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Abstract: Reactivity is a key component for autonomous vehicles navigating on natural terrains
in order to safely avoid unknown obstacles. To this end, it is necessary to continuously assess
traversability by processing on-board sensor data. This paper describes the case study of mobile
robot Andabata that classifies traversable points from 3D laser scans acquired in motion of its vicinity
to build 2D local traversability maps. Realistic robotic simulations with Gazebo were employed to
appropriately adjust reactive behaviors. As a result, successful navigation tests with Andabata using
the robot operating system (ROS) were performed on natural environments at low speeds.

Keywords: field navigation; ground vehicles; traversability classification; robotic simulation;
3D point cloud

1. Introduction

Reactivity is a necessary component for autonomous navigation in order to avoid obstacles present
in the environment [1]. Unknown hazards on natural terrains can be found both above and below
the ground level of the vehicle, which are commonly referred to as positive and negative obstacles,
respectively [2–4].

Ground traversability should be continuously assessed by mobile robots to implement efficient
motion planning [5] with limited computational resources [6,7]. If traversability results are very
narrow, vehicle movements are unnecessarily restricted; on the other hand, if they are very permissive,
the integrity of the robot is in danger [8].

Procedures for assessing terrain traversability can be specifically designed [9,10], but they can
also be trained with real data [11,12] and by means of synthetic data [13,14]. This relevant analysis is
usually performed with three-dimensional (3D) point clouds of the surroundings acquired from an
on-board sensor [8,15].

Depth data for traversability can be acquired with stereo [12] or time-of-flight cameras [16].
Farther ranges can be obtained by combining successive two-dimensional (2D) laser scans while the
vehicle advances [17–19], or by a 3D laser rangefinder. In the latter case, the sensor can be a costly
commercial multibeam model [4,20] with high scan frequency, or a more affordable actuated 2D
scanner, which admits higher resolution but requires more acquisition time [21–23].

Point clouds as input data for ground-vehicle navigation can be directly used and immediately
discarded [24,25] or they can be incrementally stored using simultaneous localisation and mapping
(SLAM) to be employed later [26]. Generally, the last option implies building and maintaining an
explicit representation of the environment via a 3D global map [23].
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This paper pursues to enhance our previous work [25] about unmanned navigation at low speeds
with mobile robot Andabata, which carries an actuated 2D laser scanner as its main exteroceptive
sensor. To this end, a previously trained classifier was used to analyse point traversability of levelled
3D depth data acquired in motion [14]. This reliable ground assessment was employed to continuously
build local 2D traversability maps for reactive operation. Realistic robotic simulations were used to
appropriately tune reactive parameters before testing waypoint navigation with localisation uncertainty
on the real robot.

The rest of the paper is organised as follows. Section 2 highlights the main contributions of the
paper in relation to its most related works. Then, Section 3 describes the simulation of Andabata on
Gazebo [27] that was used to tune reactive navigation, of which the scheme is proposed in Section 4.
Simulated and real experiments are discussed in Sections 5 and 6, respectively. Lastly, conclusions,
acknowledgements, and references complete the paper.

2. Related Works

Reactive behaviors are commonly used by ground vehicles to avoid local obstacles on rough [28]
and vegetated [29] terrain, or during disaster scenarios [26] or planetary exploration [6,30,31],
while trying to achieve previously planned goal points. In this context, the risk or interest associated
with the immediate movements of the vehicle, such as straight lines [17,25], circular arcs [3,30,32],
or both [6], should be evaluated to produce adequate steering and speed commands [24,33].

Motion planning and traversability assessment can directly occur on the 3D point cloud [15,20] or
on a compact representation of 3D depth data, such as a 2.5D elevation map [21,28,30] or a 2D horizontal
grid [32,34]. Roughness and terrain slopes are usually considered to evaluate the traversability of 2.5D
maps [17,31]. The cells of 2D maps may contain fuzzy traversability data [33] or precise occupancy
values such as free, obstacle, or unknown [34].

Robotic simulation platforms that include a physics engine such as V-REP [35] or Gazebo [27]
allow for obtaining realistic information of a ground vehicle moving on its environment. Thus, they can
be employed to evaluate elementary motions [28], assess traversability [13,20], or hand-tune navigation
parameters [26].

