, 200 and 250 Hz) and both for accelerometer and gyroscope data. With accelerometer
data, the improvement in the identification accuracy of TF-CNN is even more visible than with
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gyroscope data. The final identification accuracy taking into consideration all the road anomalies
and the vehicles used in the data collection is slightly more than 97%, which is consistent with
the findings in the literature. We note that this value of identification accuracy was obtained by
using a set of 12 different vehicles rather than the one or two vehicles commonly used in literature.
Then, the high accuracy obtained with TF-CNN is even more remarkable because it manages to
mitigate the differences of the mechanical configuration of the vehicles, and it can be used to support
crowd-sourcing approaches (with many different vehicles on the road) for the detection and mapping
of the road anomalies in the road infrastructure.

Regarding the choice of the time-frequency transform, the results in Table 4 show that the
spectrogram in combination with CNN (CNN-SP) provides a slightly better identification accuracy
than the application of the complex magnitude of the CWT (CNN-CWT). Additional time-frequency
transforms could also be applied, and this will be the scope of future studies (see Section 5).

Another important result from Figures 14 and 15 is that CNN-SP is able to provide a high
identification accuracy (higher than 97%) even at lower sampling rates (e.g., 50 or 100 Hz), which supports
the deployment of the proposed approach even with cost effective mass-market smartphones, which are
now equipped with accelerometers and gyroscopes with a sampling rate of 100 Hz.

We note that the study presented in this paper conducted an extensive analysis of the
hyperparameters present in the definition of the time-frequency transforms (e.g., window size,
type of window, overlapping ratio) to evaluate their impact on the identification accuracy. The results
show that although some hyperparameters do not have a significant impact, other hyperparameters
like the overlapping ratio must be carefully tuned in a training phase to achieve the optimal
identification accuracy.

One aspect that must still be improved is the relatively low precision and recall of the NORM
segments. Potential approaches to mitigate this issue would be to introduce a smoothing filter in
the data pre-processing phase, but this would entail an extensive analysis of the choice of the most
appropriate filter, so for this reason, this analysis is postponed to future developments (see Section 5).

5. Conclusions and Future Developments

This paper proposes a novel approach for the detection and identification of road anomalies using
data collected from accelerometers and gyroscopes installed on the vehicles. The approach is based
on the transformation of the collected data into the spectral domain (via a spectrogram), which is
then given as an input to CNN. This approach is compared against the direct application of CNN
on the samples collected in the time domain and on the application of shallow machine learning
algorithms like SVM and KNN, as is usually proposed in the existing research literature. This approach
is evaluated on a dataset, created by the authors, by collecting IMU (e.g., accelerometers, gyroscopes)
recordings on many km of road infrastructure using 12 different automotive vehicles. A comprehensive
analysis of the influence of the hyperparameters on the classification performance is presented for
the data collected from the accelerometers and gyroscopes. The results show that this approach is
able to obtain a very high identification accuracy for each road anomaly, and it is able to distinguish
accurately between obstacles intentionally created by road traffic authorities against road anomalies
(potholes), which are the consequences of road degradation and roadworks. Beyond the analysis of the
road roughness, such high accuracy can also be used to correctly identify specific road anomalies and
obstacles on the road infrastructure, which can be used as landmarks in maps to improve the positions
of vehicles (including autonomous vehicles) in the future.

Future developments will extend the scope of the study presented in this paper in various
directions. One direction in the data collection phase is to use additional sensors’ inputs (e.g., different
placements of the accelerometers/gyroscopes in the vehicle, shock absorber responses of the four
absorbers, or the wheels’ speed). Another direction in the data collection phase would be to collect the
data with different passengers and drivers in the vehicles. One direction in the processing phase is to
investigate the application of additional time-frequency transformations in combination with other
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deep learning architectures and algorithms. Future developments will also investigate the combination
of thresholds or smoothing filters with CNN-SP to enhance the precision and recall results for the
classification of the NORM segments. In particular, we will investigate adaptive filters whose definition
and parameters are modified depending on the conditions of the road or the vehicle model.
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Abbreviations

The following abbreviations are used in this manuscript:

1D-T One-Dimensional Time domain
CNN Convolutional Neural Network
CNN-1D Convolutional Neural Network-One-Dimensional
CNN-SP Convolutional Neural Network-Spectrogram
CWT Continuous Wavelet Transform
ECOC Error-Correcting Output Codes
FP False Positive
FN False Negative
ENU East-North-Up
GNSS Global Navigation Satellite System
IMU Inertial Measurement Unit
KNN K Nearest Neighbor
LiDAR Light Detection And Ranging
RPY Role-Pitch-Yaw
RBF Radial Basis Function
RF Road Feature
SB Speed Bump
STFT Short Time Fourier Transform
SVM Support Vector Machine
TN True Negative
TP True Positive
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