Most field-navigation components that we developed for mobile robot Andabata [25] with the
robot operating system (ROS) [36] were kept in this paper. The main difference with our prior work
is that we now use a terrain-traversability classifier instead of fuzzy elevation maps, of which the
main drawback is requiring greater processing times than the acquisition times of individual 3D scans,
which causes some of the acquired 3D scans to not be processed for navigation.

In this paper, linear movements for reactive navigation are evaluated over a 2D polar traversability
grid built by projecting onto it classified points from a levelled 3D scan acquired with local
SLAM. Robotic simulations with Gazebo [27] were employed to test reactivity before real tests.
Traversability is individually assessed for each Cartesian point with a random-forest classifier from the
machine-learning library Scikit-learn [37]. This estimator was previously trained with synthetic data
providing the most accurate results for real data from Andabata among other available classifiers from
this freely available library [14].

Although the paper maintains many points in common with related works, two original
contributions are highlighted:

• The use of 2D polar traversability maps based on 3D laser scans classified point by point for
selecting motion directions on natural environments.

• The employment of extensive robotic simulations to appropriately tune reactivity before
performing real tests with uncertain global localisation.
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3. Mobile Robot Simulation

Andabata is a skid-steered vehicle that weighs 41 kg, is 0.67 m long, 0.54 m wide, and 0.81 m tall
(see Figure 1a). The components of Andabata were modelled in Gazebo [27] with different links and
joints (see Figure 1b).

(a) (b)

Figure 1. Andabata mobile robot: (a) Photograph on irregular terrain; (b) model in Gazebo.

The main chassis of the robot, which contains the battery, the motor drivers (two 2× 32 Sabertooth
power stages connected to two 2 × Kangaroo controllers), and the computer (16 GB RAM, Intel Core
processor i7 4771 with 4 cores at 3.5 GHz, and 8 MB cache) [25], was modelled in detail with Gazebo
(see Figure 1b).

The complete navigation system of Andabata was fully implemented on the on-board computer
under the ROS [36]. This software can be simulated in Gazebo through a set of ROS packages called
gazebo_ros_pkgs (http://wiki.ros.org/gazebo_ros_pkgs) that provide the necessary interfaces by using
ROS messages and services, and to build different Gazebo plugins for sensor output and motor
input. In this way, it is possible to interchangeably test the same ROS nodes on the real robot and on
the simulator.

Each of the four wheels of the 10 cm radius is connected to its own gear train, DC motor,
and encoder through a revolute joint. All these locomotion elements, in turn, are linked with the main
chassis through a prismatic joint to emulate the passive suspension of the vehicle with two springs
and a linear guide with a stroke of 6.5 cm [25]. The suspension model in Gazebo assumed rigid wheels,
an elasticity constant of 3976.6 N m−1, and a damping coefficient of 75.76 kg s−1.

An approximate kinematical model that exploits the equivalence between skid steering and
differential drive was used for this robot [38]. The symmetrical kinematic model relates the longitudinal
and angular velocities of the vehicle (v and ω, respectively) with the left and right tread speeds
measured by the encoders (vl and vr, respectively) as:

v =
vl + vr

2
, (1)

ω =
vr − vl
2yICR

, (2)

http://wiki.ros.org/gazebo_ros_pkgs
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where yICR = 0.45 m is the mean value of the instantaneous centers of rotation (ICR) of the treads [25].
On the other hand, control inputs vsp

l and vsp
r could be obtained from setpoint velocities for vehicle vsp

and ωsp as:

vsp
l = vsp − yICR ωsp, (3)

vsp
r = vsp + yICR ωsp. (4)

If any of the control inputs exceeded its limits of vmax = ±0.68 m s−1, setpoint velocities were divided
by positive factor

e =
|vsp|+ yICR |ωsp|

|vmax|
(5)

to maintain desired turning radius rsp for the vehicle:

rsp =
vsp

ωsp =
vsp/e
ωsp/e

. (6)

Thus, the maximal linear velocity of vehicle vmax can only be achieved during a straight-line motion,
and approaches zero as rsp reduces [25]. The response of tread speeds (vl and vr) to speed commands
(vsp

l and vsp
r ) from the computer is not instantaneous, and it was modelled in Gazebo as a first-order

system with a time constant of 35 ms.
A column was attached on top of the main chassis and centered (see Figure 1b). On the

front side of the column, a rectangular cuboid was fixed to represent the on-board smartphone
of Andabata that contained a global-positioning-system (GPS) receiver (with a horizontal resolution
of 1 m), inclinometers, gyroscopes, and a compass [25]. Data from gyroscopes and inclinometers
can be directly obtained from the default physics engine of Gazebo (open dynamics engine,
ODE). GPS and compass data can be obtained by adding Gaussian noise to the exact position
and heading of the mobile robot on the virtual environment, respectively. Hector_gazebo_plugins
(http://wiki.ros.org/hector_gazebo_plugins) were employed to incorporate all these sensors to Gazebo
with their corresponding acquisition rates.

The Gazebo model of two-dimensional (2D) laser scanner Hokuyo UTM-30LX-EW was connected
to the top of the column (see Figure 1b) through a revolute joint to emulate the 3D laser rangefinder
of Andabata [39], which was based on the unrestrained rotation of this 2D sensor around its optical
center [40]. The 2D scanner has a field of view of 270◦, a resolution of 0.25◦, ±3 cm accuracy, and a
range of measurements from 0.1 to 15 m under direct sunlight.

Figure 2 displays a general view of the natural environment generated with Gazebo [39],
which was a square of a 50 m side where Andabata navigated. It contained many positive obstacles,
such as high grass, big rocks, trees, a fence, and a barrier. It also had several ditches that acted as
negative obstacles.

http://wiki.ros.org/hector_gazebo_plugins
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Figure 2. General view of natural environment built with Gazebo.

Figure 3 shows the simulation of Andabata moving over the environment. The acquisition of
one of the 2D vertical scans that compose a full 3D scan is represented with blue lines. Thick blue
lines indicate detected ranges, whereas thin lines represent no measurement. The horizontal resolution
of the 3D rangefinder depends on the turns made by the entire 2D sensor and by its turning speed.
The blind region of the 3D sensor is a cone that begins at its optical center (h = 0.73 m above the ground)
and includes the complete robot below.

Figure 3. Gazebo simulation of Andabata moving on environment. Blue lines represent the acquisition
of a single 2D vertical scan.

4. Reactive-Navigation Scheme

The global navigation objective consists of visiting an ordered list of distant waypoints moving at
a constant linear velocity vsp [25]. The proximity radius around the current waypoint used to commute
to the next was reduced from 10 to 3 m due to improved GPS accuracy of the on-board smartphone.

For local navigation, the 3D laser rangefinder has been configured to provide a full 3D scan of the
surroundings every ts = 3.3 s with 32,000 points approximately, while Andabata moves. The whole
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point cloud is levelled by using local 3D SLAM without loop closures [25] and it is referred to the place
where it began its acquisition.

Then, traversability is assessed for individual points with a random-forest classifier [14]. For every
scan, a 3D tree data structure is built, and three spatial features for every point are deduced from its five
closest neighbors. Indefinite points are those with fewer than five neighbors. In this way, every point
below 12 m from the center of the 3D scan is individually classified as traversable, nontraversable,
or indefinite. This processing takes approximately tc = 1.23 s per each 3D scan, almost all this time
being for feature extraction.

Once the 3D scan is classified, a 2D traversability map is built by projecting every 3D point on a
horizontal plane centered at the current position of the robot (which is different from the center of the
3D scan because of robot motion during 3D scan acquisition). The navigation map consists of a polar
grid divided into 32 sectors of 11.25◦ and nine annuluses formed by ten successive uneven radius r:

rj = 10
τ j − 1

τ10 − 1
, j = 1 . . . 10, (7)

where expansion ratio τ = 1.0682 allows for a growing radius from h to 10 m (see Figure 4). All local
maps are aligned with the west and south at 180◦ and 270◦, respectively.

Then, every cell inside the 2D grid, with the exception of the central circle of radius h, is labelled
depending on the projected points that fell inside as follows:

• If the cell does not contain any point at all, it is labelled as empty in white.
• With at least 15% of nontraversable points, the cell is classified as nontraversable in red.
• With more than 85% of traversable points, the cell is labelled as traversable in green.
• In any other case, the cell is classified as indefinite in grey.

Figure 4. Goal-direction match for sector direction di.
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All lines di from the center of every sector i are checked as possible motion directions for Andabata.
Selected direction dj is the one that minimises the cost function:

J(di, i) =
G(di)

T(i)
, i = 1 . . . 32, (8)

which considers both goal-direction match G and sector traversability T.
Goal-direction match G for every di is calculated as

G(di) = |∆i|+ k1 |δi|+ k2 |γi|, (9)

where k1, k2 are adjustable gains, and ∆i, δi, and γi are the angular differences between di with respect
to the goal direction, the current heading of the vehicle, and the previous motion direction, respectively
(see Figure 4).

Traversability T for every sector i is computed as

T(i) = k3 (1 + n(i)) + k4 (n(i + 1) + n(i− 1)− |n(i + 1)− n(i− 1)|), (10)

where n(i) is the number of traversable cells on sector i from inside out until a nontraversable cell or
the outer cell is reached (see Figure 5), and k3, k4 are adjustable gains that reward clear directions on
the sector and on its two adjacent sectors, respectively.

Figure 5. Traversability evaluation for sector i.

To sum up, it is necessary to adjust navigation parameters k1, k2, k3, and k4 of cost function
J. Direction evaluation is relatively simple and only takes approximately tm = 0.15 s on the
on-board computer.

Lastly, steering commands ωsp for Andabata are computed every time that the vehicle heading is
updated at a rate of 50 Hz by the compass:

ωsp = g δj, (11)

where g = 1 is a proportional gain that controls the heading change of the vehicle to achieve selected
direction dj.

Figure 6 shows the task schedule for local reactive navigation. Time delay td is intentionally
introduced to provide set points for steering three times per each 3D laser scan by building three 2D
traversability maps approximately every ts/3 = 1.1 s. For this purpose, the delay should fulfil

tm + td ≈ ts/3⇒ td ≈ 0.95 s. (12)

Nevertheless, the interval between changes of direction is not constant because tc heavily depends
on the number of points of each 3D scan. Figure 6 also shows that the acquisition of a levelled 3D
scan simultaneously occurs with the classification of a previous point cloud and the traversability map
calculation by executing in parallel ROS nodes on different cores of the computer processor.
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Figure 6. Task schedule for reactive navigation of Andabata.

5. Simulated Experiments

The reactive strategy for local navigation was extensively tested with Gazebo simulations
to adjust its four parameters. The main one is k3, which regulates how the pursue-goal and the
obstacle-avoidance behaviors combine. Parameters k1 and k2 try to avoid changes of direction, and k4

tries to favor free courses. As a result of a trial-and-error process, the following parameters were
manually selected: k1 = k2 = 0.15, k3 = 1, and k4 = 0.3.

Figure 7 shows with a blue line the global path followed by Andabata while pursuing three
distant waypoints on the generated environment with vsp = 0.3 m s−1. In this figure, GPS data are
plotted with red dots, goal points are drawn with a small green circle surrounded by a proximity green
circle of 3 m, and a black X marks the beginning of the path.

Figure 7. Aerial view of path followed by Andabata on the environment.

Figure 7 shows that the reactive component of the navigation system allows for avoiding both
positive and negative obstacles. Concretely, in the way to the first goal, Andabata avoided a barrier
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and a deep ditch. Then, when trying to reach the second goal, it circumnavigated a tree and a big rock.
Lastly, it eluded tall grass in the vicinity of the last goal.

Figure 8 contains the 161 m length trajectory of Figure 7 with time stamps and horizontal
coordinates. In total, 186 3D point clouds were acquired, and their corresponding 558 2D local
traversability maps were built. The elevation and heading of the vehicle along this trajectory are
represented in Figure 9. Smooth heading changes can be observed with the exception of the 180◦ turn
when the second goal was reached at 480 s. Moreover, the maximal height climbed and descended by
Andabata was 2.15 m in total.

Figure 8. Trajectory followed by Andabata with time stamps.

Figure 9. Vehicle elevation and heading during autonomous navigation.
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An example of a 3D scan classified by traversability is shown in Figure 10. This levelled point cloud
was acquired on the way to the first goal near the ditch. Traversable, nontraversable, and indefinite
points are represented in green, red, and blue, respectively.

The three consecutive traversability maps built with the 3D scan of Figure 10 are represented in
Figure 11. The ditch appears on these maps as a large white region on the left and up that is crossed
by the goal direction on the northwest. Nevertheless, the selected direction kept the robot far from
this negative obstacle, as can be observed in the three maps, where the robot heading was pointing
northeast.

Figure 10. Simulated 3D point cloud near ditch classified by traversability.

(a) (b) (c)

Figure 11. (a) First, (b) second, and (c) third traversability maps built for 3D point cloud of Figure 10.

A demonstration of this robotic simulator was publicly presented during the European
Robotics Forum 2020 (https://www.eu-robotics.net/robotics_forum/). Reactive navigation was tested
performing a live cyclic experiment with the same initial and final waypoints. Nevertheless, the 2D
traversability maps to decide motion directions were always changing because 3D laser scans never
coincided for the same places.

https://www.eu-robotics.net/robotics_forum/
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6. Andabata Experiments

Once the parameters of the reactive controller had been adjusted via simulations, they were tested
with Andabata on a trail in a hollow and carless urban park.

6.1. Trail in a Hollow

Two waypoints have been chosen to follow a trail with inclines inside a hollow. In general,
the borders of the trail consisted of dry weeds and hills (see Figure 12).

(a) (b) (c)

(d) (e) (f)

Figure 12. Andabata moving on the trail inside the hollow. Successive photographs shown from (a)
beginning to (f) end of the trajectory.

Figure 13 shows an aerial view of the path followed by Andabata as recorded by GPS data.
With vsp = 0.3 m s−1, the trajectory was 133 m long and lasted 462 s. Altogether, 137 3D scans were
acquired with an average value of 27,694 points.

Figure 13. GPS measurements during autonomous navigation on the hollow. Locations where each
photograph of Figure 12 was taken are indicated.

A top view of a real 3D point cloud classified by traversability is shown in Figure 14.
This particular scan was acquired on the way to the second goal, a few meters after leaving the
first goal (see Figure 12d). The three consecutive traversability maps built from this 3D scan are
represented in Figure 15. A hill and sparse vegetation appeared in the direction to the second goal,
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so the robot had to deviate from its current direction, as could be verified by the heading change
between the first and successive traversability maps.

Figure 14. Top view of real 3D scan on trail classified by traversability.

(a) (b) (c)

Figure 15. (a) First, (b) second, and (c) third traversability maps generated for real 3D scan of Figure 14.

6.2. Park Course

Unmanned navigation on a careless urban park was also tested using three goal points
(see Figure 16). The intermediate point appeared twice on the way to the extreme points on the west
and the east. The aerial view of Figure 16 shows the GPS trajectory when Andabata was commanded
with vsp = 0.3 m s−1.

The almost plain surface of the park contained both natural (trees, bushes, and weeds) and
artificial obstacles (lamp-posts, fences, and rubbish bins). Most of the trajectory was followed over the
yellow course with the exception of the last stretch, where the robot went through a rough zone with
trees and weeds pursuing the last goal point to the east (see Figure 17).
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The park trajectory was 181 m long and lasted 660 s. In total, 183 3D scans were acquired by
Andabata. The average value of 34,498 points per 3D scan was greater than that in the previous
experiment because sky visibility was reduced, mainly due to treetops.

Figure 16. GPS measurements during unmanned navigation in the park. Locations that correspond to
each photograph of Figure 17 are indicated.

(a) (b) (c)

(d) (e) (f)

Figure 17. Photographs of Andabata on the park from (a) beginning to (f) end of the trajectory.

6.3. Discussion

Waypoint selection is very important to complete navigation goals. To test it, we repeated the
park course by eliminating the intermediate point. Nevertheless, Andabata failed to reach the western
goal (see Figure 18a). This failure was because the robot did not find a path to the goal though the
weeds, and kept turning around.

In this case, there was a conflict of behaviors in the reactive controller: if the vehicle advances on
a free-of-obstacles direction di over the yellow course, it increases the angular difference with respect
to goal direction ∆i. Thus, high G(di) (9) and T(i) (10) values were obtained at once in the numerator
and denominator of cost function J(di, i) (8), respectively. In fact, if the western goal point were moved
a few meters to the northeast, the robot succeeded in reaching it by circumnavigating weeds and pine
trees (see Figure 18b).
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(a) (b)

Figure 18. Reactive navigation in urban park without intermediate waypoint: (a) failure and (b) success.

Generally, an unmanned vehicle should overcome water bodies during a cross-country course
to prevent electrical damage or becoming stuck inside [41]. Deep-water elements can be indirectly
detected with a 3D laser scanner by lack of measurements related with laser-beam deflections that
make them behave like negative obstacles [4].

However, Andabata failed to avoid puddles that it encountered on its way because it is sufficient
to have a point classified as traversable inside a cell near a puddle on the traversability map to label
the almost-empty cell as green (see Figure 19).

(a) (b)

Figure 19. (a) Close view of 3D point cloud from top that contains a puddle in front of the vehicle
indicated by black circle and (b) its first traversability map.

Another relevant issue for outdoor navigation is overhangs such as tree canopy or tunnels [42].
Figure 20 shows a 3D point cloud taken from the urban-park experiment where the robot was close to
an olive tree. Tall points from the treetop were correctly classified as nontraversable in red. However,
the projection of these points on the 2D traversability map caused most ground cells around the vehicle
to be considered nontraversable, considerably reducing the free space.
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(a) (b)

Figure 20. (a) Classified 3D laser scan with Andabata under a tree and (b) its first traversability map.

Dynamic obstacles such as animals can also be found by a vehicle on natural environments.
With this in mind, we tested navigation while Andabata crossed with a pedestrian. However, the robot
was not able to properly prevent collision because the acquisition rate of 3D scans (i.e., ts = 3.3 s) was
clearly insufficient for this purpose.

7. Conclusions

This paper described the case study of mobile robot Andabata that distinguished traversable
ground from 3D point clouds acquired in motion of its vicinity by using a supervised–trained classifier.
A reactive navigation scheme at low speeds was proposed to achieve waypoints with uncertain GPS
localisation while avoiding static obstacles on natural terrains.

Realistic robotic simulations with Gazebo were employed to appropriately adjust reactive
parameters. In this way, numerous experiments with Andabata were avoided, which was a considerable
gain in testing time and robot integrity. Field experiments were presented where different paths were
successfully followed by Andabata with the ROS by using only a few distant waypoints.

This paper enhanced our previous work [25] about autonomous navigation with Andabata.
This was achieved by processing all 3D laser scans acquired by the robot in motion. Moreover, reactivity
is improved by building three 2D traversability maps for every levelled 3D point cloud as the robot
moved through it.

There was less free space in real scenarios than in the simulated environment, which means that it
would be convenient to work with a more complicated simulated scenario by including more elements,
such as weeds and puddles. This is a matter for future improvements, and to better label the cells of
the 2D traversability maps to consider small negative obstacles and discard tall overhangs.

Future work also includes discerning when the robot gets stuck, detecting dynamic obstacles in
front of the vehicle by processing images from the camera of the on-board smartphone, and the
automatic learning of the proposed reactive parameters by reinforcement learning [43] through
Gazebo simulations.
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Abbreviations

The following acronyms are used in the manuscript:

2D Two-dimensional
2.5D Two-and-a-half-dimensional
3D Three-dimensional
GPS Global positioning system
ICR Instantaneous center of rotation
ODE Open dynamics engine
RAM Random access memory
ROS Robot operating system
SLAM Simultaneous localisation and mapping
USB Universal serial bus
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